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Abstract

This paper analyses the properties of alternative distance metrics for analy-

sing contingency tables. It is argued that the usual χ2-metric possesses

some undesirable features and it is therefore interesting to consider alter-

native metrics. Furthermore it is shown that the “standardized residuals”

used as a starting point for the correspondence analysis are not properly

standardized as their variances depend on cell probabilities. As an alter-

native, the deviation from independence is measured by the underlying

correlation coefficient. It is argued that this measure is similar to the

(signed square-root) of the log-likelihood difference, suggesting that this

metric shares some more appealing statistical properties.
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1 Introduction

What do you do, if you don’t know anything about something that you do not

really care about? Right, you ask Google. So I typed: “What is correspondence

analysis”? As usual, one of the first entries of the search results is Wikipedia.

I read: “Correspondence Analysis is conceptually similar to principal component

analysis, but applies to categorical rather than continuous data.” Oh that’s great

because I have some experience with principal component analysis (see e.g. Bre-

itung and Eickmeier 2011, Breitung and Tenhofen 2011, Breitung 2013). I there-

fore started to study the relevant textbooks like Blasius (2001) and Greenacre

(2007) and try to understand the relationship between correspondence analysis

(henceforth: CA) and principal component analysis (PCA). Obviously the liter-

ature on CA is huge and for this small note I was not able to carefully study

the relevant literature. So I stick to the position of an alien that is visiting the

planet “correspondence analysis”. This alien is grown up on the planet called

“Econometrics”, where data matrices are typically pretty large and observed on

metric scales. Utmost importance is attached to define and identify what you are

estimating, and no one will take you seriously unless you can demonstrate that

your results are statistically significant and that the assumptions of your model

are valid.

This said I carefully approached the CA. If you do so, you first have to survive

an exhausting trip through a (non)Euclidian geometric space, which is somewhat

unusual in statistical analysis. To be honest, this geometric journey has left me

a bit perplexed. To understand better the geometric approach, I first studied the

geometry of CA and found that the χ2-distance has some undesirable features and

it may therefore be appealing to consider alternative metrics as well. My favorite

is to transform the entries of the contingency table into correlation coefficients.

Interestingly, correlations are constructed similarly as the χ2-distance but imply

a slightly different denominator. Another measure is the likelihood ratio (LR)

that seems most natural from a statistical point of view. Moreover, LR statistics

allow us to find out whether some specific cell frequency (or row/column) is

significantly different from the expected cell frequency under the assumption of

independent outcomes.

To illustrate the issues involved, I borrowed the empirical example of Blasius

and Greenacre (2006) and compare different distance measures and visualization
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techniques. In particular I present the correlation matrix in form of a “balloon

plot” that highlights the distances from the expected cell frequencies. I argue

that the information presented by the balloon plot is similar to the biplot in

CA but it does not involve a loss of information from dimensionality reduction.

Furthermore I visualize the correlation matrix by a respective biplot that reveals

interesting differences to the standard correspondence plot in CA.

The rest of the paper is organized as follows. In Section 2 I compare PCA and

CA thereby highlighting some conceptual differences between these approaches.

The standard χ2-distance measure is considered in Section 3. Following Rao

(1995) I argue that this distance measure possesses some undesirable properties.

Another drawback is that under the assumptions of independent outcomes the

variances of the χ2-distances depend on the cell probabilities and, therefore, the

entries of the contingency matrix are not properly standardized. To overcome

this disadvantages, Section 4 proposes a distance measure constructed from the

underlying correlation coefficient that also provides a proper standardization.

In Section 5 I consider the standard statistical distance measure namely the

difference of the log-likelihood function (resp. the logarithm of the likelihood

ratio, LR). It turns out that the LR distance is related but not identical to the

χ2-distance. By construction the LR distances shares some optimality properties

for statistical inference. The theoretical results are illustrated in Section 6 by

using the empirical example of Blasius and Greenacre (2006). Section 7 offers

some concluding remarks.

2 The relationship between CA and PCA

PCA is typically applied to large correlation matrices. Let X denote an N × J
matrix where N indicates the number of observations on each of the J variables.

The data is standardized such that the diagonal elements of the matrix N−1X ′X

are equal to one. The PCA is a dimension reduction technique that maps the

J variable in a subspace spanned by J � r linear combinations of the original

variables (the so-called principal components).

