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ABSTRACT

The paper investigates diagnostic procedures for finite mixture models. The problem is

to decide whether given data stem from an exponential distribution or a finite mixture of

such distributions. Recently three new test approaches have been proposed, the modified

likelihood ratio test (MLRT) by (Chen, Chen, & Kalbfleisch, 2001), the ADDS test by

(Mosler & Seidel, 2001), and the D-test by (Charnigo & Sun, 2004). The size and power of

these tests are determined by Monte Carlo simulation and their relative merits are evaluated.

We conclude that the ADDS test shows always not much less and under some alternatives,

in particular lower contaminations, considerably more power than its competitors. Also new

tables for the ADDS test are provided.

1. INTRODUCTION

In many applications mixture models arise as a natural way to model population het-

erogeneity; see (Lindsay, 1995), (Titterington, Smith, & Makov, 1985), and others. The

1We thank Richard Charnigo and Jiahua Chen for providing the codes of the MLRT and D-tests. Thanks

are also to Christoph Scheicher and Wilfried Seidel for discussions and an unknown referee for useful hints.
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assumption that the data are generated by a mixture of exponential distributions is widely

employed in the analysis of lifetime and other duration data. This model arises from incom-

plete observation of an underlying conditional exponential model.

While the hazard rate of a pure exponential distribution is a constant, the hazard of a

mixture of exponentials decreases. Therefore the mixture model is frequently adopted to fit

the distribution of a time to ‘failure’ where the observed failure rate seems to decline with

time. Often the mixture can be explained by competing risks: the population divides into

parts which are subject to different reasons of failure (see (Prentice et al., 1978)).

(Lindsay, 1995) presents a comprehensive treatment of the theory and numerous applica-

tions of mixture models, and (McLachlan, 1995) gives a survey of mixtures of exponentials.

(Böhning, Schlattmann, & Lindsay, 1992) provide computational tools for estimating such

mixtures.

Assume that we observe a random sample X1, X2, . . . , Xn from a finite mixture of expo-

nential distributions,

f(x, λ, p) =
k∑

j=1

πj

λj

exp

(
x

λj

)
, (1)

where λj > 0, πj ≥ 0,
∑

j πj = 1, and k is the number of possible mixture components. An

important question is how many components are present and, in particular, whether the

data are generated by a homogeneous distribution (k = 1), or not. We wish to test the

homogeneity hypothesis

H0 : λ1 = . . . = λk (2)

against H1 : not H0.

It is well known that the likelihood ratio test (LRT), while being locally optimal, has a

nonstandard asymptotic distribution that is difficult to implement. Other tests have been

proposed for homogeneity in a mixture model, among them moment likelihood tests, disper-

sion score (DS) tests, which detect a mixture by its overdispersion. DS tests are also known

under the name C(α)-tests; see chapter 4 of (Lindsay, 1995). While these approaches work

well, e.g., in normal mixtures, the diagnosis of exponential mixtures poses additional prob-

lems: The moment likelihood and the dispersion score tests have no power on a large class of
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alternatives (Mosler & Seidel, 2001), and the calculation of the LRT statistic and the Monte-

Carlo simulation of its null distribution depend heavily on the particular implementation of

the EM algorithm (Seidel, Mosler, & Alker, 2000).

To test for homogeneity in exponential mixtures three alternative approaches have been

recently proposed:

• The modified likelihood ratio test (MLRT) introduced by (Chen et al., 2001), which is

a penalized LRT and has standard χ2 asymptotics,

• the ADDS Test by (Mosler & Seidel, 2001), a combination of the dispersion score test

with a properly chosen goodness-of-fit procedure,

• the D-test by (Charnigo & Sun, 2004), based on the L2 distance between the estimated

densities of a homogeneous and a heterogeneous model. (Charnigo & Sun, 2004) also

introduce a penalized and several weighted variants of the D-test.

