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Abstract

Subject of the present study is to analyze how accurately an elaborated price jump

detection methodology by Barndorff-Nielsen and Shephard (2004a, 2006) applies to finan-

cial time series characterized by less frequent trading. In this context, it is of primary

interest to understand the impact of infrequent trading on two test statistics, applica-

ble to disentangle contributions from price jumps to realized variance. In a simulation

study, evidence is found that infrequent trading induces a sizable distortion of the test

statistics towards overrejection. A new empirical investigation using high frequency infor-

mation of the most heavily traded electricity forward contract of the Nord Pool Energy

Exchange corroborates the evidence of the simulation. In line with the theory, a “zero-

return-adjusted estimation” is introduced to reduce the bias in the test statistics, both

illustrated in the simulation study and empirical case.
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1 Introduction

The concept of realized variance rendered a remarkable progress both in theory and economic

applications. Realized variance is a nonparametric estimator for the unobservable notional

variance of typically a financial asset over an interval [0, t]. Previous approaches derived this

variability measure from a theoretical diffusion log-price process and a set of reasonable as-

sumptions. Empirically, it was questioned whether the assumption of a pure diffusion log-price

process is realistic for any financial asset. Extensive empirical examination of financial high fre-

quency time series gave an important reason to the consideration of potential discontinuities or

jumps within the analyzed timeframe, e.g. Andersen, Benzoni and Lund (2002), Chernov, Gal-

lant, Ghysels and Tauchen (2003), Eraker (2004) and Eraker, Johannes and Polsen (2003). This

impulse led to the question in which manner the estimator for the notional variance changes

if we assume a jump diffusion log-price process. Based on an adjusted set of assumptions, two

important goals were attained. First, price jumps are explicitly incorporated in the notional

variance process. Second, it was shown that realized variance is not qualified to separately

measure the contributions emanating from the diffusion and jump part of the assumed log-

price process. Theoretical work of Barndorff-Nielsen and Shephard (2004a, 2006) proposed a

methodology to detect the contribution of price jumps to realized variance. Alternative non-

parametric approaches are for instance by Äıt-Sahalia and Jacod (2009), Andersen, Dobrev and

Schaumburg (2008), Christensen, Oomen and Podolskij (2009), Corsi, Pirino and Renò (2009),

Jiang and Oomen (2008), Lee and Mykland (2008) and Mancini (2009). Basically, Barndorff-

Nielsen and Shephard (2004a, 2006) dealt with the challenge by defining a consistent estimator

for the continuous variation of realized variance which is robust against a finite number of jumps

over a finite period of time in the log-price process. This estimator is called realized bipower

variation. Hence, a resulting jump measure is the difference of realized variance and realized

bipower variation. As measurement errors in both estimators can produce false conclusions,

Barndorff-Nielsen and Shephard (2004a, 2006, 2005) derived an asymptotic distribution theory

for the difference and proposed differently modified jump detection test statistics, applicable

on a day-to-day basis.

In an extensive simulation study, Huang and Tauchen (2005) analyzed these jump detection

test statistics for specific parametric continuous time (jump) diffusion processes. Besides ap-

plications to simulated price processes, the jump detection methodology was tested in several

empirical implementations. Examples are Barndorff-Nielsen and Shephard (2004a, 2006), who

applied their methodology to time series of the foreign exchange spot market, i.e. German

DM/U.S. dollar and Japanese Yen/U.S. dollar. Andersen, Bollerslev and Diebold (2007) pro-

ceeded the sole jump analysis of the foreign exchange spot market of German DM/U.S. dollar,

equity futures market of U.S. S&P 500 index, and interest rate futures market of thirty-year
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U.S. Treasury yield, by using the separately measured components of realized variance in a

time series model to improve forecasts for realized variance.

From an application point of view it is worth mentioning that the empirical implementations

essentially employed time series characterized by very frequent trading activities. As the theory

of realized variance is derived from the crucial assumption of a continuous price process, the

employed discrete and highly frequent price paths seem to be a sound approximation. Sim-

ulated time series with extraordinary high trading activities have also been implemented by

Huang and Tauchen (2005), validating extensively the theoretical results in the absence of mi-

crostructure noise.

An interesting question arising straightaway is how accurately the jump detection methodology

by Barndorff-Nielsen and Shephard (2004a, 2006) applies to financial time series characterized

by less frequent trading. This is an important issue as the violation of assuming a continu-

ous price process is likely more severe for such time series. The scenario of both a frequent

and an infrequent trading1 day (7.5 trading hours) shall be illustrated in figure 1. The left

panel shows a (simulated) discretized trajectory of a continuous time jump diffusion price path

(up-to-seconds) and the right panel an empirical intraday price path of an electricity forward

contract of the Nord Pool Energy Exchange on December 4th, 2002. One pivotal disparity

Figure 1: Different patterns of intraday price paths

Remarks: Simulated price path with parametric specification outlined in Section 3 (left panel) and an em-
pirical intraday price path of an electricity forward contract of the Nord Pool Energy Exchange on December
4th, 2002 (right panel). Both price paths represent an active trading day of 7.5 trading hours.

between both price patterns is the quantity of price observations. The simulated time series,

which assigns a price to each second on the Euler clock, counts 25,000 prices. However, the

empirical time series only counts 81 price observations within the trading day.

In order to circumvent such an application problem, a näıve approach would be to abstain

1Infrequent trading has two meanings. First, it can be understood as a microstructure noise in form of either
longer data breaks, or flat prices (i.e. prices remaining constant do not represent efficient prices). Second, it
can simply mean that either an asset is illiquid, i.e. nobody buys or sells for long times, or he/she buys or sells
it at a price which remains constant.

3



from using high frequency information. But relaxing the use of high frequency data increases

the corresponding measurement errors in realized variance, discussed in detail by Andersen

and Bollerslev (1998). Besides, the detection of contributions from price jumps to realized

variance complicates, outlined by Äıt-Sahalia (2004). A more sophisticated approach for infre-

quent trading has been developed by Barndorff-Nielsen and Shephard (2002, 2004b) in their

empirical implementation. They propose to build Brownian bridges between data points with

longer intertrade duration or sequences of very small price changes in order to improve the

approximation of a continuous price process. An important note to their empirical study is

that the premise for employing Brownian Bridges was seldom fulfilled due to a high level of

trading activity. However, it is questionable whether their approach can be applied without any

concern to a time series characterized by infrequent trading, like in the right panel of figure 1.

In this case, we would have to implement numerous Brownian bridges, nescient about this effect

on realized variance.