Whereas PCA considers (standardized) observations from a large number of

variables, the CA starts from a matrix constructed from a particular distance

metric (see Section 3). Furthermore, in most textbook examples and empirical
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applications the size of the contingency table is rather small, with K and L

typically less than 10. In such situations it is not obvious that it is necessary to

reduce the dimensionality. As far as I can see the main reason for reducing the

dimension of the correspondence matrix is the possibility to represent the data

in form of a two-dimensional diagram (biplot). Obviously, such a dimensionality

reduction implies some loss of information but helps to recover some unknown

structure behind the contingency matrix.

Typically, the data for a K × L contingency table come in form of n bivari-

ate vectors (a1, b1), (a2, b2), . . . , (an, bn) of independent multinomially distributed

random variables, where ai ∈ {1, 2, . . . , K}, bi ∈ {1, 2, . . . , L} and i = 1, . . . , n.

Let us define K + L corresponding dummy variables as

dai (k) =

1 if ai = k

0 otherwise

dbi(`) =

1 if bi = `

0 otherwise

Then, the relative frequency results as

pk` =
nk`
n

=
1

n

n∑
i=1

dai (k)dbi(`),

where nk` indicates the number of observations in the (k, `)-cell of the contingency

table. The difference between actual and expected (by assuming independence)

relative cell frequencies result as

qk` := pk` − pk·p·` =
1

n

n∑
i=1

dai (k)dbi(`)−

(
1

n

n∑
i=1

dai (k)

)(
1

n

n∑
i=1

dbi(`)

)
,

where pk· =
∑L

`=1 pk` and p·` =
∑K

k=1 pk` are called the row and column masses,

respectively. This shows that the “residual” qk` can be interpreted as the sample

covariance between the dummy variables dai (k) and dbi(`). In Section 4 this inter-

pretation is employed to construct a correlation matrix between the outcomes of

the contingency table.
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For the CA we divide the residuals qk` by the factor
√
pk·p·` yielding what is

often called the “standardised residuals” (e.g. Blasius 2001: 89, and Greenacre

2007: 202). In Section 3 I argue that dividing the residuals by
√
pk·p·` does not

result in a proper standardization, as the variances of the χ2-distances depend

on the cell probabilities. Let S denote the K × L matrix with typical element

sk` =
qk`√
pk·p·`

=
pk` − pk·p·`√

pk·p·`
. (1)

The reduction of dimensionality is obtained by applying the singular value de-

composition (SVD) with S = UDV ′. Let U2 (V2) denote the matrix of the first

two left (right) singular vectors and D2 is the upper-left (2 × 2) submatrix of

D. In PCA the biplot coordinates are given by U2D
α
2 and V2D

1−α
2 , where an

asymmetric version is most popular by choosing either α = 0 or α = 1. The set

of points depicting the variables is typically drawn as arrows from the origin to

reinforce the idea that they represent biplot axes onto which the observations can

be projected when approximating the original data.

The SVD results in a least-squares minimal approximation of the element in

S given by

sk` = u′2kD2v2` + ẽk`

where u2k (v2`) represents the k-th (`-th) row of U2 (V2) and ẽk` is the approxima-

tion error. So far so comprehensible. But now correspondence analysis introduces

another transformation yielding

1
√
pk·p·`

sk` =
pk`
pk·p·`

− 1 =

(
u′2k√
pk·

)
D2

(
v2`√
p·`

)
+

1
√
pk·p·`

ẽk`

:= φ′kD2γ` + ek`

where φk and γ` are called “standard coordinates” (cf. Greenacre 2007: 202).

It is important to note, however, that the error ek` is no longer a least-squares

minimal approximation error. Instead, the least-squares minimal approximation

is obtained from the SVD applied to the matrix D
−1/2
r SD

−1/2
c , where Dr and

Dc are diagonal matrices with the row and column masses (pk· resp. p·`) on the
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main diagonals. The latter SVD yields a different representation with smaller

approximation error. As an example consider the Asbestos data set (see Selikoff

1981).1 The two alternative approaches for computing the standard coordinates

yield the following matrices of standard row coordinates:

Φ = D−1/2r U2 =


−0.847 0.472

0.416 −1.334

1.800 0.879

2.161 2.167

 , Φ̃ =


−0.224 0.476

0.045 −0.689

0.582 −0.338

0.780 0.429


where Φ̃ is obtained as the two left eigenvectors of the SVD for D

−1/2
r SD

−1/2
c .2

This alternative (“direct”) way of computing the standard coordinates is also

mentioned by Greenacre (2007, eq. (A.13)). What is obvious from the above

results is that the two approaches may render quite different coordinates.