In this paper we will compare these test approaches and evaluate them in terms of their

size and power by means of a large simulation study. Also, besides the simple D-test, two

weighted D-tests and a penalized D-test are included in our comparison. Section 2 shortly

surveys the test approaches. In Section 3 we check whether these tests, possibly depending

on sample length, keep their nominal size, and in Section 4 their power is compared. Section

5 concludes, and the Appendix contains new tables of critical quantiles for the ADDS test.

2. TESTS

In this section the three test approaches are shortly surveyed. For details of the tests the

reader is referred to the original papers.

We restrict on exponential mixtures that have at most two components, i.e., on densities

f(x) = (1− ε)
1

λ1
exp

(
− x

λ1

)
+ ε

1

λ2
exp

(
− x

λ2

)
, x ≥ 0 , (3)

λ1, λ2 > 0, 0 < ε < 1. The alternative hypothesis corresponds to λ1 6= λ2, while the null

hypothesis may be signified by λ = λ1 = λ2 and, e.g., ε = 1
2
. Let a random sample X1, . . . , Xn

from (3) be given.
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The MLRT (Chen et al., 2001) employs the usual log-likelihood plus a penalty term,

l(ε, λ1, λ2) =
n∑

i=1

log
[
(1− ε)

1

λ1
exp

(
− x

λ1

)
+ ε

1

λ2
exp

(
− x

λ2

)]
+ C log[4ε(1− ε)] , (4)

where C > 0 is a constant which weighs the penalty. (Chen et al., 2001) report that the

MLRT is rather insensitive to C; they propose C = log M if −M ≤ λj ≤ M . Following

(Charnigo & Sun, 2004) we choose a fixed C = log 10 in this study. By maximizing (4) under

H0 and H1, estimates λ̂1, λ̂2, ε̂ and, respectively, λ̂ are obtained. The MLRT uses twice the

ratio of penalized loglikelihoods as test statistic,

TMLRT = 2(l(ε̂, λ̂1, λ̂2)− l(0.5, λ̂, λ̂) .

Asymptotically, under H0 and some regularity conditions, TMLRT is distributed as the fifty-

fifty mixture of a χ2
1 variable and a constant at 0. (Chen et al., 2001) demonstrate that,

to detect normal location mixtures and Poisson mixtures, the MLRT develops similar or

slightly better power than the DS test.

The ADDS test by (Mosler & Seidel, 2001) is a hybrid procedure that combines the DS

test with a classical goodness-of-fit test, specifically, the Anderson-Darling test: Calculate

the DS statistic

TDS =

(
n(n− 1)

n + 1

) 1
2 1

(X)2

[
S2 − 1

2n

n∑

i=1

X2
i

]
(5)

and the Anderson-Darling statistic

TAD =
(
1 +

0.6

n

) (
n− 1

n

n∑

i=1

(2i− 1)

(
log

(
1− e−X(i)/X

)
+

X(i)

X

))
, (6)

where X and S2 denote the sample mean and variance and X(i) is the i-th order statistic.

Reject H0 if either TDS or TAD are too large. Under H0 both test statistics do not depend

on the parameter λ. For tables of pairs of critical quantiles for the two statistics; see the

Appendix. The power of the ADDS is always at least comparable to that of a bootstrap

LRT, a moment LRT and the DS test, it is much better than that of the latter two tests on

a large class of alternatives; see (Mosler & Seidel, 2001).
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The D-test in its original form measures the area between two densities, one fitted under

H0, and the other fitted under H1. If the alternative is a two-component exponential scale

mixture, the D-statistic is

TD =
∫ ∞

0

[
1− ε̂

λ̂1

exp

(
x

λ̂1

)
+

ε̂

λ̂2

exp

(
x

λ̂2

)
− 1

λ̂
exp

(
x

λ̂

)]2

dx , (7)

where λ̂ is an estimate of λ under H0, λ̂1, λ̂2 and ε̂ are estimates of the parameters under

H1.

