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Abstract

The zonoid depth is useful in multivariate data analysis in order to
describe an empirical distribution by trimmed regions, so-called zonoid re-
gions. The zonoid regions range from the convex hull of the data to their
mean and characterize the distribution in a unique way. This paper intro-
duces into some principal data analytic applications of the zonoid depth,
including recent developments in classification.

Multivariate data are often asymmetrically distributed so that they cannot
be modelled by a normal or elliptical probability distribution. Various notions
of data depth have been proposed to analyze such data in a nonparametric way.
This paper surveys the zonoid depth and some recent developments of its use in
data analysis.

The zonoid depth is useful in multivariate data analysis in order to describe
an empirical distribution by trimmed regions, so-called zonoid regions. These
regions range from the convex hull of the data to their mean and characterize the
distribution in a unique way.

The deepest point, which equals the mean, depicts the location of the data.
The volumes of the regions measure dispersion and dependence; their shape re-
flects dependence and asymmetry. Both the zonoid regions and the zonoid depth
have pleasant analytic and computational properties. Many descriptive and in-
ferential methods are based on the zonoid depth and profit from these properties.

In the sequel we introduce into some principal data analytic applications of
the zonoid depth. We start with the notion of zonoid depth and relate it to a
framework of affine-invariant, convex data depths. The principal properties of
the zonoid depth are surveyed, in particular, uniqueness, the projection property
and various continuity properties of the depth and the trimmed regions. Then
computability issues and the use of zonoid depth in describing and comparing
location, dispersion and shape are covered. In the last part, recent applications
to the classification problem are presented.



1 Zonoid regions and zonoid depth

Given a d-variate probability distribution function F', a family {D,} of nested
sets in d-space is considered. The sets are called the zonoid regions of F' and
defined as follows: Let Dy(F) = R and for o €]0, 1]

D.(F) = {/Rda:g(:c)dF(a:):Ogggé, /

R4

g(x)dF(x) = 1} . (1.1)

These regions exist if and only if F' has a finite expectation vector pup = fRd xdF (x).
Especially, if F' is an empirical distribution, with equal mass on (not neces-
sarily different) points @1, ..., x,, then (1.1) becomes

D.(F) = Dy(x,...,x,)

- - 1
= N N=1,0< )\, ;< —forallz,p 1.2
which holds for 0 < a < 1. It is easily seen from the definition (1.1) that the
zonoid regions are nested, the smallest region being the singleton set D;(F) =
{pr}. If F is an empirical distribution, the zonoid regions range from the mean
to the convex hull of the data; the latter arises when « is close enough to zero,
O<a< %
The zonoid regions satisfy the following general properties. For every o €]0, 1],
D, is
R1 affine equivariant: D,(Fxa.ic) = Do(Fx)A + ¢ for any d x d matrix A
having full rank and ¢ € R,

Further, for every F having finite first moment, D, (F') is
R2 bounded,

R3 closed, and

R4 convex.

Of these properties R1, R2, and R4 are obvious from the definition (1.1); for a
proof of R3, see (Koshevoy and Mosler, 1997, Th. 5.4(i)).

Now we turn to the definition of the zonoid depth. Given a point y € R, its
zonoid depth of y with respect to F' is defined by

d(y; F) =max{a:y € D,(F)}. (1.3)

In other words, the zonoid region D, (F') is the upper level set of the zonoid
depth, with level a.

Given the distribution function F'x of a random vector X, the zonoid depth
is



D1 affine invariant: d(yA + b|Fxa.p) = d(y|Fx) for any d x d matrix A
having full rank and b € R?,

D2 vanishing at infinity: klim d(y,|Fx) = 0 for every sequence (y;,)reny With

Tim [Jy | = oo,
—00

D3 upper semi-continuous: the set {y € RY|d(y|Fx) > a} is closed for
every a,

D4 quasi-concave: d(A\y + (1 — \)z|Fx) < max{d(y|Fx),d(z|Fx)} for any
A€ [0,1] and y, z € R?,

Each of these restrictions follows immediately from the definition (1.3) and the
affine equivariance, boundedness, closedness and convexity, respectively, of the
zonoid regions.