An important issue in correspondence analysis is the proper scaling of the bi-

plot axes. The R package “ca” (cf. Nenadić and Greenacre 2007) offers 8 different

scaling options for the coordinates. Obviously, the issue of the “best scaling” of

the coordinates is not settled completely. The standard scaling employs principal

coordinates given by F = D
−1/2
r U2D2 and G = D

−1/2
c V2D2. This particular scal-

ing is chosen such that the weighted sum-of-squares of the principal coordinates

(i.e. their inertia in the direction of this dimension) is equal to the square of the

singular value (the principal inertia).

Summing up, PCA and CA share the idea of representing some matrix by a

lower dimensional approximation. But the details of the analysis are quite dif-

ferent. Statistical inference using PCA typically assumes an i.i.d. sample of J

correlated variables, where r � J linear combinations of the variables (prin-

cipal components) are constructed that best represent the linear dependence

among the variables.3 On the other hand, the CA analyses the variability of

the rows/columns of the contingency table. Notwithstanding these conceptual

differences the CA benefits from adapting useful tools like the biplot in order to

visualize the data.

1The R code for this and the other computations are provided on the homepage of the
author.

2The coordinates are available from the output ($rowcoord) of the R prackage “ca”.
3The i.i.d. assumption may be dropped by allowing for some “weak correlation” (e.g. Bai

2003) but the data matrix of the CA may be strongly correlated in both dimensions.
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3 The χ2-distance

Textbooks on CA (e.g. Blasius 2001 and Greenacre 2007) typically start with

some geometric reasoning in Euklidian space in order to explain how to measure

the distance between the row resp. column profiles. Then Pearson’s X2-statistic

for independence is introduced and it is argued that this test statistic gives rise

to the χ2-distance measure for two row profile vectors rk and rk′ defined as (cf.

Greenacre 2007: 31)

||rk − rk∗||χ =

√√√√ L∑
`=1

[(pk`/pk·)− (pk∗`/pk∗·]
2

p·`

where rk = (pk1/pk·, . . . , pkL/pk·)
′ and rk∗ denote two L×1 vectors of row profiles.

The X2-statistic results as a weighted average of the row (resp. column) distances

X2 = n
K∑
k=1

pk·||rk − c||2χ

where c = (p·1, . . . , p·L)′ is the average row profile under the assumption of in-

dependence (i.e. the vector of column masses). A similar representation can be

derived for the column distances.

As far as I can see, the main reason for introducing such a distance metric is

the desire to develop a geometric interpretation for Pearson’s X2 statistic. This

is achieved by defining the χ2 distance as a weighted Euclidian distance. For me

as an alien it is difficult to see why the squared distances should be weighted by

the (inverted) column masses. The only reason seems to be that applying this

particular weighting scheme gives rise to the X2 statistic. But why should the

distance between the entries of two rows profiles depend on the respective column

masses? This implies that when we add or drop rows, then the corresponding

distances may get smaller or larger. Another problem is that if the column masses

gets small, then undue emphasis is given to the corresponding row distances. This

let the famous (and now 102 years old) C.R. Rao (1995) to advocate the Hellinger
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distance defined as

dH(rk, rk∗)
2 =

L∑
`=1

(
√
pk`/pk· −

√
pk∗`/pk∗·)

2.

Beside the fact that this distance measure only depends on the row profiles them-

selves and do not imply any weighting related to information from outside, this

distance measure satisfies the principle of distributional equivalence and the dis-

tances do not get arbitrarily large if the column masses tend to zero. Cuadras

and Cuadras (2006) proposed a generalized distance measure that entails the CA

distances and the Hellinger distance as a special case. Other alternatives are the

L1-type distance of Benzécri (1982) and the log-ratios considered in Cuadras and

Cuadras (2006). This list of proposed distance measures is not complete. Con-

sider, for example a distance measure that is popular in machine learning when

it comes to analyzing the similarity of discrete distributions4 (e.g. Yang et al.