In this paper, we construct a simulation study accounting for various patterns of infrequent

trading in financial time series. For the simulation, basic parametric specifications of Ander-

sen, Benzoni and Lund (2002) are utilized. The main objectives of the simulation study are

of threefold nature. First, we are interested in the finite sample behavior of the jump detec-

tion test statistic, i.e. we question whether the test statistic under the null diverges from a

standard normal distribution, with respect to increasing infrequent trading. Our Monte Carlo

results suggest that the test statistic is quite sensitive to a small increase in the fraction of

“zero-returns”.2 Second, we investigate the accuracy of the jump detection test statistic with

regard to different fractions of “zero-returns” and variations of parameter settings in the sim-

ulation using the classical confusion matrix as an analysis tool. The evaluations show that

the jump detection rate is negatively influenced by longer sampling frequencies and decreasing

fraction of “zero-returns”. Third, we propose and implement a “zero-return-adjusted estima-

tion”, henceforth “zero-adjusted estimation”, based on the theory of Barndorff-Nielsen and

Shephard (2004a, 2006) to improve the validity of the jump detection test statistic in case of

infrequent trading. In realistic market scenarios, our more conservative estimation yields sound

improvements, especially for short sampling intervals. Adjacent to the Monte Carlo results,

we present a new empirical investigation. We employ high frequency information of the most

heavily traded electricity forward contract of the Nord Pool Energy Exchange, corroborating

the evidence of the simulation.

In the next section, we initially outline the theoretical framework, i.e. the concept of realized

variance assuming a jump diffusion log-price process, realized bipower variation, and a selec-

tion of jump detection test statistics. Thereafter we address issues caused by infrequent trading

2To our knowledge, Corsi, Pirino and Renò (2009) are the first who explicitly address the impact of “zero-
returns” on the computation of realized bipower variation. A similar discussion concerning this impact on
bipower variation can be found in Andersen, Dobrev and Schaumburg (2008).
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more closely and discuss a useful zero-adjusted estimation for such circumstances. Section 3

describes the simulation study and elaborately analyzes the results. The empirical investigation

of an electricity forward contract is presented in section 4. Finally, section 5 concludes.

2 Theoretical Framework

2.1 General Theoretical Background, and Realized Variance

Initially, we brief on the notations and frame of assumptions required to derive the concept

of realized variance, based on more detailed elaborations of Andersen, Bollerslev and Diebold

(2002), Cont and Tankov (2004, pp. 247-267), and Barndorff-Nielsen and Shephard (2004a,

2006). In order to model uncertainty of a logarithmic price process X(t) of any financial

asset, we define a filtered probability space (Ω, F , (Ft)t≥0, P ). Furthermore, we assume a

frictionless and continuous setting with no arbitrage opportunities. Sufficient for this, the log-

price process X(t) is meant to constitute a semimartingale with X0 = 0, i.e. a nonanticipating

right-continuous process with left limits (càdlàg), implicating in turn convenient properties for

the quadratic variation process of X(t). A widely used specification of the semimartingale X(t)

is a continuous-time stochastic volatility jump diffusion process. The expansion of the log-price

process is presented in form of a stochastic differential equation

dX(t) = µ(t)dt + σ(t)dW (t) + κ(t)dq(t) , t ∈ [0, 1] , (1)

where µ(t) is the drift term, σ(t) is a strictly positive stochastic càdlàg process and W (t) is a

standard Brownian motion. κ(t) is the size of the corresponding discrete jump in time t in the

log price process and q(t) is a counting process with finite activity and (possibly) time-varying

intensity λ(t). An ex-post measurement which captures the price variation for equation (1) is

the quadratic variation of X(t) over a discrete interval. The quadratic variation process

of X(t) with t ∈ [0, 1] is a nonanticipating càdlàg process (see e.g. Cont and Tankov, 2004 p.

263):

[X, X]t = X(t)2 − 2

∫ t

0

X(u )dX(u) . (2)

One advantage using quadratic variation for capturing the price variability is that it is a well-

defined quantity for all semimartingales. But why does the literature focus a priori on an ex-post

measure over a discrete time interval instead of one point-in-time? The reason is that in em-

piricism microstructure effects prevent us from observing a continuous price process. According

to this, it seems much more difficult to define an appropriate estimator for the instantaneous
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variance than for the (average) variance over a discrete time interval. Furthermore, we can

subsequently link quadratic variation with an ex-post variance measure using an important

property.

Proposition 1:

If πM = {ti | t0 = 0 < t1 < · · · < tM+1 = 1} is a sequence of partitions of [0, 1] such that
∣∣πM

∣∣ =

supk |tk − tk−1| → 0 as M → ∞, then

∑

ti∈πM∩[0,t[

{X(ti+1) − X(ti)}2 p−→ [X, X]t ,

where the convergence is uniform in t (Cont and Tankov 2004, pp. 263-264).

The explicit quadratic variation, or here notional variance, for the process in (1) can be

derived over [t-h, t], 0 < h ≤ t ≤ 1, as follows:

NVt,t−h ≡
∫ t

t−h

σ2(s)ds

︸ ︷︷ ︸
continuous variation

+
∑

qt−h<s≤qt

κ2(s)

︸ ︷︷ ︸
jump part

, (3)

where σ2(s) is the instantaneous return variation, κ2(s) is the squared size of the corresponding

discrete jump at time s. h is typically set to one, representing one trading day. We can state

that the first part, i.e. continuous variation or integrated variance, of equation (3) is the

quadratic variation of the standard Brownian motion. The second part of equation (3) stands

for the quadratic variation of the Poisson process.

Bearing Proposition 1 in mind, the estimator for the notional variance, called realized vari-

ance, for one trading day t now can be defined as:

RVt ≡
M∑

j=1

r2
j , with rj := rj,t,M := X

(
j t

M

)
− X

(
(j − 1)t

M

)
. (4)

The integer M is the amount of sufficiently small equidistant intraday sampling intervals and

rj is a continuously compounded interval return. Realized variance is converging for M → ∞
in probability limit to the notional variance in equation (3). Formally,

RVt
p−→

∫ t

t−1

σ2(s)ds +
∑

qt−1<s≤qt

κ2(s) , (5)

i.e. we can approximate the notional variance with accumulating squared returns, sampled at

a fairly high frequency. In other words, realized variance is a consistent estimator for daily

increments of the quadratic variation process. Obviously now from equation (3) and (4), it is
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not possible to separately measure the contribution emanating from the continuous variation

and jump part.

2.2 Realized Bipower Variation

As already pointed out in the introduction, one general approach to isolate the contribution of

price jumps to realized variance is to define an estimator for the continuous variation in order

to infer on the jump part. Barndorff-Nielsen and Shephard (2004a) derive theoretical results

for such an estimator, called realized bipower variation. A general form of this estimator

can be found in Barndorff-Nielsen and Shephard (2004b, p. 10) and Huang and Tauchen (2005,

p. 486):

BPt,i ≡ µ−2
1

(
M

M − 1 − i

) M∑

j=2+i

|rj−(1+i)||rj| , i ≥ 0 , (6)

where µ1 ≡
√

2/π. BPt,i is defined by accumulated cross-products of absolute adjacent intraday

returns. Barndorff-Nielsen and Shephard (2004a) show for the case i = 0 that for M → ∞,

BPt,0
p−→

∫ t

t−1

σ2(s)ds , (7)

meaning realized bipower variation is robust against a finite number of jumps over a finite

period of time in the log price process in (1).

Especially thereinafter important for time series characterized by infrequent trading and our

zero-adjusted estimation is that Barndorff-Nielsen and Shephard (2004b) further mention that

the convergence in probability of realized bipower variation is not limited to computing the

cross-product of only directly adjacent absolute returns, i.e. for i = 0. It even holds for i ≥ 0

(but fixed over h) and is obviously constrained by a finite choice of M in empirical applications.