(Charnigo & Sun, 2004) show that, under H0, TD has an asymptotic distribution which is

equivariant in λ. They provide tables of critical quantiles and report that, in the diagnosis of

exponential scale mixtures, the simple D-test is slightly outperformed by the MLRT when n

is small (n ≤ 100). (Charnigo & Sun, 2004) therefore propose weighted forms of the D-test

which put more weight to differences in the tails of the alternative densities: In place of

the differential dx in the integral formula (7) they use x dx or x2 dx. In the sequel, these

weighted variants of the D-test will be signified by ‘w1D’ and ‘w2D’, respectively. Another

variant of the D-test that uses a penalty term (‘penD’) is also considered.

3. SIZE

In a large Monte-Carlo simulation we calculate the actual size of the tests under consid-

eration, that is, the rejection probability under H0. We do this for different nominal sizes

(= levels of significance) and sample sizes. The number of replications is always 20 000.

We investigate the ADDS test, the D-test, the weighted D-tests with weighting functions

w1 = x (w1D) and w2 = x2 (w2D), the penalized D-test (penD), and the MLRT; the latter

is based on its asymptotic χ2-distribution. Following (Charnigo & Sun, 2004), the constant

C > 0 that controls the penalty term is set to log(10).

As the MLRT and the D-tests involve estimates of the model under the alternative, in

the sequel we restrict on mixture alternatives (3) that have only two components.

Table 1 shows simulated actual sizes of the six tests, given the sample sizes n = 100

and 1000 and standard significance levels α = 0.05 and 0.01. In particular, for n = 100

the simple D-test rejects the null hypothesis with frequency 0.069 when the nominal size is
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0.05 (factor 1.4), resp. with frequency 0.015 when the nominal size is 0.01 (factor 1.5). The

penalized D-test overshoots its nominal size by up to a factor 6. The MLRT appears to be

conservative (0.040 in place of 0.050) for n = 1000. On the other hand, the sizes of the

ADDS test and the weighted D-tests come close to their nominal ones.

Further, we demonstrate how the actual sizes change with n. Figure 1 exhibits actual sizes

of the ADDS test, the MLRT, the simple D-test and the penalized D-test for 100 ≤ n ≤ 500

and α = 0.05. While, by construction, the size of the ADDS test remains (approximately)

equal to α when n increases, the sizes of the other two tests do not. The sizes of both D-tests

converge rather slowly from above to α, and the size of the MLRT stays below α, also for

large n.

n Test α = 0.05 α = 0.01

ADDS 0.046 0.009

D 0.069 0.015

100 w1D 0.052 0.009

w2D 0.045 0.009

penD 0.105 0.060

MLRT 0.051 0.011

ADDS 0.047 0.009

D 0.054 0.013

1000 w1D 0.056 0.014

w2D 0.056 0.013

penD 0.060 0.020

MLRT 0.046 0.010

Table 1: Actual size of the ADDS test, four D-tests, and the MLRT when nominal size is

α ∈ {0.01, 0.05}, and sample length is n ∈ {100, 1000}.
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Figure 1: Actual size of ADDS test, MLRT, D-test, and penalized D-test depending on n;

nominal size is α = 0.05.

4. POWER

As the simple D-test and the penalized D-test do not keep their prescribed significance

level we restrict the subsequent power study to the remaining four tests. We compare the

power of the ADDS test, the MLRT and the D-tests with weighting functions w1 = x (w1D)

and w2 = x2 (w2D).

The power of the tests is evaluated by Monte-Carlo simulation and compared on a large

number of two-component mixture alternatives (3), sample sizes n, and significance levels α.

In the sequel we present some key results of the simulation study. The number of replications

is always 5000.