A function y — ¢(y|F) which satisfies these restrictions is called an affine
wnwvariant, convex depth function. The smallest region is mentioned as the median
set w.r.t. to the depth. The zonoid median set is the singleton containing the
mean of the distribution. Further examples of affine invariant, convex depths are
the halfspace depth dy,

dy(y|F) = inf {/ dF(x): H a closed halfspace, y € H} : (1.4)
H

and the Mahalanobis depth dyran,

dvan(YIF) = (1 + (y — ur) S5ty — pe)) (1.5)

where Y denotes the covariance matrix of F.

For a set of 15 data points, Figure 1 exhibits several (a) zonoid regions, and
regions based on (b) halfspace and (¢) Mahalanobis depth.

Other depth functions proposed in the literature satisfy only weaker sets of
restrictions. For a general investigation into depth functions see Zuo and Serfling
(2000a). E.g. the simplicial depth (Liu (1990)), restricted to L-continuous dis-
tributions, has level sets which are star-shaped, but in general not convex. The
LL;-depth (Vardi and Zhang (2000)) and the Euclidean depth dg,

dp(y, F) = 1+ ||y — prll®) ™", (1.6)

are only spherically invariant.

2 Useful properties of the zonoid depth

In this section we mention several special properties of the zonoid depth that are
particularly useful in statistical applications. They concern uniqgeness, projection,
continuity, and laws of large numbers.
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Figure 1: Regions based on different depths.

The first property is uniqueness: The zonoid depth characterizes the underly-
ing distribution in a unique way. More precisely, for any two d-variate distribution
functions F' and G that have finite first moments,

F=G if dy|F)=d(y|G) forall yecR?. (2.1)

The uniqueness property follows from (Koshevoy and Mosler, 1997, Th. 5.6). It
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implies that any claim about a distribution F' can be equivalently formulated
and analyzed as a claim about the zonoid depth w.r.t. F'. Note that, e.g., with
the Mahalanobis depth we are not able to distinguish between distributions that
have the same expectation and covariance. The halfspace depth characterizes
the distribution uniquely if either discrete distributions are assumed (Struyf and
Rousseeuw (1999), Koshevoy (200x)) or continuous distributions with compact
support (Koshevoy (2002)).

The second property is the projection property (Dyckerhoff (2002); see (Mosler,
2002, Th. 4.7)). Tt says that the zonoid depth at some y € R? equals the infimum
of the zonoid depths of all univariate projections,

dz(y|Fx) = inf dz(p'ylFyx), y€ R?. (2.2)
p

Due to the projection property, every value of the zonoid depth can be numer-
ically approximated by calculating the values of the depth in several univariate
projections and taking the minimum value. This appears to be particularly useful
when d is large. The halfspace depth satisfies another projection property: For
every « €]0,1],

dz(y|Fx)>a iff  dy(p'y|Fyx)>a forall pe it (2.3)

It can be shown (Dyckerhoff (2002)) that (2.3) is implied by (2.2) but not vice
versa.

Thirdly, we mention the continuity property: The zonoid depth is continuous
on the point and on the distribution: Given a convergent series of points y,, — y
it holds that

Jim dz(y,|F) = dz(y|F)

provided all y,, are in the convex hull of the support of F. Given a weakly
convergent series of distributions F,, — F' we obtain that

dz(y|Fn) — dz(y|F)

if the series is uniformly integrable and vy is in the relative interior of the convex
hull of the support of F'. For proofs see (Koshevoy and Mosler, 1997, Th. 7.1(iii))
and (Mosler, 2002, Th. 4.5).

Continuity on the distribution means that the depth varies only slowly with
small perturbations of the data. Continuity on the point implies that the depth
has a finite maximum and that the trimmed regions are closed. Note that the
Mahalanobis depth is continuous in both respects, while the halfspace depth is
obviously not.