For applications to financial time series, Andersen, Bollerslev and Diebold (2007, pp. 710-711)

suggest using i = 1 to avoid potential serial correlation between directly adjacent returns

sampled at a high frequency, distorting the realized bipower variation measure. Similar results

are shown both analytically and in a simulation study by Huang and Tauchen (2005, pp.

483-492) for a noisy price process. Choosing even longer staggering periods, e.g. i = 2, is

also addressed by Huang and Tauchen (2005, pp. 483-492). Interestingly, they demur that a

higher i might introduce finite-sample bias, worsening the asymptotic approximation. The bias

might be attributed to the fact that each cross-product of the staggered returns covers a longer

interval.
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2.3 Selection of Jump Statistics

Adapted from the theoretical results presented in the previous sections, we can specify a jump

measure Jt over [t-h, t] as the difference between RVt and BPt,i, according to Barndorff-Nielsen

and Shephard (2004a, 2006). The limit in probability for Jt as M → ∞ is

Jt = RVt − BPt,i
p−→

∑

qt−1<s≤qt

κ2(s) , (8)

i.e. the term Jt converges in probability to the theoretical jump part in equation (3). Andersen,

Bollerslev and Diebold (2007) argue that employing this jump measure to an empirical time

series most likely produces finite sample problems, like theoretically infeasible negative differ-

ences and an unreasonable large number of small positive “jumps”, subject to measurement

errors. In order to circumvent the finite sample problems, Barndorff-Nielsen and Shephard

(2004a, 2006) provide a jump detection test statistic for RVt−BPt,i, applicable to test for price

jumps:

Z̃t,i = M
1

2

RVt − BPt,i√
(µ−4

1 + 2µ−2
1 − 5)

∫ t

t−1
σ4(s)ds

d
=⇒ N(0, 1) . (9)

The null hypothesis reads as follows: No jumps are present in the underlying price process.

Under the null, the test statistic converges in distribution to a standard normal distribution.

Obviously, the test statistic is infeasible as it includes
∫ t

t−1
σ4(s)ds, termed integrated quarticity.

This term, factored with 1
M

(µ−4
1 + 2µ−2

1 − 5), can be interpreted as the asymptotic variance

of the discrepancy between RVt and BPt,i. Andersen, Bollerslev and Diebold (2007) suggest

a consistent estimator to be employed for the integrated quarticity, called realized tripower

quarticity (TriPt,i). For i ≥ 0,

TriPt,i ≡ ϑi

M∑

j=1+2(1+i)

|rj−2(1+i)|4/3|rj−(1+i)|4/3|rj|4/3 , (10)

where ϑi = Mµ−3
4/3

(
M

M−2(1+i)

)
, and µ4/3 = 22/3 · Γ(7

6
) · Γ(1

2
)−1 = E(|z|4/3), with z

iid∼ N(0, 1).

For M → ∞,

TriPt,i
p−→

∫ t

t−1

σ4(s)ds , (11)

meaning that TriPt,i is converging in probability limit to the integrated quarticity.

Concerning the test statistic in equation (9), Huang and Tauchen (2005) notice that it tends to

exhibit a positive bias. Some extensions of this basic test statistic with improved finite-sample
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performance are suggested in Barndorff-Nielsen and Shephard (2004a, 2006, 2005). Their ap-

proach is to reasonably transform RVt − BPt,i in order to receive a more stable variance for

the asymptotic distribution of realized variance and bipower variation. One considered trans-

formation is the relative jump measure (RVt −BPt,i)/RVt and another one the log differences,

i.e. log(RVt) − log(BPt,i). The corresponding test statistics are termed Z1t,i and Z2t,i, with

respectively adjusted asymptotic variances in the denominator:

Z1t,i = M
1

2

(RVt − BPt,i) · RV −1
t√

(µ−4
1 + 2µ−2

1 − 5) max
{

1,
TriPt,i

(BPt,i)2

}
d

=⇒ N(0, 1) , (12)

Z2t,i = M
1

2

log(RVt) − log(BPt,i)√
(µ−4

1 + 2µ−2
1 − 5) max

{
1,

TriPt,i

(BPt,i)2

}
d

=⇒ N(0, 1) . (13)

The null reads the same as for equation (9). At this point, we would like to mention that

in our following simulation study the sensitivity of the convergence result in distribution for

time series characterized by infrequent trading is investigated upfront. There we solely focus

on these two extensions and motivate our choice with the simulation results of Huang and

Tauchen (2005). They find that these two extended versions have good power and are quite

robust against parametric changes of the simulated continuous time jump diffusion process.

The final step towards deciding on a daily basis the portion of realized variance attributable to

jump part Jt,i,α and to continuous variation Ct,i,α is a straightforward task:

Jt,i,α ≡ I[Zt,i > Φ1−α] · [RVt − BPt,i]
+ and Ct,i,α ≡ RVt − Jt,i,α , (14)

where Zt,i ∈ {Z1t,i, Z2t,i}. I is an indicator function equaling one if the condition Zt,i > Φ1−α is

true, and zero else. Φ1−α is the corresponding value of a standard normal distribution function.

In the corresponding literature, the level of significance (α) is usually set to a value in the range

of 0.1% to 1%.

2.4 Zero-Adjusted Estimation

Let us now turn to one key consideration of this paper, namely to understand the effect of

infrequent trading on detecting jumps by means of extreme cases and contemplate a solution.

In the introduction, we briefly addressed the aspect of infrequent trading (see figure 1), that is a

rather small amount of prices observable for a financial asset over a trading day. This sparse set

of information is meant to represent the basis for computing intraday returns over equidistant

and sufficiently small intervals. In consequence of a small number of observed intraday prices,

we likely receive several intraday returns equaling to zero, called zero-returns. Intuitively, this
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effect is reinforced if a higher sampling frequency is chosen. Due to the fact that intraday returns

are directly used to compute realized variance, bipower variation and tripower quarticity, it

is of great concern to comprehend the potential exposure resulting from zero-returns on these

measures and later on the test statistics.3 The effect of generic microstructure noise4 on realized

variance has already been well addressed in the literature. Anderson, Bollerslev, Diebold and

Labys (1999) propose a variance signature plot to visualize the dimension of noise in realized

variance for different sampling frequencies. To handle microstructure noise in realized variance

Bandi and Russell (2008) even propose an analytical approach to mitigate noise effects by

optimally choosing the sampling frequency M , which we will get to in more detail in the

empirical part. The effect of microstructure noise on realized bipower variation is analytically

employed to some extent by Huang and Tauchen (2005).5 A graphical analysis is proposed

by Andersen, Bollerslev, Frederiksen and Nielsen (2006). In their comment, they apply the

signature plot methodology of Anderson, Bollerslev, Diebold and Labys (1999) to get an idea

about microstructure effects on realized bipower variation and tripower quarticity.