As the test problem is scale invariant, the ratio of the two scale parameters, v = λ2

λ1
, will

be considered only, with λ2 ≥ λ1. Equation (3) becomes

f(x) = (1− ε) exp(−x) + ε
1

v
exp

(
−x

v

)
, x ≥ 0 . (8)

We study and compare the power of the alternative tests for increasing v, v ≥ 1, and for
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three typical cases concerning the parameter ε. Firstly, fifty-fifty mixtures (ε = 0.5) and

the comparative ability of the tests to detect them are considered. Next, an exponential

distribution is mixed with a small portion of another exponential distribution that has v

times its expectation; the resulting mixture is called an upper contamination. Here, the

portion is ten percent. Thirdly, the same is done with a small portion of an exponential

distribution having 1
v

times its expectation; this is named a lower contamination.

Figure 2 exhibits power results on fifty-fifty mixtures for two levels of significance, α =

0.05 and α = 0.01. If n is large (n = 1000), the tests behave similarly. However, for moderate

n, the linearly weighted D-test (w1D) is clearly outperformed by the others, especially when

α is small. On upper contaminations, as Figure 3 demonstrates, the w1D-test is the best

one, the ADDS test is second best, and the remaining two tests behave similarly.

Figure 4 concerns lower contaminations. All four tests have problems in detecting a lower

contamination, when n is not large. This is due to the strong asymmetry of the exponential

distribution: Its mass is concentrated near the left border of the support, which tends to

mask any lower contamination. For n = 100 and α = 0.01 (resp. 0.05), the power of all

four tests does not exceed 20 % (resp. 40 %) when the scale ratio v is less than 10. For

n = 1000, the situation improves considerably. However, for relatively large v, the ADDS

test develops much better power than its competitors; this holds for different significance

levels and sample sizes as well.

Figure 5 shows that also for intermediate sample sizes (n = 200, 500) the ADDS test

outperforms the others when v is large enough. The quadratically weighted D-test should

not be used unless n exceeds 500.

Next, we give a more detailed picture of the lower contamination case when the scale

ratio v is relatively small (v = 2, v = 3). Figure 6 presents power curves depending on

sample size n. Here, the w2D-test and the MLRT are best, while the w1D-test and – to a

lesser extent – the ADDS test appear to be slightly inferior. To obtain at least 50 per cent

power in detecting a fifty-fifty mixture that has scale ratio 2, the sample size should be at

least 400 with any of these tests. In detecting a fifty-fifty mixture that has scale ratio 3, a

8



2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

v

G
(v

)

mixture tests power plot

π1 = 0.5  n = 100  α = 0.01

ADDS
MLRT
W1D
W2D

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

v

G
(v

)

mixture tests power plot

π1 = 0.5  n = 1000  α = 0.01

ADDS
MLRT
W1D
W2D

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

v

G
(v

)

mixture tests power plot

π1 = 0.5  n = 100  α = 0.05

ADDS
MLRT
W1D
W2D

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

v

G
(v

)

mixture tests power plot

π1 = 0.5  n = 1000  α = 0.05

ADDS
MLRT
W1D
W2D

Figure 2: Power on fifty-fifty mixtures. Combined overdispersion and Anderson-Darling test

(ADDS), weighted D-test (W1D / W2D), and modified likelihood ratio test (MLRT) on

alternatives f(x) = 0.5 exp(−x) + 0.5 1
v
exp(−x

v
).
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Figure 3: Power on mixtures with upper contamination. Combined overdispersion and

Anderson-Darling test (ADDS), weighted D-test (W1D / W2D), and modified likelihood

ratio test (MLRT) on alternatives f(x) = 0.1 exp(−x) + 0.9v exp(−vx).
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Figure 4: Power on mixtures with lower contamination. Combined overdispersion and

Anderson-Darling test (ADDS), weighted D-test (W1D / W2D), and modified likelihood

ratio test (MLRT) on alternatives f(x) = 0.9 exp(−x) + 0.1v exp(−vx).
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Figure 5: Power on mixtures with lower contamination. Combined overdispersion and

Anderson-Darling test (ADDS), weighted D-test (W1D / W2D), and modified likelihood

ratio test (MLRT) on alternatives f(x) = 0.9 exp(−x) + 0.1v exp(−vx).
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Figure 6: Power on fifty-fifty mixtures dependent on the sample size n. Combined overdis-

persion and Anderson-Darling test (ADDS), weighted D-test (W1D / W2D), and modified

likelihood ratio test (MLRT) on alternatives f(x) = 0.5 exp(−x) + 0.5 1
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sample size of 100 might be sufficient.