The fourth special property is a Law of Large Numbers. Let X4,..., X, be
an i.i.d. sample, with X; ~ F', and denote the empirical distribution function by
F,,. Then almost surely holds

D.(F},) A, D,(F) for every «
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and
dz(y|Fn) — dz(y|F) for every y,

which follows from (Koshevoy and Mosler, 1997, Cor. 5.1). Here, 2, means
convergence with respect to Hausdorff distance. (The Hausdorff distance of two
compacts C' and D is the smallest € for which C plus an e-ball includes D and D
plus an e-ball includes C' as well.)

For the halfspace depth holds a similar law (Donoho and Gasko (1992)), and
for the Mahalanobis depth clearly the same.

3 Computational issues

To be practical in data analysis, a depth has to be numerically evaluated at many
points. However, the computational load differs considerably among the various
depths.

Given a d-variate data set {x1,...,®,}, the Mahalanobis depth of a point y
is easily calculated. Also, determining the Mahalanobis trimmed region D, at
some « needs no more computational effort.

Things are different with the halfspace depth. Observe that, when the points
Y,&1,..., T, are moved, the value of dy(y|xzy,...,x,) remains unchanged as
long as the combinatorial structure of the n + 1 points is kept, that is, no point
reaches or crosses a hyperplane spanned by the others. This property of a depth
is called combinatorial invariance. Also the simplicial depth, the majority depth
and the convex-hull peeling depth are combinatorial invariant, among others;
see, e.g. (Mosler, 2002, p 127). Calculating a combinatorial invariant depth is
always a heavy task. For the halfspace depth exist algorithms in dimension d = 2
(Rousseeuw and Ruts (1996)) and d > 3 (Rousseeuw and Struyf (1998)) having
complexity O(n?"!log(n)).

The zonoid depth is not combinatorial invariant. It relies not only on the
combinatorial but also on the metric structure of the data. The zonoid depth can
be efficiently calculated by an LP algorithm (Dyckerhoff et al. (1996)).

Table 1 shows the computer time needed to calculate the zonoid, halfspace
and Mahalanobis depths of a single point for various dimensions d and sample
sizes n. The asterisk * says that time exceeded 24 hours. We see from the table
that the halfspace depth, due to the complexity of the exact algorithm, can serve
as a practical device only if the data set is small and the dimension low. On the
other hand, the zonoid depth can be numerically handled for relatively large data
sets and high dimensions.

While this true for the zonoid depth of a single point, the calculation of a
zonoid region appears to be a much heavier task. Dyckerhoff (2000) has developed
an algorithm to compute the zonoid region D, (1, ..., x,) when d = 2. It is based
on the support function of the zonoid region and has complexity O(n?logn).
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Zonoid Halfspace Mahalanobis

n =100 500 1000 | n =100 500 1000 | n =100 500 1000

00 = b X

0.81 6.16 14.41 0.188 1.078 2.176 0.014  0.071 0.141
2.21 16.88  39.57 2110 298647 2483118 | 0.066  0.328 0.647
8.08 63.55 151.46 * * * 0.16 0.797 1.579

Table 1: Time (in milliseconds) needed to calculate the zonoid, halfspace and Maha-
lanobis depths of a single point. The asterisk * says that time exceeded 24 hours.

However, for higher dimensions the computational load of an exact calculation of
zonoid regions becomes prohibitive.

For approximative calculations of the zonoid and the halfspace depths, the
projection properties (2.2) and (2.3) can be usefully employed. For this, see
Dyckerhoff (2004).

4 Analysis of location, scale, and dependency

The principle tasks of data analysis are to describe a data set with respect to its
location, scale and shape and to compare it with other data sets in these respects.

With any depth, the location of a given distribution is measured by the median
set of the depth. For the zonoid depth the median set is a singleton containing
the mean vector of the distribution.

The scale of a given distribution F' can be measured by the volume of one
or several trimmed regions. Especially with the zonoid depth either the volume
Sa(F) = vol(Do(F)) for some selected « €]0,1], say v = %, can be used as a
scale index, or the weighted integral over all these volumes

which amounts to the volume of the lift zonoid of F'; see Mosler (2002). These
volumes do not vanish if and only if the convex hull of the support of F' has a
non-empty interior.

