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Abstract

Nonlinear autoregressive Markov regime-switching models are intuitive
and frequently proposed time series approaches for the modelling of elec-
tricity spot prices. In this paper such models are compared to an ordinary
linear autoregressive model with regard to their forecast performance. The
study is carried out using German daily spot prices from the European
Energy Exchange in Leipzig. Four nonlinear models are used for the fore-
cast study. The results of the study suggest that Markov regime-switching
models provide better forecasts than linear models.
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1 Introduction

Until recently, the electricity sector has been a vertically integrated industry and
prices have been fixed by regulators. The rapidly progressing deregulation is now
leading to gradually privatised electricity markets. Increasingly large volumes are
traded in these markets OTC as well as at electricity exchanges. Moreover, gen-
erated electricity must always match electricity consumption exactly. However,
electricity demand depends to a great extent on weather conditions and is there-
fore stochastic. In order to ensure the reliable operation of the system, the so-called
reserve capacity has to be maintained. In case of unforeseen high demand, for ex-
ample, this reserve capacity is then exploited to balance electricity consumption
and electricity generation. The suppliers of electricity can either make use of their
own reserve capacities or buy additional electricity. The decision whether to buy
electricity at an exchange, for example, strongly depends on the expected mar-
ket price for electricity. Time series models capture the salient characteristics of
electricity prices very well. Therefore, in order to support the make-or-buy deci-
sion, time series models with the aim to obtain reliable forecasts are of crucial
importance.

Electricity prices, referred to as power prices in the remainder of the paper,
exhibit stylized facts which differ from those of other traded commodities and
financial securities. Electricity cannot be stored and as a result enormous price
fluctuations, reflected by high volatility in electricity markets, are observed.
Furthermore, several seasonality cycles, mean reversion and spikes are typical of
power prices. Spikes are usually explained either by unexpected outages of large
power plants or unpredicted changes of weather conditions. The literature on
power prices is still limited. Important initial articles are those of Knittel and
Roberts (2001) and of Lucia and Schwartz (2002). Knittel and Roberts (2001)
evaluate the forecast performance of several univariate models using Californian
power prices. Lucia and Schwartz (2002) present analytic formulas for the pricing
of power derivatives. In addition, they take seasonality and mean reversion into
account. Escribano, Peña and Villaplana (2002) suggest a very general jump
model approach. They incorporate mean reversion, spikes and GARCH in their
approach for the modelling of power prices. Moreover, Cuaresma, Hlouskova,
Kossmeier and Obersteiner (2004) carry out a forecast study with several linear
univariate time series models. They use data from the EEX in Germany. More
recently, Angeles Carnero, Koopman and Ooms (2003) provide empirical evidence
of periodic heteroskedastic RegARFIMA models. They apply them to four differ-
ent markets. Furthermore, Burger, Klar, Müller and Schindlmayer (2004) derive a
spot market model for hourly power prices at the EEX. They base their model on
economic fundamentals of power prices in combination with a Seasonal-ARIMA
approach. Nonlinear Markov regime-switching approaches in the spirit of Hamil-
ton (1989) have been suggested and successfully applied for instance by Ethier
and Mount (1998), Huisman and Mahieu (2003) and De Jong and Huisman
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(2003). Basic idea behind these approaches is to model spikes as a separate regime.