Now, to better grasp the effect of infrequent trading in particular on bipower variation and

tripower quarticity we illustrate a scenario in table 1. The information reported in table 1

is from intraday prices of an electricity forward contract, traded at the Nord Pool Energy

Exchange on April 14th, 2003. We chose a sampling frequency of 15 minutes, producing 30

Table 1: Illustration: effect of infrequent trading on Z1t,i

i = 1 i = 3
Interval rt RVt BPt,1 TriPt,1 BPt,3 TriPt,3

3 -0.0010 1.10E-06 0 0 1.10E-06 3.07E-12
6 -0.0010 1.10E-06 0 0 0 0
7 -0.0011 1.10E-06 0 0 2.21E-06 0
11 -0.0021 4.43E-06 0 0 0 0
19 0.0032 9.96E-06 0 0 6.68E-06 0
22 -0.0063 4.00E-05 0 0 2.15E-05 2.79E-10
23 -0.0021 4.48E-06 4.48E-07 0 0 -
25 0.0002 4.49E-08 0 0 0 -
26 -0.0034 1.15E-05 0 0 1.08E-05 -
30 0.0032 1.01E-05 - - - -
Daily Value -0.0105 8.39E-05 7.55E-07 0 7.66E-05 2.01E-08
Z1t,i 6.96 0.33
Φ1−α=0.99 2.33 2.33

Remarks: The upper part of the left column reports all intraday intervals of the trading day 04/14/2003 with
|rj | > 0 followed by the corresponding accumulated daily value. Accordingly, the following columns specify
interval (daily) return, realized variance, bipower variation and tripower quarticity. The last two rows report
the resulting Z1t,i test statistic and the respective value of a standard normal distribution at α = 1%.

3Further nonnegligible drawbacks of bipower variation, which shall not be of concern in this study, are
discussed by Corsi, Pirino and Renò (2009) and Andersen, Dobrev and Schaumburg (2008).

4Microstructure noise: e.g. price discreteness, bid-ask spreads and measurement errors.
5Huang and Tauchen (2005) assume a simple noisy price process to conduct their analysis.
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intervals for 7.5 trading hours per day.6 We solely report interval returns which are in absolute

value greater than zero and compute the respective increments required for the jump analysis.

Following the proposition of Andersen, Bollerslev and Diebold (2007), we choose i = 1 to break

potential serial correlation in adjacent returns used for the computation of realized bipower

variation and tripower quarticity. Obviously striking is the fact that due to the alignment of

returns unequal to zero only one increment of BPt,1 is unequal to zero and none of TriPt,1.

Under the reported setting we would reject the null hypothesis despite the fact that there are

no obvious indications for price jumps. Concerning this example, we analyze more closely the

sensitivity of Z1t,i for cases where BPt,i is compared to RVt relatively small due to the presence

of zero-returns and not due to the reason of abnormal price movements. To ensure that the test

statistic is defined, we assume that k = max {1, T riPt,i/(BPt,i)
2} and h = (RVt−BPt,i) ·RV −1

t ,

where k ∈ [1,∞[ and h ∈ ]0, 1], and write

Z1t,i = M
1

2

h√
(µ−4

1 + 2µ−2
1 − 5) k

. (15)

In table 2, we report Z1t,i for varying k, h and M . For k = 1 and M = 30, we can observe

that the test statistic gets artificially large by increasing the difference between BPt,i and RVt.
7

Beyond h = 0.33 we would reject the null hypothesis for α = 1%. This effect is lagged by

increasing k. Z1t,i converges to a maximum value of 7.02 for fix k and h → 1. The distortion

Table 2: Sensitivity of Z1t,i for varying k, h and M

M = 30 M = 90
k

1 1.25 1.5 2 2.5 1 1.25 1.5 2 2.5
0.1 0.70 0.63 0.57 0.50 0.44 1.22 1.09 0.99 0.86 0.77
0.2 1.40 1.26 1.15 0.99 0.89 2.43 2.17 1.99 1.72 1.54

h
0.3 2.11 1.88 1.72 1.49 1.33 3.65 3.26 2.98 2.58 2.31
0.4 2.81 2.51 2.29 1.99 1.78 4.86 4.35 3.97 3.44 3.08
0.5 3.51 3.14 2.87 2.48 2.22 6.08 5.44 4.96 4.30 3.84
0.6 4.21 3.77 3.44 2.98 2.66 7.29 6.52 5.96 5.16 4.61

Remarks: Reported test statistic values of Z1t,i are computed with equation (15) for varying k, h and M .
Emphasized values are greater than Φ1−α = 2.33 (for α = 1%).

in Z1t,i is even more severe for M = 90. If k = 1 and h > 0.19, we would already reject

the null hypothesis given α = 1%. Proceeding with a sensitivity analysis for Z2t,i produces

directionally similar results. Therefore, it is not explicitly reported. The sole difference to

the previous analysis is that h = log(RVt) − log(BPt,i), where h ∈]0,∞[. Additionally, Z2t,i

converges to ∞ for fix k and h → 1.

6We employed the optimal sampling methodology according to Bandi and Russell (2008). Further details to
this can be found in Section 4.

7We choose M = 30 (M = 90) as this corresponds to the number of intraday interval returns for 15 (5)
minute sampling frequency in the empirical case.
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After having exhibited several scenarios caused by infrequent trading and given the theory

discussed in the previous sections, we now want to present a zero-adjusted estimation to deal

with the issue of zero-returns. Therefore, it is of importance to remember that the limits in

probability and distribution for equation (6), (10), (12) and (13) remain true when i ≥ 0.

The only condition is that i has to be fixed over day t, and has to be the same for both bipower

variation and tripower quarticity on day t, pointed out by Huang and Tauchen (2005). That

means, deleting all zero-returns and then proceed with the analysis is not a proper option as

we cannot ensure that i is fixed. Additionally, it was mentioned that it is common to use i = 1

instead of i = 0 in order to avoid serial correlation and that i > 1 is usually not chosen as

it is not obvious whether with any extra lagging some finite-sample bias might be introduced.

However, no concrete result exists which rules out i > 1. In the case of a considerable amount

of zero-returns, it can be especially convenient to daily adjust the choice of i, before computing

BPt,i, TriPt,i and Zt,i. One feasible strategy is to optimally choose i on a daily basis with the

following approach:

1.) fix the number of intraday sampling intervals M (effective for the full-sample),

2.) max
{i∈I}

TriPt,i

(BPt,i)2
, where I =

{
1, 2, ...,

⌊
M

2

⌋}
. (16)

The aim of this strategy is to maximize the number of increments in BPt,i and TriPt,i which

are unequal to zero. Obviously, with the strategy in equation (16) we do not change the

limit distribution of the test statistics. We solely formulate a method on how to fix i in a

first step, which seems useful in case of zero-returns, before computing the test statistic and

its components in a second step. This proceeding can be understood as a classical two-stage

approach.

Applying the zero-adjusted estimation to our example in table 1 produces i = 3. Choosing

i = 3 yields BPt,3 and TriPt,3 greater than zero, leading on to Z1t,3 being defined. Under the

assumed level of significance (α = 1%) we cannot reject the null hypothesis, a conclusion not

hardly to believe as there is no abnormal price movement within this specific trading day.

