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Introduction: The geometry of data

By KARL MOSLER

In multivariate analysis, data often cannot be fitted by normal or, more
general, elliptically symmetric distributions. Then the classical parametric
methodology, which draws on normality or ellipticity, fails. Recently, non-
parametric methods have been developed that exploit the geometrical struc-
ture of the data in an explicit way and make use of the analyst’s geometric
intuition. They include the description of multivariate data by trimmed re-
gions and generalized box-plots, the classification of observations and, in
particular, the identification of outliers by data driven notions of centrality,
further, statistical tests based on data depths and multivariate notions of
sign and rank, and nonparametric procedures to reduce dimension. Some of
them employ special geometric notions, like zonoids and other convex bod-
ies, and use tools from computational geometry, such as point-to-hyperplane
duality and line sweep in dual arrangements. All these developments are
bound to recent advances in computing.

Modern geometrical data analysis begins in the mid-seventies with Tukey
(1975), who, focussing on the combinatorial geometry of data, puts forward
the halfspace depth and its deepest point, the Tukey median, which is affine
equivariant and robust. Barnett (1976) provides a first systematic treatment
of multivariate order statistics. Further seminal papers are Oja (1983), intro-
ducing an affine equivariant median based on the minimization of simplicial
volumes, and Brown and Hettmansperger (1987), using the Oja median to
define multivariate notions of rank and (vector valued) quantiles. The sub-
sequent literature divides into at least three streams which partially overlap:
One vein of research, dealing with directed hyperplanes and exploiting geo-
metric duality, uses multivariate ranks and vector valued quantiles to con-
struct sign and rank tests. Another one considers convex bodies (simplices
and, especially, zonotopes) that are generated by the data and investigates
procedures based on the minimization of their volumes. A third vein devel-
ops special notions of data depth and uses them in diverse descriptive and
inferential applications.

Given a data cloud or a probability distribution, a depth function mea-
sures how central a point is located in the cloud (or the distribution). The
upper level sets of a depth function form a family of central regions by which
the underlying distribution may be characterized. In the last years, these
notions have been unified and put into a general context of theory and ap-
plications; see Liu et al. (1999), Zuo and Serfling (2000) and Mosler (2002).
Current theoretical research on data depth focuses on continuity properties
of the depth function and the depth central regions and, related to them,
approximation and computation of depth functions and depth contours; fur-
ther, on robustness and asymptotic behaviour and on equivariances other
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than affine equivariance; applications include quality control, outlier iden-
tification, discrimination, and classification.

This Special Issue collects six research articles which cover some of this
research.

In the first, Gleb Koshevoy, Jyrki Méttonen and Hannu Oja deal with
multivariate extensions of mean difference and mean deviation. They con-
sider averages of volumes of simplices and use them to construct median
type estimates and sign tests for one and several samples location problems.
Different representations of their objective functions are obtained through
duality and the notions are related to zonotopes and lift-zonotopes gener-
ated by the data. A number of applications illustrates the theory.

Classical tools of robust multivariate analysis are the minimum volume
ellipsoid and the minimum covariance determinant (Rousseeuw, 1985). Each
of them provides a robust estimate of a ‘central part’ of data. As an alter-
native robust estimator, Claudia Becker and Sebastian Paris Scholz present
another convex body minimizer, the minimum volume zonoid estimator
(MZE). They report preliminary results on the comparative behaviour of
these three estimators. The data sets are rather small since no efficient
algorithm is known so far to calculate the MZE.

The remaining four papers deal with different aspects of the theory and
application of data depth functions. Firstly, Rainer Dyckerhoff considers the
projection property, which is a key property of an affine invariant convex
depth. The projection property says that the value of the depth amounts
to the infimum of depths over all univariate projections. This property is
very useful for the approximation and computation of the depth value. Also,
by invoking this property, a multivariate depth can be constructed from a
univariate one. Dyckerhoff investigates the projection property in detail and
gives many examples.

Not only location and dispersion, but also the dependency of a distribu-
tion are reflected by data depth. In his paper, Mario Romanazzi measures
dependency in two ways: Firstly, by comparing volumes of depth level sets
under the given distribution with the volumes of the same level sets under
an independent distribution with the given marginals. Secondly, by plot-
ting the depth values for the given distribution against the depth values
of the proper independent distribution. He presents results in parametric
distributions and also provides a nonparametric approach.

The complement of a depth central region is an outlying region. By this,
measures of outlyingness and depth functions are closely related. Yijun Zuo
introduces an outlying function, which is the expectation of a weighted LP-
distance, and a related depth, called weighted LP-depth. The set of deepest
points is the weighted LP-median. Zuo investigates the robustness of the
depth and the median and demonstrates that the median has high break-
down point. It has also bounded influence curve if the weight function is
properly chosen.

Finally, Regina Liu, Kesar Singh and Julie H. Teng apply data depth
to the construction of control charts in quality control, in particular non-
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parametric multivariate moving average (MA) charts. Their main idea is
to represent each observation by the rank which is induced by a proper
depth function. The depth based MA charts are applied to monitor airline
performance data and compared with conventional charts.
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