The focus of this paper is on the forecasting performance of ordinary lin-
ear autoregressive models compared to nonlinear autoregressive Markov
regime-switching models. For the sake of simplicity, we assume the autoregressive
part of each model to consist merely of an AR(1) process. We consider models of
de Jong and Huisman (2003), Ethier and Mount (1998) and, in addition, modified
versions of both approaches. Modified models are to a great extent motivated by
the fact that the original models only roughly distinguish between weekend days
and holidays on one hand and working days on the other. However, distinguishing
between different types of days provides a better fit and forecasting performance.
The model proposed by de Jong and Huisman (2003) deviates from the pure
Hamilton (1989) framework because the autoregressive part of the model is
assumed to be regime- dependent, too. Therefore, a pure approach in terms
of the Hamilton (1989) framework of Ethier and Mount (1998) is additionally
incorporated in the study. The jump model is not considered in the study. There
are mainly two reasons for this. On one hand, there is no elaborate forecasting
methodology for these models and, on the other hand, jump models, to some
extent, are a special case of Markov regime-switching models. So, whenever
the more general model provides reasonable estimates, it captures more of the
structure in the data and is therefore preferable.
For the empirical forecast study we estimate each considered model for a
subsample of the given historical data. Then we carry out forecasts up to 100
steps ahead for observations held back at the estimation stage. In the following
step, we augment the subsample which we use for estimation by one observation
and carry out forecasting again. The results of the study indicate that Markov
regime-switching models provide better forecasts, in particular, with respect to
long run forecasts.
The remainder of the paper is organised as follows. In Section 2 we present
the data, we use. Moreover, we show some descriptive statistics and define
a deterministic model component of the logged power price. In Section 3 we
introduce the considered stochastic models. Furthermore, in Section 4 we present
and discuss results of the forecast comparison study. Section 5 concludes the
paper and gives hints for further research.

2 Data and Descriptive Statistics

The EEX is the largest national power exchange in Europe where volumes
up to nearly one fifth of the average daily electricity consumption of about
1350 000 MWh in Germany are traded. EEX wholesale electricity prices for 24
hours of the following day are determined through an auction. These day-ahead
prices are typically referred to as spot prices. Besides hourly prices, so-called
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baseload and peakload prices are traded. The exchange EEX defines baseload
prices as an equally weighted average of the 24 individual hourly prices, while
peakload prices are determined by the equally weighted average of prices from
9 am to 8 pm. In this paper, we use data including baseload and peakload
price series which range from June 16th 2000 to July 28th 2004. Figure 1 shows
the baseload series that exhibits typical features of power prices like mean
reversion and spikes. Power prices usually rather seem to follow a lognormal
than a normal distribution. Therefore, most authors e.g. Burger, Klar, Müller
and Schindlmayer (2004), de Jong and Huisman (2003), Escribano, Peña and
Villaplana (2002) prefer working with the log of power prices instead of the
original price series. In this paper, we follow their approach. Furthermore, Figure
1 shows the Q-Q plots of baseload against a normal distribution and a lognormal
distribution, respectively. According to e.g. de Jong and Huisman (2003) and Es-
cribano, Peña and Villaplana (2002) logged power prices log(Pt) will be assumed
to consist of two parts, a deterministic part denoted by ft and a stochastic part Xt,

log(Pt) = ft + Xt . (1)

Since the goal of this paper is to compare the forecasting properties of some
stochastic models, we model the deterministic part of logged power prices as
simply as possible but, on the other hand, still realisticly. Figure 2 shows the
weekly seasonality. In order to take into account the weekly seasonality, weekend
dummys for saturdays and sundays as well as a dummy for holidays are included.
Moreover, since the range of the data covers more than four years, we include a
deterministic trend and a sinusodal term to consider yearly seasonality.
The deterministic part of the logged power price ft is specified as

ft = β1 ·dummysat+β2 ·dummysun+β3 ·dummyh+β4 ·t+γ1 ·sin
(

(γ2 + t) · 2π

365

)
.

We perform estimation and forecasting in Eviews 5.0. We use the imple-
mented BHHH or Marquardt algorithm for numerical optimization.
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Figure 1: Plots for the baseload power prices, the log(baseload) logged power
prices and the traded volume at the EEX.
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Figure 2: Q-Q plots for the baseload and log(baseload) power prices at the EEX.
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3 Stochastic Models for Power Prices

In this section, models for the stochastic part of power prices are outlined and
discussed with a special focus on their predictive power.