5. CONCLUDING REMARKS

In this paper the behaviour of several recently proposed tests for the diagnosis of expo-

nential mixtures has been compared.

We have demonstrated that for sample lengths n ≤ 1000 the D-test, the penalized D-

test and, to a lesser extent, the MLRT do not keep their nominal size. Both D-tests are

anti-conservative, the simple D-test less than the penalized one. Their anti-conservativism

decreases with n, but remains relevant up to n = 1000. The MLRT is anti-conservative for

moderate n (n ≤ 200) and conservative for larger n, and its conservativism decreases with

n. On the other hand, the two weighted versions of the D-test as well as the ADDS test

keep their nominal size for all n. For this reason, the simple D-test and the penalized D-test

should not be used with asymptotic quantiles unless the sample length is very large.

The relative power of the four remaining tests has been evaluated on two-component

mixtures. As a result, each of the four tests has its merits.

The linearly weighted D-test (w1D) is best on upper contaminations. But it is performs

rather weakly on fifty-fifty mixtures for moderately large sample sizes.

The quadratically weighted D-test (w2D) is among the best on fifty-fifty mixtures. It

is slightly worse than the others on upper contaminations, and it breaks down on lower

contaminations when n ≤ 200.

The MLRT works well in detecting fifty-fifty mixtures, but is slightly outperformed by

the others on upper, and even more on lower contaminations.

The ADDS clearly outperforms the others on lower contaminations when the scale ratio

v is large. In all other situations it develops power not much less than the best of the four

tests.

It should be noted that the above test approaches differ in that different classes of alter-

native hypotheses can be included. The D-tests as well as the MLRT are designed as tests

against general k-component mixtures with a fixed k. The ADDS test is constructed to test

against mixtures with any k and also against infinite mixtures. For power results with an

14



infinite mixture alternative, see (Mosler & Seidel, 2001).

As far as the overall performance is concerned, we conclude that the ADDS test shows

always not much less and sometimes considerably more power than its competitors. Also,

for larger n, the MLRT behaves uniformly well unless a lower contamination with large

scale ratio has to be detected. Therefore, to test for homogeneity in an exponential mixture

model, if no particular information on the alternative is available, the ADDS test appears

to be a good choice. Other combinations of a specific mixture test with a general purpose

goodness-of-fit test may prove similarly useful. A computer code of the ADDS test, written

in ‘R’, can be obtained from the authors.

A final question is whether the ADDS test can be extended to other finite mixture mod-

els and how it compares with its competitors under different model settings. (Mosler &

Scheicher, 2007) establish the ADDS test for homogeneity in a Weibull mixture model; they

demonstrate that, under lower contaminations, the penalized LR and D-tests break com-

pletely down, while the ADDS test develops considerable power. In mixtures of symmetric

distributions, like normal mixtures, DS procedures usually work well and, by construction,

better than ADDS procedures; see the monographs by (Böhning, 2000) and (McLachlan &

Peel, 2000).

TABLES OF THE ADDS TEST

The following table contains pairs of α-critical quantiles for the ADDS test, with sig-

nificance levels α = 0.10, α = 0.05, and α = 0.01 . t1 is a critical quantile of an AD test

having significance level α1, and t2 is a critical quantile of a DS test having significance level

α2. (t1, t2) have been determined so that α1 ≈ α2 and the level of the combined test is α.

In particular, first a value t1 has been fixed that depends on α but not on n, and then t2

has been chosen from simulated ADDS test sizes to obtain the combined test size α. The

simulations have been based on N = 50000 replications, and the results for t1 have been

slightly smoothed (by moving averages of length 2).
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