The considerations and observations of this section give rise to further analyze to what extent

infrequent trading causes a positive distortion of Zt,i, i.e. leads to an overestimation of significant

jumps. This will be discussed in detail in the simulation study in the next section. Furthermore,

we are interested in the performance of the zero-adjusted estimation in a simulation setup.
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3 Simulation Study

3.1 Setup

In this section we describe the assumed price processes, parameter settings and the algorithm

for infrequent trading to conduct the Monte Carlo experiment. Due to the fact that we are

both interested in the accuracy of the limit distribution of Zt,i and the accuracy of the test

statistics to detect jumps, we simulate a Heston type model with and without jumps:

I. Basic Heston Type Model (BHM):

dpt

pt
= µdt +

√
vtdWp,t ,

dvt = (θ − γvt)dt + η
√

vtdWv,t , (17)

II. Heston Type Model with Jumps (HMJ):

dpt

pt
= µdt +

√
vtdWp,t + κ(t)dqt ,

dvt = (θ − γvt)dt + η
√

vtdWv,t , (18)

where µ is the drift, W(·),t are standard Brownian motions, corr(dWp, dWv) = ρ is the leverage

correlation, vt is a stochastic volatility factor, κ(t)dqt is a compound Poisson process with a

constant jump intensity λjmp and a random jump size distributed as N(0, σ2
jmp).

8 To insure

that the mean-reverting square-root diffusion process dvt is positive, the condition 2θ ≥ η2 has

to hold. To simulate realistic scenarios, we utilize basic parametric specifications estimated

for the daily S&P 500 equity index by Andersen, Benzoni and Lund (2002, p. 1256). In

Table 3: Input parameters for the simulation

Parameter Specification
µ 0.0304
θ 0.0064
γ 0.012
η 0.0711
ρ -0.622
σjmp {0.0134, 0.05, 0.1, 0.25}
λjmp {0.058, 0.082, 0.118, 0.5}

Remarks: Parameters are expressed in percentage form and on daily basis.

order to analyze realistic scenarios for a greater range of financial assets, variations in standard

deviation, frequency of jumps and trading activity are provided. Details about the parameters

and variations can be found in table 3. Each simulated time series has a length of 30 years at 255

trading days a year and 7.5 trading hours per day. The discretized trajectory of the diffusion

parts is simulated using the basic Euler scheme with an increment ∆t of one second per tick

8The chosen price process is similar to the one used by Huang and Tauchen (2005, pp. 465-466).
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on the Euler clock. We first simulated prices for BHM and HMJ, and use the log-transformed

price series as a basis for different sampling intervals. The simulation of the compound Poisson

process required in HMJ follows an algorithm of Cont and Tankov (2004, p. 174). That

followed, we compute continuously compounded returns for 5, 15, and 30 minute sampling

intervals, and receive a time series of “non-zero-returns”. To simulate infrequent trading, we

proceed with constructing a filter, skimming “non-zero-returns”. The algorithm goes as follows:

• Simulate with a Poisson distribution a random variable Nr, which represents the to-

tal number of events of returns unequal to zero, with the frequency parameter λzr =

− ln(δ fzr,(·)). fzr,(·) is the average number of zero-returns for 5, 15, and 30 minute sam-

pling intervals with respect to the corresponding total number of returns over the full-

sample. In our case, the choice of fzr,(·) is based on an empirical analysis of the electricity

forward contract traded at the Nord Pool Energy Exchange. We varied the fraction of

zero-returns by reducing the amount fzr,(·) with the factor δ = {1, 0.8, 0.6, 0.4, 0.2} to

conduct a sensitivity analysis. Figure 2 shows the original fraction of zero-returns (δ = 1)

for different sampling frequencies and also the factorized fractions.

• Uniformly distribute Nr events of returns unequal to zero across a null vector (T × 1)

to accomplish the filter. Set one at the event time of a return unequal to zero, and zero

else. T now represents the total number of sampling intervals over the simulation horizon.

Control for keeping all sampling intervals which include a jump.

• Skim “non-zero-returns” by multiplying respective return series with the filter.

This algorithm allows for simulating a continuous price process with a varying latent part.

Figure 2: Empirical fraction of zero-returns δ fzr,(·)

Remarks: Empirical full-sample averages of factored intraday fractions of zero-returns of the electricity forward
contract, traded at the Nord Pool Energy Exchange 2002-2008, for different sampling frequencies.
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3.2 Price Process without Jumps

The focus of this section is to analyze the theoretical result of the convergence in distribution

for Z1t,i=0 and Z2t,i=0 (conventional estimation), and Z1t,i=opt and Z2t,i=opt (zero-adjusted

estimation), using a time series simulated with the BHM in equation (17) and the infrequent

trading algorithm. We use QQ plots to conduct the evaluation of differently sampled return

series, and various fractions of zero-returns specified with δfzr,(·), where δ = {0.2, 0.4, 0.8, 1}.
In the interpretation, we mostly focus on the typically considered upper quantiles greater than

1.65, equivalent to a level of significance of α less than 5%.

For δ = 0.2, representing a small fraction of zero-returns in the respective return series, we

can clearly observe in the upper left panels of figure 3 to 5 a size distortion of Z1t,0 towards

overrejection. The return series with 5 minutes sampling intervals is affected at its most fierce

with the problem in size, whereas longer sampling intervals are to a lesser extent. Increasing

the fraction of zero-returns negatively affects the size, most intense for 5 minute and lesser

for longer sampling frequencies, which can be clearly seen in the left top to bottom panels of

figure 3 to 5. Additionally, we can observe in each left panel of figure 3 to 5 that the zero-

adjusted estimation reduces the size distortion in the test statistic. The correction in size is

most intense for large δ.

Turning now to Z2t,0 and starting again with δ = 0.2, the size effect in the upper quantiles

is corrected for the return series with 5 minute sampling intervals (see upper right panel of

figure 3). However, for the 15 and 30 minute return series the correction is even stronger

causing a size distortion of Z2t,0 towards underrejection (see upper right panel of figure 4

and 5). For the 5 minute return series, the correction vanishes dramatically fast with an

increasing fraction of zero-returns, graphed in the right top to bottom panels of figure 3. A

mitigated progress towards overrejection of Z2t,0 with an increasing δ is produced for 15 and

30 minute sampling frequencies (see right top to bottom panels of figure 4 and 5). Positively

distorted outputs, produced by the conventional estimation for typically higher fraction of

zero-returns, are again reduced by the zero-adjusted estimation. However, for small fractions

of zero-returns the reduction in size can cause a negative distortion.