By these indexes, two given distributions Fx and Fy can be compared for
scale. A partial order of scale is obtained by comparing volumes for every «,

Fx Zscate Fy iff vol(D,(Fx)) < vol(D,(Fy)) forall «.

This ordering has been investigated by Zuo and Serfling (2000b).

A special aspect of shape is dependency. The ordering <., may be also
employed to measure the dependency of a distribution and to compare two dis-
tributions regarding their degrees of dependency (Mosler (2003)).
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5 Classification

Consider a finite set C' of data points in R? which is partioned into given classes
C1,...,Cg. An additional data point y has to be assigned to the class to which,
in some sense, it ‘fits best’. In other words, a new ‘object’ is assigned to one of
several given classes of ‘objects’.

To solve this classification problem, many rules have been proposed in the
literature and successfully used in applications (e.g. Hand, 1981). They differ in
their notion of ‘best fit’ and in the structure imposed on the data.

For every depth function d a depth classification rule

classd(y) = argmaz;d(y|C})

is defined. The rule assigns y to that class C; in which y is deepest. Denote
Cj=A{xj,...,xjn, } Especially, with the Euclidean depth

1 1
oW1 = Ty e e mj:”_jgmﬁ’

the classic centroid classification rule is obtained, that is, y is assigned to the
class C; that has ‘centroid’ T; closest to ¢ in Euclidean distance. Alternatively,
the Mahalanobis depth

1
1+ (y—z,)S (y — =)

drran(y|Cy) =

with ¥; denoting the covariance matrix of group C}, yields the well known Ma-
halanobis classification rule. While with the Euclidean depth the points of equal
given depth form a sphere around T;, with the Mahalanobis depth they form
the border of an ellipsoid. Thus, the distance from class C; is measured in an
elliptically symmetric way, which appears to be a natural distance if the data in
the class have an elliptically symmetric distribution, like normal data, but not if
they are distributed in an asymmetric way.

A drawback of the zonoid depth (and many other depths) is that it vanishes
outside the convex hull of the set C;. By this, a point y lying outside the convex
hulls of all classes has zonoid depth 0 with respect to all classes and thus cannot
be classified to one of them. Therefore a new depth has been introduced by
Hoberg (2003), named zonoid-Mahalanobis depth,

1

Hlan nj

dzuman(y|Cy) = max {dz(y|C)), B - dman(y|Cy)}  with (=
This function is an affine-invariant convex depth as well, and it is positive at all
y € R% It equals the zonoid depth inside the convex hull of C; and is a multiple
of the Mahalanobis depth outside. Thus it extends the zonoid depth beyond
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the convex hull. See Figure 1(d) for an example of regions based on the zonoid-
Mahalanobis depth. Classification by this depth is called the zonoid-Mahalanobis
rule.

This new classification rule has been applied to several small benchmark data
sets from the literature and compared with known classification rules. Figure 2
shows four artificial data sets, which are taken from the literature. For HARDY1,
HARDY2 and HARDY3, see Hardy (1991, 1994, 1996), for RUSPINI, see Ruspini
(1970).

Three depth rules have been investigated (Mahalanobis, zonoid, zonoid-Mahal-
anobis) and compared with seven classical rules, among them four rules based on
density estimation with different kernels (histogram, rectangle, Gauss, Epanech-
nikov), two nearest neighbour rules, and the hypervolume rule; see Hand (1981),
Baufays and Rasson (1985).

The classification rules are evaluated with respect to their apparent error rates
as well as to their leave-one-out (loo) error rates ((Lachenbruch, 1975, Ch 2),
Lachenbruch (1968)). To determine the apparent error rate of a rule, each point
xj; is classified with that rule to one of the given classes Ci, ... C}; the apparent
error rate is then defined as the portion of falsely classified points. To determine
the loo error rate, the same is done with the ‘correct’ class C; substituted by
C;\{z;i}. Obviously the loo error rate is always greater or equal to the apparent
error rate.