2015), which is defined as

||rk − rk∗||S =

√√√√ L∑
`=1

(pk` − pk∗`)2
2(pk` + pk∗`)

(2)

Note that under independence we have pk` ≈ pk` and, therefore, for independent

outcomes this we have 4n
∑K

k=1 ||rk − c||2S ≈ X2.

Let us now consider the Pearson’s statistic given by

X2 = n

K∑
k=1

L∑
`=1

s2k`

where sk` as defined in (1) is often called the “standardized residuals”. A proper

standardization would imply that sk` has the same (unit) variance for all k and

` but it turns out that the distributional properties of sk` depend on the cell

probabilities. The reason is that the denominator
√
pk·p·` is different from the

standard deviation of the numerator, even if the outcomes are independent. To

illustrate this fact I performed a small Monte Carlo experiment. The data gener-

ating process resembles the Asbestos data set used in the previous section, where

4See also the function chisqDistance(a,b) in the R package colordistance.
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Table 1: Variances of the residuals with different standardization

pκ` var(sκ`) var(%κ`) pκ` var(sκ`) var(%κ`)
row first column second column
1 0.159 0.346 1.036 0.101 0.464 1.000
2 0.174 0.328 1.025 0.111 0.451 1.015
3 0.035 0.471 1.045 0.022 0.610 0.975
4 0.089 0.395 0.987 0.056 0.557 1.003
5 0.055 0.427 0.988 0.035 0.592 0.988

row third column fourth column
1 0.034 0.597 0.975 0.013 0.629 0.954
2 0.038 0.616 1.051 0.015 0.631 1.001
3 0.007 0.853 1.033 0.003 0.904 1.017
4 0.019 0.764 1.042 0.007 0.772 0.978
5 0.012 0.826 1.044 0.004 0.805 0.945

Entries present the variances of the standardized residuals as defined
in (1) and (3). Entries are based on 1000 replications of the Asbestos
dataset generated under the assumption of independent outcomes.

the data is generated as independent multinomial distributed random variables

with probabilities pk·p·`, that is, the data are generated under the assumption of

independent outcomes. The results of the Monte Carlo simulation based on 1000

replications are presented in Table 1.

The results indicate that sκ` cannot be considered to be properly standard-

ized as the variances tend to become larger for smaller cell probabilities pκ`. The

variances range from 0.328 for a cell probability of 0.174 up to 0.904 for a proba-

bility of 0.003. Accordingly, it is much more likely to observe large residuals when

the corresponding probability is small. On the other hand, the standardisation

proposed in the next section appear to work well (indicated by %κ` in Table 1).
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4 Correlation as a distance measure

There is a close relationship between distance and correlation. For example,

consider the Euclidean distance

||x− y|| =

√√√√ n∑
i=1

(yi − xi)2

between two vectors of standardized random variables x = (x1, . . . , xn)′ and y =

(y1, . . . , yn)′. Since

||x− y||2 = 2n− 2
n∑
i=1

xiyi

the squared Euclidian distance can be expressed as ||x − y||2 = 2n(1 − %xy),

where %xy denotes the correlation coefficient between xi and yi. It therefore makes

sense to consider the relationship between distances and correlations between the

outcomes of the contingency table.

As noted in Section 2 the differences pk` − pi·p·j can be written as the covari-

ance between the two dummy variables dai (k) and dbi(`). This suggests to use the

correlation between the dummy variables as measure of the deviation from inde-

pendence. Since the dummy variables are binomially distributed with variances

var[dai (k)] = pk·(1− pk·) and var[dbi(`)] = p·`(1− p·`) and therefore, an estimator

for the correlation between the two dummy variables results as

%k` =
pk` − pi·p·j√

(pk· − p2k·)(p·j − p2·j)
(3)

It is interesting to note the close correspondence between this correlation measure

and the standardized residuals sk` used for the correspondence analysis. The

only difference is the squared probabilities in the denominator. Since the cell

probabilities are typically small, the differences between sk` and %k` are usually

moderate. An important property of the correlation coefficient is that

√
n %k`

d→ N (0, 1)
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where
d→ signifies convergence in distribution. Accordingly under the hypothesis

of independent outcomes all correlations have the same asymptotic distribution

and can therefore be considered to be properly standardized. In Section 6 I

therefore use the correlations %k` instead of sk` as an alternative starting point of

the correspondence analysis.