In summary, we can state for the conventional estimation that given a certain level of trading

activity, higher sampling frequencies cause in both test statistics a more intense distortion

towards overrejection than for longer sampling frequencies due to an increased fraction of zero-

returns. This effect manifests for lessening trading activities. For Z1t,i, the zero-adjusted

estimation shows across all levels of trading activity better size than the conventional estimation,

and for Z2t,i on days with lower trading activity.
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Figure 3: QQ plots of daily Z1t,i and Z2t,i statistic for i = {0, opt} and 5min sampling intervals

Remarks: Simulated realization of the BHM for 7650 days with parameter specifications, reported in table 3.
Daily Z1t,i (Z2t,i) statistic is graphed in the left (right) panels. From the top to bottom graph the fraction of
zero-returns is factored by δ = {0.2, 0.4, 0.8, 1}. The ordinate labels the quantiles of the simulated input sample,
the abscissa the standard normal quantiles. The solid bisecting line graphs the theoretical result. The crosses
(squares) represent the result for i = 0 (i = opt).
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Figure 4: QQ plots of daily Z1t,i and Z2t,i statistic for i = {0, opt} and 15min sampling intervals

Remarks: Simulated realization of the BHM for 7650 days with parameter specifications, reported in table 3.
Daily Z1t,i (Z2t,i) statistic is graphed in the left (right) panels. From the top to bottom graph the fraction of
zero-returns is factored by δ = {0.2, 0.4, 0.8, 1}. The ordinate labels the quantiles of the simulated input sample,
the abscissa the standard normal quantiles. The solid bisecting line graphs the theoretical result. The crosses
(squares) represent the result for i = 0 (i = opt).
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Figure 5: QQ plots of daily Z1t,i and Z2t,i statistic for i = {0, opt} and 30min sampling intervals

Remarks: Simulated realization of the BHM for 7650 days with parameter specifications, reported in table 3.
Daily Z1t,i (Z2t,i) statistic is graphed in the left (right) panels. From the top to bottom graph the fraction of
zero-returns is factored by δ = {0.2, 0.4, 0.8, 1}. The ordinate labels the quantiles of the simulated input sample,
the abscissa the standard normal quantiles. The solid bisecting line graphs the theoretical result. The crosses
(squares) represent the result for i = 0 (i = opt).
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3.3 Price Process with Jumps

The primary matter of interest in this section is to analyze the accuracy of Z1t,i and Z2t,i using

either the conventional or zero-adjusted estimation if the underlying data generating process

equals to, with the infrequent trading algorithm transformed, HMJ in equation (18). More

precisely, we are interested in the sensitivity of the results with respect to varying fractions

of zero-returns, changing standard deviation of the jump size κ(t) and frequency of jumps for

fixed δ = 1, and different sampling frequencies. The evaluation of the simulation results can

be done quite intuitively with the classical confusion matrix, typically used in ROC analyses.9

The setup of the confusion matrix given a predefined level of significance is the following. It

is basically a (2 × 2)-matrix, where the upper left cell contains the proportion of days the test

statistic correctly identified a no-jump day with respect to all simulated days with no jumps

(=̂ t-nj ). On the contrary, the upper right cell stands for the proportion of a false rejection of

the test statistic among all simulated days with jumps, complying with the well known α-error.

In the second row of the confusion matrix, we have in reverse to the first row in cell (2,1) the

β-error, which is the proportion of falsely identified days with a jump among the total amount

of simulated no-jump days. The lower right cell then represents the proportion of days the

test statistic correctly identified a jump day with respect to all simulated days with jumps (=̂

t-j ). By definition, the first and second column add up to one, respectively. Furthermore,

the elements in the confusion matrix can be combined to compute the well known sensitivity

index d′ (from signal detection theory).10 d′ is quite convenient in determining the overall

performance of the conventional estimation choosing i = 0 in contrast to our zero-adjusted

estimation, i = opt. We decided on implementing this general performance measure, as we do

not intend to advance a method with a high (no-)jump detection rate at any cost. In this setup,

the larger d′ the better the overall performance.11

3.3.1 Accuracy

The analysis of the accuracy of Zt,i for i = 0 and i = opt is subdivided into four scenarios. The

output of each simulation run is reported in table 4 to 7, respectively. To simplify matters, we

only report t-nj and t-j. Generally, we choose a level of significance α of 1% as in Huang and

Tauchen (2005).

Scenario 1: Small and rare jumps with changing fraction of zero-returns

In this scenario, we simulated a price process with the parameter settings utilized by Andersen,

9Huang and Tauchen (2005) report the transposed form of the classical confusion matrix.
10It is defined as: d′ = Φ(t-nj) − Φ(1−t-j).
11If d′ < 0: method performs worse than guessing. If d′ = 0: method performs as well as guessing. If d′ > 1:

method yields more strikes than false alarms. For details on d′, the reader is referred to Wickens (2001).
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Benzoni and Lund (2002). Leaving out the zero-returns, the basic setting seems representative

for a financial asset with a rather low volatility, typical for country specific leading stock indices

(e.g. S&P 500, DAX, FTSE, CAC40), and in principle also quite characteristic for the electricity

forward contract more closely analyzed in Section 4. The simulated days with jumps count 435.

The jumps reach values between roughly −0.04 to 0.04 in terms of returns. Starting with Z1t,0,

and the highest sampling frequency and fraction of zero-returns in table 4, we can state that

the test statistic yields unsatisfactory results for the detection of no-jump days, whereas strong

results for jump-days. In this context it means that almost every day, Z1t,0 produced a value

greater than the critical value of 2.33, yielding obviously strong results on detecting jump days

and poor results on detecting no-jump days. The zero-adjusted estimation, however, greatly

improves the detection rate of the large amount of days without jumps but loses accuracy in

detecting the few days with jumps. This result is very much in line with our expectations from

figure 3 to 5. Decreasing the factorized fraction of zero-returns from 1 to 0.8 for i = 0, we

can observe a slow-moving improvement concerning the detection rate of no-jump days. The

jump-detection rate rather slightly decreases but still remains on a high level. That means, the

less Z1t,0 is affected by the presence of zero-returns, the more is the test statistic affected in its

precision by the chosen length of interval returns.12 For δ = 0.4, we already have a considerable

Table 4: Scenario 1: Small and rare jumps with varying zero-returns δ = {1, 0.8, 0.4, 0.2}
5min 15min 30min 5min 15min 30min

i 0 opt 0 opt 0 opt 0 opt 0 opt 0 opt

δ = 1 δ = 0.8

Z1t,i
t-nj 0.03 0.53 0.47 0.84 0.82 0.92 0.04 0.54 0.60 0.90 0.87 0.94
t-j 1.00 0.76 0.88 0.65 0.68 0.52 0.99 0.78 0.86 0.59 0.67 0.47

Z2t,i
t-nj 0.15 0.74 0.80 0.95 0.95 0.97 0.29 0.86 0.89 0.98 0.97 0.98
t-j 0.98 0.78 0.78 0.54 0.53 0.44 0.95 0.69 0.69 0.52 0.50 0.40

δ = 0.4 δ = 0.2

Z1t,i
t-nj 0.34 0.84 0.85 0.97 0.94 0.97 0.76 0.96 0.94 0.99 0.97 0.98
t-j 0.96 0.74 0.79 0.56 0.60 0.46 0.91 0.68 0.77 0.55 0.61 0.47

Z2t,i
t-nj 0.86 0.99 0.98 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
t-j 0.86 0.60 0.63 0.44 0.46 0.36 0.79 0.56 0.61 0.42 0.43 0.34

Remarks: Simulated realization of the HMJ for 7650 days with basic parameter specifications, reported in
table 3. Jumps are simulated with σjmp = 0.0134 and λjmp = 0.058. The level of significance α is set to 1%.

improvement of the detection rate of no-jump days, which further doubles for δ = 0.2. Along

the way, the jump detection rate looses accuracy but remains on a fairly high level. Z1t,opt

likewise improves the detection rates of no-jump days and reduces the precision of detecting

jump days for smaller δ. For longer sampling frequencies, the conventional estimation yields on

the one hand much better detection rates of no-jump days than higher frequencies but on the

12Without any zero-returns, we obtain for i = 0 a jump-detection rate of 0.830 for 5 minute interval returns.
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other hand worse detection rates of days with jumps out of time-averaging effects.13 A similar

effect can be observed for the zero-adjusted estimation.