3.1 Model I: AR(1) Process with Drift

A main stylized fact of power prices is mean reversion. This behavior of power
prices can be modelled by an AR(1)-process. The mean, to which the process
reverts, is µM .
Model I:

Xt = α · µM + (1− α) ·Xt−1 + ut , ut ∼ N (0, σ2). (2)

We carry out the h-step ahead forecast the usual way based on the conditional
expectation E[XT+h|ψT ], where ψT denotes the information set at time T . Gen-
erally, there are two ways of carrying out forecasts. Both versions (log(P f

T+h,1) ,

log(P f
T+h,2) ) are depicted below. Moreover, it should be noted that these forecasts

procedures yield different forecasts for the logged power prices log(P f
T+h) in the

presence of deterministic components. To clarify why this is so, the stochastic
part Xt is replaced by log(Pt)− ft according to equation (2),

1) Xf
T+h,1 = log(P f

T+h,1)− f f
T+h,1

= α · µM + (1− α) · (log(PT+h−1)− fT+h−1) ,

or

2) Xf
T+h,2 = log(P f

T+h,2)− f f
T+h,2

= µM · (1− (1− α)h) + (1− α)h · (log(PT )− fT ) .

The empirical results suggest that the recursive proceeding provides better fore-
casts than the second based on the forecast origin.

3.2 Model II : De Jong and Huisman (2003)

The basic idea behind this model is to distinguish between two independent
regimes. In particular, one regime which is best described as the normal or stable
regime, while the second independent regime serves to model spikes. As outlined
in the introductory section, the peculiarity of this model is that the autoregressive
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part is presumed to prevail in the stable regime only.

Model II:

XM,t = XM,t−1 + α · (µM −XM,t−1 ) + uM,t stable regime,

XS,t = µS + uS,t spike regime,

with uM,t ∼ N (0, σ2), uS,t ∼ N (0, σ2
S) (∗)

and transition matrix

St−1 = M St−1 = S
St = M q 1− p
St = S 1− q p

(∗∗) .

Next we explain how the logarithmic likelihood can be constructed. Let
ln L =

∑T
t=1 ln f(Xt|ψt−1) be the logarithmic likelihood and St denote the regime

parameter St taking M when power prices are in the stable regime and S else.
The conditional density is expressed as follows:

f(Xt|ψt−1) = f(Xt, St = M |ψt−1) + f(Xt, St = S|ψt−1)

= f(Xt|St = M, ψt−1) · f(St = M |ψt−1) +

f(Xt|St = S, ψt−1) · f(St = S|ψt−1)

Moreover, the density f(St = i|ψt−1) ,i ∈ {M,S}, has to be determined. It holds,

f(St = j|ψt−1) = f(St = j, St−1 = M |ψt−1)+f(St = j, St−1 = S|ψt−1), j ∈ {M,S},

f(St = j|St−1 = M) · f(St−1 = M |ψt−1) + f(St = j|St−1 = S) · f(St−1 = S|ψt−1).

The densities f(St = j|St−1 = i) are the one-step transition probabilities.

Densities of type f(St−1 = j|ψt−1) are recursively calculated.
Due to ψt−1 = {ψt−2, Xt−1} it holds

f(St−1 = j|ψt−1) = f(St−1 = j|ψt−2, Xt−1) =
f(St−1 = j,Xt−1|ψt−2)

f(Xt−1|ψt−2)

=
f(Xt−1|St−1 = j, ψt−2) · f(St−1 = j|ψt−2)

f(Xt−1|St−1 = M, ψt−2) · f(St−1 = M |ψt−2) + f(Xt−1|St−1 = S, ψt−2) · f(St−1 = S|ψt−2)

The key problem with regard to this conditional density is the determination of
XM,t−1 because the last spot price originating from the stable regime is not known.
De Jong and Huisman (2003) propose a modification of this conditional density
before they use it to maximize the logarithmic likelihood. In order to take into
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account the mentioned problem, they replace the part of the conditional density
that represents the stable regime f(Xt|St = M, ψt−1) by an approximation,

f(Xt|St = M, ψt−1) ≈
K∑

i=1

Prob[λ(t−i) = M∧λ(t−j, j < i) 6= M ]·f(Xt|St = M, ψt−i)

K denotes how far we maximally go back to find the last spot price originating
from the stable regime.

f(Xt|St = M, ψt−i) ≈ 1

V ar[XM,t|ψt−i] ·
√

2 · π · exp

(
−(XM,t − E[XM,t|ψt−i])

2

2 · V ar[XM,t|ψt−i]

)

with

E[XM,t|ψt−1] = α · µM + (1− α) · E[XM,t−1|ψt−2]