5 The log-likelihood distance

It is well known that for statistical tests the difference between the log-likelihood

functions under the null and alternative hypotheses results in most powerful

test statistics (Neyman-Pearson lemma). It is therefore natural to consider the

difference in the log-likelihood functions (that is the logarithm of the likelihood-

ratio) as a distance measure between the actual and expected cell frequencies.

Let us therefore consider the log-likelihood difference for a test of the hypoth-

esis of independent outcomes which given by

LR = 2n
K∑
k=1

L∑
`=1

pk` log

(
pk`
pk·p·`

)
. (4)

How is this likelihood-ratio statistic related to Pearson’s X2-statistic? Let p0k` =

pk·p·`. A second order Taylor expansion around p0k` yields:

pk`
[
log(pk`)− log(p0k`)

]
≈ (pk` − p0k`) +

1

2p0k`
(pk` − p0k`)2.

Since
∑K

k=1

∑L
`=1(pk` − p0k`) = 0 it follows that the likelihood ratio statistic LR

can be approximated by Pearson’s X2 statistic whenever pk` − p0k` is small (that

is, if the outcomes are nearly independent).

Let us now consider the LR test for the hypothesis that a particular row

profile, say for k = 1, deviates from the other row profiles. It is important

to notice that it is not possible to just pick the relevant summands for k = 1

from the LR statistic (4) as this would not result in a test statistic with the

usual χ2-distribution with L− 1 degrees of freedom. Instead we consolidate the

contingency table such that

11



k ↓ ` : 1 2 · · · L

1 p11 p12 · · · p1K

2 p21 p22 · · · p2K

where p2` =
∑K

k=2 pk`. Accordingly, the remaining rows k = 2, 3, . . . , K are

aggregated such that the contingency table is reduced to a 2× L table. The LR

statistic for this row results as

LR(k = 1) = 2n
L∑
`=1

p1j log

(
p1j

(p1` + p2`)p1·

)
+ p1j log

(
p2`

(p1` + p2`)p2·

)
(5)

where p2· = p21+p22+· · ·+p2L. This test statistic is asymptotically χ2-distributed

with L − 1 degrees of freedom. In what follows I refer to this LR statistic as

the “LR row distance”. In a straightforward manner we can also define a log-

likelihood distance for each cell. To this end we need to consolidate also the

remaining columns such that for the upper right cell, for example, we obtain

k ↓ `: 1 2

1 p11 p12

2 p21 p22

where p12 =
∑L

k=2 pk`, p21 =
∑K

k=2 pk` and p22 =
∑K

k=2

∑L
`=2 pk`. The log-

likelihood difference for testing independence in this 2 × 2 matrix is denoted by

LR(k = 1, ` = 1). Let us now consider the properties of this distance measure as

an alternative to the χ2-distance. First, it is obvious that under independence the

log-likelihood difference is asymptotically χ2-distributed whereas the distribution

of the χ2-distance depends on the cell probabilities. Furthermore it turns out that

LR(k, `) ≈ n%2k` and, therefore, we may use the signed square-root of the LR(k, `)

statistic as an alternative for constructing properly standardized residuals.

6 An empirical illustration

To illustrate the issues discussed in the previous sections, I borrow an example

from Blasius and Greenacre (2006). The data are from the International Social
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Table 2: Contingency table for “international sports × countries”

U.K. U.S. Russia Spain France
agree strongly 230 400 1010 201 365
agree 329 471 530 639 478
neither nor 177 237 141 208 305
disagree 34 28 21 72 50
disagree strongly 6 12 11 14 97

Column profiles
U.K. U.S. Russia Spain France row masses

agree strongly 0.296 0.348 0.590 0.177 0.282 0.364
agree 0.424 0.410 0.309 0.563 0.369 0.403
neither nor 0.228 0.206 0.082 0.183 0.236 0.176
disagree 0.044 0.024 0.012 0.063 0.039 0.034
disagree strongly 0.009 0.010 0.006 0.012 0.075 0.023
column masses 0.128 0.189 0.282 0.187 0.213
LR difference 37.41 21.98 568.00 265.68 260.89
Souce: Blasius and Greenacre (2006: 7). “LR difference” indicates the LR
statistic for the hypothesis that the respective row profile is different from the
expected profile under independence.