RUSPINI | HARDY1 | HARDY2 | HARDY3
Histogramm 0.00 0.00 0.00 0.00
Rectangle 0.00 0.00 0.00 0.00
Gauss 0.00 0.01 0.00 0.00
Epanechnikov 0.00 0.00 0.00 0.00
Nearest neighbour 0.00 0.01 0.00 0.00
Nearest neighbour (mod.) 0.00 0.01 0.00 0.00
Mahalanobis 0.00 0.00 0.06 0.00
Zonoid 0.00 0.00 0.02 0.00
Hypervolume 0.00 0.00 0.02 0.00
Zonoid-Mahalanobis 0.00 0.00 0.02 0.00

Table 2: Apparent error rates of various classification rules applied to the data in
Figure 2.

Table 2 presents the apparent error rates, Table 3 the leaving-one-out error
rates. For two data sets, RUSPINI and HARDY3, the apparent error rate is zero
with each of the ten rules, while only five of the rules yield a leaving-one-out error
rate of zero.

With the zonoid classification rule, the difference between the two error rates
stands out. If the classes have disjoint convex hulls, as it is the case in RUSPINI,

9



RUSPINI HARDY1

150 — 25 .:.
w7
100 ] oo
15 - o:o
10 3 )
o0 0 ]
5 _: (] ..... ..... ..... .....
0 T T T OATTTTTTTT'TTTT'TTTT'TTTT'TT

HARDY?2 HARDY3

20 20

Figure 2: Four artificial data sets with given classes.
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RUSPINI | HARDY1 | HARDY2 | HARDY3
Histogramm 0.04 0.01 0.00 0.03
Rectangle 0.04 0.01 0.00 0.03
Gauss 0.00 0.02 0.00 0.00
Epanechnikov 0.05 0.01 0.00 0.00
Nearest neighbour 0.00 0.01 0.00 0.03
Nearest neighbour (mod.) 0.00 0.01 0.00 0.00
Mahalanobis 0.00 0.00 0.06 0.00
Zonoid 0.27 0.10 0.05 0.2
Hypervolume 0.00 0.00 0.05 0.00
Zonoid-Mahalanobis 0.00 0.00 0.05 0.00

Table 3: Leaving-one-out error rates of various classification rules applied to the data
in Figure 2.

HARDY1 and HARDY?3, it is clear that the apparent error rate of the zonoid rule
amounts to zero, as for each class the zonoid depth vanishes outside the convex
hull of the data. However, when calculating the leaving-one-out error rate, due
to the same fact each point that is extremal in the convex hull of some class is
not assigned to that class.

Thus, by the zonoid classification rule 27 % of the RUSPINI data are misclas-
sified, while all other classification rules obtain loo rates below 5 %. Also the rules
based on density estimation show relatively high loo rates when applied to the
RUSPINI data; this may be due to an unfavourable choice of bandwidth. In the
data sets HARDY1 and HARDY3 a few misclassifications are obtained. They
concern objects which ‘connect’ two classes.

The data set HARDY?2 differs from the other three sets in that one of the
two classes is contained in the convex hull of the other class. This classification
obviously cannot be identified by a rule which is based on a convex depth. Here,
the rules based on density estimation or on nearest neighbours outperform the
depth based rules. The latter show loo rates of 5 to 6 %.

We conclude that the zonoid-Mahalanobis classification rule appears to be a
good alternative to the existing rules, provided the convex hulls of the groups do
not intersect.

Compared with the commonly employed rules which are based on density
estimators, the new rule avoids the — often problematic — choice of bandwidth.

The zonoid-Mahalanobis classification is practical since the zonoid depth of a
point with respect to each of the given classes can be efficiently calculated. This
approach is not feasible with the halfspace depth.
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The idea to employ the zonoid depth also for dividing a given data set into
classes (‘clusters’) seems to suggest itself. But this involves the calculation of
many zonoid regions and/or their volumes, which appears to be too costly in
applications.
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