V ar[XM,t|ψt−1] = (1 + (1− α)2) · V ar[XM,t−1|ψt−2]

Applying these equations for the conditional expectations and variances yields :

E[XM,t|ψt−i] = (1− α)i ·XM,t−i + µM · (1− (1− α)i)

V ar[XM,t|ψt−i] = σ2
M · (1− α)2·i − 1

(1− α)2 − 1

The expression Prob[λ(t − i) = M ∧ λ(t − j, j < i) 6= M ] is the probability of
the logged spot price Xt−i to be the last logged spot price before Xt originating
from the stable regime. Xt−j with j < i, whereas, are supposed to be spikes. The
remaining problem is to determine the right K. De Jong and Huisman (2003)
propose K = 5. In this paper, K = 5 is considered as sufficient, too.

3.3 Model IIb : Two Regime Model with a Modified Spike
Regime

The original model proposed by de Jong and Huisman (2003) assumes that
deviations from the stable regime are independent of the type of the day. However,
it seems more convenient to distinguish between working days on one hand and
weekends and holidays on the other. Very low demand is typical of weekends and
holidays. Therefore, upward directed spikes are rather not to expect, whereas we
can detect downward directed deviations from the stable regime in data. In order
to take into account different types of days, in this modified model high spikes
and low spikes are distinguished.
Practically, we decompose spikes by declaring an indicator function 1H which
takes the value zero on holidays, weekend days, and two days before and after
a holiday. All remaining days are candidates for high spikes only, so in these
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cases the indicator function takes value 1. The decomposition fits to observed
German data. However, weekends and holidays are days of low demand not only
in Germany, so this decomposition might be suitable for other countries, too.

Model IIb :

XM,t = XM,t−1 + α · (µM −XM,t−1 ) + uM,t stable regime,

XS,t = 1H · (µS,H + uS,H,t) + (1− 1H) · (µS,L + uS,L,t) spike regime,

with uM,t ∼ N (0, σ2), uS,H,t ∼ N (0, σ2
S,H), uS,L,t ∼ N (0, σ2

S,L) (∗ ∗ ∗)

and transition matrix

St−1 = M St−1 = S
St = M q 1− p
St = S 1− q p

(∗ ∗ ∗∗) .

Although the de Jong and Huisman (2003) model apparently goes beyond
the popular Hamilton methodology, nevertheless, this model still fits into the
theoretical Hamilton framework. Consequently, the forecasting methodology, we
use, is based on Hamilton (1989). How to apply this methodology is described
below.
Let ξ(T |ψT ) be the vector of posterior densities at time T,

ξ(T |ψT ) =




f(XT , ST = M |ψT−1)

f(XT |ψT−1)

f(XT , ST = S|ψT−1)

f(XT |ψT−1)




.

Moreover let P be the transition matrix,

P =

(
q 1− p

1− q p

)
.

The h-step ahead forecasts for the posterior probabilities are computed as follows

ξf
T+h = P · ξ(T+h−1|ψT ).

VT+h is defined as the vector containing the conditional expectations
E[XST+h,T+h|ψT ] for each regime. Then in case of Model II holds

VT+h =

(
E[XM,T+h|ψT ]
E[XS,T+h|ψT ]

)
,
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with E[XS,T+h|ψT ] = µS. Furthermore, in the case of Model IIb holds

VT+h =

(
E[XM,T+h|ψT ]
E[XS,T+h|ψT ]

)

with E[XS,T+h|ψT ] = µS,H · 1H + µS,L · (1− 1H) . Finally the forecast results as

Xf
T+h = V T

T+h · ξf
T+h.

In this framework the two regimes are assumed to be independent. Therefore, the
forecast for the stable regime is

E[XM,T+h|ψT ] = µM · (1− (1− α)h) + (1− α)h · E[XM,T |ψT ].

Again, the problem remains to determine the last spot price originating from the
stable regime. We refer to the ideas of de Jong and Huisman (2003). Therefore, a
possible solution is to approximate E[XM,T |ψT ] by

E[XM,T |ψT ] ≈
K−1∑
i=0

Prob[λ(T − i) = M ∧ λ(T − j, j < i) 6= M ] · E[XM,T |ψT−i].