Survey Program (ISSP). Table 2 reports responses from five selected countries to

the question: “When my country does well in international sports, it makes me

proud to be [Country Nationality]”. The contingency table is provided in Table

2.

Let us first address the question: how special are the responses from the

different countries? To assess the deviation of each column (country) to all other

countries, I computed the log-likelihood differences as in (4) after transposing

the matrix to obtain the LR column distances. The results are presented in

the last row of Table 2. These results suggest that the responses of Russia are

most different from the responses of the other countries, whereas the responses

of Spain and France are less different but still quite far away from the “average

column” (row masses). The columns of the U.K. and U.S. are much more similar

to the average (resp. independent) pattern. We can also compare the outcomes of

two countries with each other. For example the log-likelihood difference between

the U.K. and U.S. is only 10.834, suggesting that the response pattern of these

countries are pretty similar. On the other hand, the log-likelihood difference
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between the columns of France and Spain is 145.06. Although the distance of

these two columns to the mean column is similar, this does not mean that the

response pattern of France and Spain is similar. This becomes also clear from

the correspondence analysis (see below).

Table 3 compares the standardized residuals sk` to the alternative measures

considered in Sections 3 – 5. The first line for each row presents the respective

cell entries of the matrix S as defined in (1), whereas the second line reports the

symmetric distances measure || · ||S as defined in (2). In most cases the differences

between these two distance measures are pretty small. The correlation measure

reveals more important differences to the χ2-distance measures in particular if

the distance gets large. For example for the (1, 3)-cell the χ2-distance is 0.199,

whereas the correlation is 0.294. This suggests that larger distances are more

accentuated by using correlations instead of χ2-distances. By multiplying corre-

lations with
√
n we obtain a test statistic for the null hypothesis that the two

features affecting the cell outcome are independent. This hypothesis is rejected

at the 0.05 significance level for 15 out of 25 cells.

In order to visualize the correlation pattern, Figure 1 presents a balloon plot

for the correlations. The larger the positive correlation the larger is the green

(resp. black) balloon, whereas negative correlations are indicated by red (grey)

balloons. As the more popular alternative Figure 2 presents the correspondence

plot as provided by the R package “ca” (Nenadić and Greenacre 2007).5 Let me

summarize the main findings of Blasius and Greenacre (2006: 10f) from analysing

this contingency table in their own words followed by the corresponding pattern

in the balloon plot:

� “The first dimension can be interpreted as ’level of pride towards achieve-

ment in international sport. ... As for the countries we see Russia on the

left opposing the other countries of the right; thus of these five nations the

Russians feel most proud when Russia is doing well in international sports.

At the opposite right-hand side of this axis we see that the French and the

Spanish are the least proud of the five nations in this respect...”. This con-

clusion is confirmed by the balloon plot (Figure 1). The nationality Russian

is most correlated with strongly agree, suggesting that Russians feel most

5The plot in figure 2 is slightly different from the CA plot in Blasius and Greenacre (2006),
as the fist axis seems to be multiplied by −1. Note that the sign of the axes is not identified.
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Table 3: Alternative distance measures

(row,column): (1,1) (1,2) (1,3) (1,4) (1,5)
sk` (residual) −0.039 −0.010 0.199 −0.133 −0.062
symmetric −0.041 −0.011 0.174 −0.155 −0.066
correlation −0.053 −0.015 0.294 −0.185 −0.088√
n·corr. −4.171 −1.191 22.94 −14.47 −6.900

LR distance −4.226 −1.194 22.68 −15.13 −7.000
(row,column): (2,1) (2,2) (2,3) (2,4) (2,5)
sk` (residual) 0.011 0.004 −0.078 0.108 −0.024
symmetric 0.011 0.004 −0.083 0.100 −0.025
correlation 0.016 0.006 −0.120 0.156 −0.036√
n·corr. 1.250 0.527 −9.361 12.18 −2.835

LR distance 1.248 0.527 −9.459 12.07 −2.846
(row,column): (3,1) (3,2) (3,3) (3,4) (3,5)
sk` (residual) 0.044 0.031 −0.118 0.007 0.065
symmetric 0.041 0.030 −0.138 0.007 0.060
correlation 0.052 0.038 −0.154 0.009 0.081√
n·corr. 4.074 3.001 −12.02 0.721 6.334