From the right panels of figure 3 to 5 we know that Z2t,0 differently “corrects” the test statistic

for various δ and sampling frequency. As expected, Z2t,0 produces better detection rates of

no-jump days than Z1t,0 for all sampling frequencies. However, due to the fact that Z2t,0 is

more conservative for especially small δ, the jump detection rate is smaller than for Z1t,0. Also

in line with the panels of Z2t,opt in figure 3 to 5 is that the zero-adjusted estimation only seems

of interest for higher fractions of zero-returns. For smaller δ it turns out to be too conservative

concerning the detection of jump days.

Scenario 2: Large and rare jumps with changing fraction of zero-returns

This scenario differs from the previous scenario with respect to the size of the jumps and

number of jump days (here: 442 simulated jump days). For σjmp = 0.1 the simulated jumps

reach values between roughly −0.3 to 0.3, speaking again in terms of continuously compounded

interval returns. This is seven and a half times more than in the first scenario and is meant to

be a rather extreme case scenario but still seems quite realistic for highly volatile single stocks.

We would expect to receive an improvement of the correct jump detection rate for Zt,0, notably

for smaller δ’s. This is true for all three sampling frequencies (see table 5). Similar in direction

to scenario 1 are the results of the no-jump detection rate as well as the overall results for

i = opt.

Table 5: Scenario 2: Large and rare jumps with varying zero-returns δ = {1, 0.8, 0.4, 0.2}
5min 15min 30min 5min 15min 30min

i 0 opt 0 opt 0 opt 0 opt 0 opt 0 opt

δ = 1 δ = 0.8

Z1t,i
t-nj 0.02 0.54 0.47 0.84 0.81 0.92 0.04 0.53 0.60 0.89 0.86 0.94
t-j 1.00 0.87 0.97 0.86 0.92 0.86 1.00 0.93 0.97 0.89 0.92 0.85

Z2t,i
t-nj 0.14 0.74 0.80 0.94 0.94 0.97 0.28 0.86 0.89 0.97 0.97 0.98
t-j 1.00 0.95 0.94 0.90 0.89 0.87 0.98 0.94 0.94 0.90 0.89 0.87

δ = 0.4 δ = 0.2

Z1t,i
t-nj 0.35 0.83 0.85 0.97 0.94 0.97 0.77 0.97 0.94 0.99 0.97 0.98
t-j 0.99 0.90 0.95 0.89 0.91 0.86 0.98 0.92 0.94 0.88 0.90 0.87

Z2t,i
t-nj 0.87 0.99 0.98 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
t-j 0.97 0.90 0.92 0.88 0.88 0.85 0.94 0.90 0.91 0.88 0.87 0.86

Remarks: Simulated realization of the HMJ for 7650 days with basic parameter specifications, reported in
table 3. Jumps are simulated with σjmp = 0.1 and λjmp = 0.058. The level of significance α is set to 1%.

Scenario 3: High fraction of zero-returns with changing jump-variance

To be more comprehensive for cases of high fraction of zero-returns and differently distributed

13This result is in line with Aı̈t-Sahalia (2004) who outlines the complication of detecting contributions from
jumps to realized variance if the interval length of intraday returns increases. Further evidence can be found in
the simulation study of Huang and Tauchen (2005).
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jumps, we analyze scenarios with fix δ = 1 and varying σjmp in more detail. Reading table 6

with the same systematic as for the previous scenarios, we can note that even for an extremely

large and unrealistic σjmp of 0.25, the conclusions concerning the jump and no-jump detection

rate for 5 minute returns do not systematically change in any direction for i = 0. For 15 minute

Table 6: Scenario 3: Variation of jump size σjmp = {0.0134, 0.05, 0.1, 0.25}
5min 15min 30min 5min 15min 30min

i 0 opt 0 opt 0 opt 0 opt 0 opt 0 opt

σ = 0.0134 σ = 0.05

Z1t,i
t-nj 0.03 0.54 0.46 0.84 0.83 0.92 0.03 0.53 0.47 0.85 0.82 0.92
t-j 1.00 0.74 0.90 0.63 0.71 0.53 1.00 0.84 0.96 0.84 0.90 0.83

Z2t,i
t-nj 0.16 0.74 0.78 0.94 0.95 0.97 0.15 0.73 0.79 0.94 0.94 0.97
t-j 0.97 0.78 0.78 0.55 0.54 0.48 0.99 0.93 0.93 0.85 0.87 0.80

σ = 0.1 σ = 0.25

Z1t,i
t-nj 0.02 0.53 0.47 0.85 0.82 0.92 0.03 0.54 0.46 0.85 0.82 0.92
t-j 1.00 0.89 0.98 0.90 0.96 0.90 1.00 0.90 0.99 0.91 0.98 0.93

Z2t,i
t-nj 0.15 0.73 0.79 0.94 0.94 0.97 0.15 0.74 0.79 0.95 0.94 0.97
t-j 1.00 0.97 0.96 0.92 0.91 0.90 1.00 0.99 0.99 0.96 0.97 0.96

Remarks: Simulated realization of the HMJ for 7650 days with basic parameter specifications, reported in
table 3. Jumps are simulated with λjmp = 0.058 and changing standard deviation. Fraction of zero-returns is
adjusted with δ = 1. The level of significance α is set to 1%.

sampling intervals the simulation yields a stringent improvement of the jump detection rate with

an increasing σjmp for Z1t,0 and Z2t,0. However, only Z2t,0 yields for the no-jump detection rate

a definite positive growth with higher σjmp. A non-restrictive increase of the jump detection

rate with higher σjmp is also identifiable for the lowest sampling frequency. At the same time

the no-jump detection rate decreases systematically with higher σjmp for both Z1t,0 and Z2t,0.

However, by choosing i = opt the increase of σjmp improves across all sampling frequencies the

detection rate of jump days. At the same time t-nj remains on a stable level.

Scenario 4: Large jumps, high fraction of zero-returns with changing jump frequency

In the final scenario we experiment with changing jump frequency given large jumps and high

fraction of zero-returns, i.e. σjmp = 0.1 and δ = 1 (see table 7). Within the sample, a number of

462, 612, 854, 3007 days with jumps were simulated for the respective λjmp. Interestingly, the

jump frequency does not really influence the overall picture of the jump and no-jump detection

rate across either sampling frequency for both i = 0 and i = opt. Overall, we can summarize

that the no-jump detection rate stays almost unchanged low for 5 minute, medium for 15 minute

and quite high for 30 minute sampling intervals. For the jump detection rate, a reversed order

applies.