The probabilities Prob[λ(T − i) = M ∧ λ(T − j, j < i) 6= M ] can be very easily
computed, since posterior probabilities are given, and

E[XM,T |ψT−i] = (1− α)i ·XM,T−i + µM · (1− (1− α)i).

The results of the empirical forecast study, however, support to take the ordinary
value of XT as forecast origin rather than the conditional expectation described
above. Moreover, one should bear in mind that taking XT as forecast origin, when
XT is indeed a spike, means to make a mistake. This kind of mistake is of minor
importance because spikes rarely occur in the given data. Power price series which
exhibit more spikes might require a modification as outlined above.

3.4 Model III: Ethier and Mount (1998)

Recalling the introductory statements, a pure approach according to Hamilton is,
additionally, considered in this subsection. Contrary to the basic model proposed
by Hamilton (1989) and according to Ethier and Mount (1998) heteroscedasticity
is now assumed. Similar to the de Jong and Huisman (2003) model, variances of
disturbances are presumed to be regime-dependent, too. We consider two models,
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Model III and a modification denoted as Model IIIb.

Model III:

X{St=j},t = µ{St=j}+(1−α)·(X{St−1=i},t−1 − µ{St−1=i}
)
+u{St=j},t, j, i ∈ {M, S}.

Model IIIb :

X{St=j},t = µ{St=j} + (1− α) · (X{St−1=i},t−1 − µ{St−1=i}
)

+ u{St=j},t, j, i ∈ {M, S},
µS = 1H · (µS,H) + (1− 1H) · (µS,L) ,

uS,t = 1H · (uS,H,t) + (1− 1H) · (uS,L,t) ,

Furthermore, we define the disturbances and the transition matrix as in (∗) and
(∗∗) for Model III and as in (∗ ∗ ∗) and (∗ ∗ ∗∗) for Model IIIb.
We carry out forecasting in the same way as in Models II and IIb with the matrix

P =




q q 0 0
0 0 1− p 1− p

1− q 1− q 0 0
0 0 p p




and the matrix of posterior densities

ξ(T |ψT ) =




f(XT , ST = M, ST−1 = M |ψT−1)

f(XT |ψT−1)

f(XT , ST = M, ST−1 = S|ψT−1)

f(XT |ψT−1)

f(XT , ST = S, ST−1 = M |ψT−1)

f(XT |ψT−1)

f(XT , ST = S, ST−1 = S|ψT−1)

f(XT |ψT−1)




We compute the h-step ahead forecasts for the posterior densities as follows

ξf
T+h = P · ξ(T+h−1|ψT ).

Let VT+h again be the vector that contains the conditional expectations
E[XST+h,T+h|ψT ] for each regime. Then, according to Clements and Krolzig (1998),
the following recursion holds

Xf
T+h = V T

T+h · ξf
T+h,
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Xf
T+h = µT+h|T + (1− α) · (XT+h−1 − µT+h−1|T ),

and

µT+h|T =
∑

j

µj · Prob(ST+h = j|XT ), j ∈ {M, S}.

In case of Model IIIb, µS is replaced by 1H · µS,H + (1− 1H) · µS,L.
The forecast for Model III can also be written as

Xf
T+h =

∑
j

µj·Prob(ST+h = j|XT )+(1− α)h·
(

XT −
∑

j

µj · Prob(ST = j|XT )

)
,

and again in model IIIb µS is replaced by 1H · µS,H + (1− 1H) · µS,L.
As h → ∞ the posterior probability to be in regime j, Prob(ST+h = j|XT ),
converges to the unconditional probability to be in regime j since the Markov
chain is assumed to be ergodic. This also holds in the de Jong and Huisman
(2003) framework,

lim
h→∞

Prob(ST+h = M |XT ) =
1− p

2− p− q
,

lim
h→∞

Prob(ST+h = S|XT ) =
1− q

2− p− q
.