LR distance 3.957 2.953 −12.77 0.718 6.161
(row,column): (4,1) (4,2) (4,3) (4,4) (4,5)
sk` (residual) 0.019 −0.022 −0.062 0.069 0.012
symmetric 0.018 −0.023 −0.075 0.058 0.012
correlation 0.021 −0.025 −0.074 0.078 0.013√
n·corr. 1.654 −1.958 −5.822 6.137 1.081

LR distance 1.594 −2.036 −6.394 5.661 1.064
(row,column): (5,1) (1,2) (5,3) (5,4) (5,5)
sk` (residual) −0.036 −0.036 −0.058 −0.030 0.157
symmetric −0.044 −0.042 −0.073 −0.035 0.108
correlation −0.039 −0.040 −0.069 −0.034 0.179√
n·corr. −3.048 −3.164 −5.420 −2.669 14.00

LR distance −3.469 −3.462 −6.085 −2.871 12.33
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Figure 1: Balloon plot of correlations

Note: Green (resp. black) balloon: positive correlation, red (grey) balloon:

negative correlation. The size of the balloon corresponds to the absolute corre-

lation between the dummy variables indicating the (i, j) cell of the contingency

table.

Figure 2: Symmetric correspondence plot

Note: Correspondence plot as obtained from the R package “ca”.
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Figure 3: Symmetric biplot of correlations

Note: Modified correspondence plot based on correlations.
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proud for the achievements in international sports. By contrast, the cat-

egory “strongly agree” is highly negatively correlated with “France” and

“Spain” which corresponds with the findings of the correspondence plot,

where these countries are far away from the category “strongly agree”.

� “The second dimension mainly reflects the outlying position “disagree strongly”

as well as France compared with the other categories and countries.” Indeed

this “outlier’ is represented by the high positive correlation (green balloon)

between “disagree strongly” and France.

� “...the U.S. and U.K. have very similar response pattern, which are not

much different from the overall, or average, pattern. Geometrically this is

depicted by these two countries lying close to each other, towards the origin

of the map.” In the balloon plot this fact can be identified by the rather

small correlations for all categories of these two countries.

It appears that many features of the correspondence plot can also be obtained

from studying the correlations presented by the balloon plot. Categories that are

close together in the correspondence plot are highly correlated, whereas observa-

tions far away from each other are negatively correlated. Outcomes close to the

origin of the correspondence plot correspond to low correlations. A somewhat

puzzling phenomenon is the isolated location of “disagree strongly” in the cor-

respondence plot. The balloon plot indicates that this outlying position results

from the fact that for France this category is highly over-represented, while for

all other countries this response category behaves quite similar.

It may be interesting to see how a biplot for the correlation looks like. To this

end I apply an SVD to the correlation matrix R = (%k`) resulting in R = UDV ′.

Let U2 (V2) denote the first two columns of the matrix of the left (right) singular

vectors and D2 is the upper-left (2 × 2) submatrix of D. Figure 3 presents the

(symmetric) biplot based on U2D
1/2
2 (as row coordinates) and V2D

1/2
2 (as col-

umn coordinates). Overall the biplot resembles the original correspondence plot

in Figure 2 but some interesting differences emerge. In Figure 3 the category

“disagree strongly” is no longer as isolated as in the original correspondence plot.

Now this category is located much closer to “France” (such that their labels over-

lap) representing the high correlation between “France” and “disagree strongly”.

Furthermore, the biplot also reveals the outlying position of the combination
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“strongly agree” and “Russia”. This corresponds to the largest correlation of

the whole table with nearly 0.295, whereas the correlation between “France” and

“disagree strongly” is substantially lower (0.18).

7 Conclusion

As it’s time to leave the planet “correspondence analysis” I am going to leave a

message in the bottle at the Schwarzrheindorfer waterfront: “Whoever finds this

bottle, let it be said that 65 years after the fateful 1957 an alien from a distant

planet has strayed into this inhospitable territory. He left some cryptical notes on

alternative distance measures, although everyone on this planet is happy about

this geometry, which is not encountered anywhere else.” So in this bottle you will

find a collection of red and green balloons. If you want to escape the limitations

of a two-dimensional plane, you may fill these balloons with helium and they will

carry you away, right in the direction of my home planet...”.
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