Remarks

Instead of the modification proposed in this paper, a three regime approach, mod-
elling low spikes as a separate regime, might seem appropriate. Empirical evi-
dence, however, supports the modification proposed in this paper. A three regime
approach is much harder to estimate and yields poor results in terms of fit com-
pared to the modified Models IIb and IIIb.
The modification of the likelihood proposed by de Jong and Huisman (2003) is
necessary because posterior probabilities f(St−1 = M |ψt−1) and f(St−1 = S|ψt−1)
are not 1 or 0 but probabilities in between. The consequence is that the regime-
dependent parameters are not estimated independently from parameters of the
other regime and, by this, are biased. The modification proposed by de Jong
and Huisman reduces the impact of spikes on the stable regime parameters and
vice versa. Moreover, it seems that the modification of de Jong and Huisman is
not easily applicable to more sophisticated models because computing conditional
expectations and conditional variances is very cumbersome. Being aware of this
problem, the study has been restricted to the simple specification of the autore-
gressive process. Further research is needed to develop an approach similar to that
of de Jong and Huisman which is applicable to more sophisticated models.
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Figure 4: Histograms for log(baseload) from which the deterministic effects have
been removed are plotted together with the estimated normal densities for all
considered models.
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4 A Forecast Comparison Study
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Figure 5: Forecast horizon : 25th August 2002 to 28th July 2004.

In this forecast comparison study, we carry out and evaluate ex ante forecasts in
terms of RMSE and MAE. All given information available at time T is exploited
and, by this, we use all known electricity prices up to T to estimate the parameter
values. This proceeding is reasonable since electricity prices exhibit strong season-
ality and autocorrelation that are estimated the better the more data is available.
The forecasting procedure is close to that of Cuaresma,Hlouskova,Kossmeier and
Obersteiner (2004) applied to hourly prices and is described below.
The given dataset is divided into an in-sample period which includes observations
from
6/16/2000 : 8/24/2002 at the beginning. Moreover, the out-of-sample period
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ranges from 8/25/2002:7/28/2004. The forecasting experiment is designed as
follows. We use in-sample data to estimate the parameters of the model of
interest. We, then, make out-of-sample make forecasts up to 100 steps ahead
and evaluate them. The in-sample period is then enlarged by one observation
and again forecasts for the out-of-sample period are made and evaluated. We
repeat this procedure 604 times. This forecasting study has been carried out
using logged baseload and logged peakload prices, respectively. Furthermore,
the used measures have been computed for each h- step ahead forecast with
h ∈ {1, 2, . . . , 100}. Pt denotes the actual observed price at time t, while P f

t

refers to the predicted price at time t. The measures used for comparison are

RMSE =

√√√√1

k
·

k∑
i=1

(
log(Pt)− log(P f

t )
)2

,

MAE =
1

k
·

k∑
i=1

∣∣∣log(Pt)− log(P f
t )

∣∣∣ .

All of the presented five models are considered in the comparison study.

4.1 Short Discussion of Results

First of all, we want to stress that prices at the edge of the forecasting sample do
not have the same weight on the outcome of the study as prices which lie rather
in the middle. This aspect must be taken into consideration when the results
of the empirical study are gauged. One consequence is that nonlinear models
clearly outperform the linear model in terms of long run forecasting ( 30-80 steps
ahead ). Periods with larger sized spikes are settled rather in the middle while
stable periods prevail at the beginning and at the end of the whole forecasting
sample 8/25/2002-7/28/2004. In order to scrutinize the outcome of the study, the
linear autoregressive model performs well in terms of very short run forecasts, in
particular, one up to two steps ahead. For both measures, we cannot observe any
clear difference from the remaining models. With respect to the long run ability,
however, nonlinear models outperform the linear model which is partly due to the
position of spikes in the time series. Another reason is the improved estimation
compared to the linear model. Estimation of important parameters for forecasting
like deterministic components and µM is less influenced by spikes. For short run
forecasting better estimates of α are of interest, too. Moreover, modified Models
IIb and IIIb outperform their basic counterparts II and III with respect to the
RMSE. This is a consequence of the modification of the spike regime, since the
direction of spikes is better predicted by the modified models. Finally, Model IIIb
provides better long run forecasts than model IIb, while in terms of short run
forecasting, the opposite is true. Forecasts for the stable regime have to be based
on the forecast origin XT in Models II and IIb. A recursive proceeding, like in
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the pure Hamilton framework, is prohibited due to the assumption of independent
regimes. However, there is empirical evidence that in the presence of deterministic
components, a recursive proceeding provides better forecasts. Another problem
arises if XT is indeed a spike but treated as originating from the stable regime.
Obviously, forecasts for the stable regime based on a spike are biased. Short run
forecasts of Model IIb are better than those of Model IIIb. Therefore, forecasting
the stable regime based on XT , when XT is indeed a spike, is of minor importance.
The recursive proceeding in forecasting is the advantage of Model IIIb compared
to Model IIb. Additionally, we have only used the stable regime of Models II and
IIb to make forecasts. These forecasts are denoted by II-stable and IIb-stable in
Figures 5 and 6. For Model II, we obtain better forecasts if we renounce to exploit
the whole nonlinear methodology. However, this holds unless the modification
proposed in this paper is implemented.
Furthermore, outcomes with respect to the two proposed measures are different.
In terms of MAE, models which perform best with respect to the RMSE are often
nearly or indeed outperformed by their unmodified counterparts. Moreover, the
performance of forecasts if we only use the stable regime is remarkably good and
sometimes even best with respect to the MAE. To understand these results, it is
necessary to bear in mind that deviations due to outliers have much more impact
and are more penalized by the RMSE than by the MAE. Therefore, the advantage
of modified models compared to the unmodified models is of minor importance
with respect to the MAE.

5 Conclusion

Markov regime-switching models are frequently discussed in the literature that
deals with electricity spot prices. In this paper, the focus goes beyond the mere
estimation and takes account of the forecast ability of nonlinear models. Further-
more, modified versions of these models are also considered within the study. The
key question in the paper is whether the nonlinear approach provides better fore-
casts than an ordinary linear autoregressive specification.
The obtained results of the forecast study suggest that there is a benefit of taking
the nonlinear model at least for long run forecasting. In the case of the de Jong
and Huisman (2003) framework, we already obtain better forecasts compared to
the linear model when forecasting is carried out with the stable regime only.
To discuss the practical implication of this study, we recall the underlying practi-
cal problem of electricity suppliers:Electricity suppliers have to take volume risk
due to weather into account. They can either maintain own reserve capacities or
buy additional electricity. This decision depends on the expected price for ad-
ditional electricity which has to be predicted. Nonlinear models provide better
forecasts than linear models. Therefore, suppliers can reduce the risk of a wrong
decision due to a bad forecast of the expected price. Provided that the other
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market participants base their forecasts on worse models, a better model offers
arbitrage opportunities. The suppliers are buyers as well as sellers of electricity.
Since baseload and peakload are determined through an auction, a better forecast
of the expected price helps to improve the bidding strategies of sellers and buyers.
For example, the sellers of electricity can reduce the risk of demanding too high
as well as too small bid prices for the volume that they offer.
Besides the day-ahead spot market, monthly futures and options based on monthly
futures are traded at the EEX. These financial instruments are used to hedge price
risk, since power prices are subject to high volatility. The good long run forecasts
of nonlinear models suggest that nonlinear models can also be useful for forecast-
ing of future spot prices. Therefore, nonlinear models can help to value electricity
derivatives.
This study has been restricted to a very simple specification for the determinis-
tic as well as for the stochastic component. However, several studies like Angeles
Carnero, Koopman and Ooms (2003), Burger, Klar, Müller and Schindlmayer
(2004) and Cuaresma,Hlouskova,Kossmeier and Obersteiner (2004) indicate that
more sophisticated time series specifications are needed. Therefore in future re-
search, specifications that incorporate time varying parameters should be consid-
ered.
Furthermore, the distribution of spikes among days of the week suggests that time
varying transition probabilities should be included. Moreover, it could be an asset
to include explanatory variables associated with weather or economic fundamen-
tals of electricity in a good model. Finally, models for hourly prices should be
conceived, since hourly prices and so-called blocks of hourly prices are traded at
the EEX power exchange.
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Figure 6: Results of all models for the log(baseload) time series.
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Figure 7: Results of all models for the log(peakload) time series.
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