So far, we have analyzed in several market scenarios how the conventional and zero-adjusted

estimation perform concerning detecting days with and without jumps. Yet to be mentioned
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Table 7: Scenario 4: Variation of jump frequency λjmp = {0.058, 0.082, 0.118, 0.5}
5min 15min 30min 5min 15min 30min

i 0 opt 0 opt 0 opt 0 opt 0 opt 0 opt

λ = 0.058 λ = 0.082

Z1t,i
t-nj 0.02 0.53 0.47 0.85 0.82 0.92 0.03 0.54 0.47 0.85 0.82 0.92
t-j 1.00 0.89 0.99 0.91 0.96 0.88 1.00 0.87 0.97 0.87 0.93 0.88

Z2t,i
t-nj 0.16 0.74 0.79 0.95 0.94 0.96 0.15 0.74 0.79 0.95 0.94 0.97
t-j 1.00 0.98 0.97 0.95 0.93 0.92 1.00 0.95 0.96 0.91 0.91 0.91

λ = 0.118 λ = 0.5

Z1t,i
t-nj 0.02 0.54 0.47 0.85 0.82 0.92 0.02 0.53 0.47 0.85 0.82 0.92
t-j 1.00 0.89 0.98 0.91 0.96 0.88 1.00 0.86 0.97 0.86 0.93 0.83

Z2t,i
t-nj 0.15 0.74 0.79 0.95 0.94 0.96 0.15 0.74 0.78 0.95 0.94 0.96
t-j 1.00 0.97 0.97 0.94 0.93 0.92 1.00 0.94 0.96 0.90 0.92 0.87

Remarks: Simulated realization of the HMJ for 7650 days with basic parameter specifications, reported in
table 3. Jumps are simulated with σjmp = 0.1 and changing frequency. Fraction of zero-returns is adjusted
with δ = 1. The level of significance α is set to 1%.

is the actual choice of i by the zero-adjusted estimation, given a certain market scenario. For

this, we graph in figure 6 the average of i for each scenario and sampling frequency. The

left, middle and right panel in figure 6 represent 5, 15 and 30 minute sampling intervals. In

scenario 1 and 2 and across each sampling frequency we can observe that i increases for a

higher trading activity. However, an increase in jump intensity negatively influences i, more for

longer sampling intervals. Changes in jump size does not seem to have a clear impact on the

choice of i. Relatively speaking, shorter sampling frequencies tend to choose on average larger

i’s than longer sampling frequencies. This becomes clear when we divide the average i by the

corresponding M , which is 90/30/15 for 5/15/30 minutes sampling. Not explicitly reported in

the graph is the minimum and maximum choice of i. For 5 minutes it amounts to 0 and 43,

for 15 minutes 0 and 13, and for of 30 minutes 0 and 5.

Figure 6: Average i of zero-adjusted estimation
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Scenario 1 Scenario 2 Scenario 3 Scenario 4

δ = 1
σ = 0.0134
λ = 0.058

δ = 0.8
σ = 0.05
λ = 0.082

δ = 0.4
σ = 0.1
λ = 0.118

δ = 0.2
σ = 0.25
λ = 0.5

δ = 0.8
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δ = 0.8
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λ = 0.082

δ = 0.4
σ = 0.1
λ = 0.118

δ = 0.2
σ = 0.25
λ = 0.5

Remarks: In each panel, we graph for scenario 1 to 4 the average of i, selected by the zero-adjusted estimation.
The left, middle and right panel represent 5, 15 and 30 minute sampling intervals.
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3.3.2 Performance

Based on the previously introduced market scenarios, we want to know to what extent the

zero-adjusted estimation performs better or worse than the conventional one, by employing

the overall performance measure d′. The findings are explicitly reported in table 8. Using 5

minute sampling intervals, the zero-adjusted estimation yields for Zt,i and across nearly all four

scenarios a higher performance. One exception is for δ = 1 in scenario 1. In some cases no d′

could be computed, making a direct comparison impossible. A similar persistence in dominance

can be confirmed for 15 minute sampling. Only for one simulated time series featuring less

infrequent trading and small but rare jumps, the conventional estimation of Z2t,0 superiorly

separates jump and no-jump days. The dominance of the zero-adjusted estimation weakens

for the lowest sampling frequency, as it yields performance measures for both approaches quite

close to each other. In scenario 1 it is not always of benefit to implement the zero-adjusted

estimation, whereas in scenario 2 it is. Overall, we can observe that in each scenario and across

each sampling frequency Z2t,i outperforms Z1t,i.

Our Monte Carlo experiment with the application of the zero-adjusted estimation on time

series characterized by infrequent trading yields several interesting results. The approach is

more conservative and works for both Z1t,i and Z2t,i using higher sampling frequency.

4 Case Study: Power Derivative

Supplementary to the results of the Monte Carlo experiment, we proceed in this section with a

concrete empirical implementation. Our intent is to work with a time series which is economi-

cally substantial but is characterized by infrequent trading. Once more we are concerned with

the question, how many price jumps are detected with the conventional estimation choosing

i = 1 in relation to the zero-adjusted estimation, for different sampling frequencies.

4.1 Data

Before we come to the jump analysis, the setup of the dataset, and main issues concerning

measurement procedures will be described in brevity. The dataset includes a unique time series

of initial season and later on quarter electricity forward contracts traded at the Nord Pool

Energy Exchange, covering a time period of more than six years.14 The quarter contract is

14In short, an electricity forward contract tradable at the Nord Pool Energy Exchange is a standardized
contract between two parties agreeing to ”purchase/sell” electricity based on specific predetermined conditions
(e.g. date, price, size). The contract only allows for cash settlement, i.e. the positive or negative difference
between the forward price on the maturity day and the respective hourly Nord System spot electricity price in
the delivery period will be credited either to the buyer or seller. The reader is referred to the Nord Pool Energy
Exchange for further details.
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Table 8: Performance d′ of the conventional and zero-adjusted estimation

Z1t,i Z2t,i

5min 15min 30min 5min 15min 30min
i = 0 i = opt i = 0 i = opt i = 0 i = opt i = 0 i = opt i = 0 i = opt i = 0 i = opt

Scenario 1

δ = 1 0.883 0.772 1.077 1.392 1.381 1.459 0.973 1.401 1.631 1.719 1.672 1.678
δ = 0.8 0.620 0.894 1.329 1.478 1.558 1.463 1.119 1.598 1.727 2.022 1.812 1.755
δ = 0.6 0.862 1.195 1.554 1.742 1.670 1.656 1.665 2.002 2.200 2.243 2.012 1.962
δ = 0.4 1.384 1.620 1.837 1.988 1.860 1.751 2.192 2.661 2.431 2.521 2.231 2.130
δ = 0.2 2.051 2.189 2.240 2.329 2.137 1.994 3.177 3.795 3.067 2.887 2.549 2.257
Scenario 2

δ = 1 - 1.230 1.812 2.055 2.322 2.498 1.550 2.323 2.391 2.860 2.818 2.962
δ = 0.8 1.097 1.542 2.174 2.452 2.482 2.608 1.567 2.662 2.766 3.248 3.024 3.129
δ = 0.6 1.622 1.953 2.431 2.778 2.667 2.823 2.276 3.009 3.141 3.529 3.251 3.309
δ = 0.4 2.080 2.274 2.717 3.071 2.913 2.955 2.945 3.757 3.555 3.960 3.444 3.482
δ = 0.2 2.794 3.242 3.093 3.373 3.124 3.215 3.932 4.532 4.169 4.437 3.781 3.831
Scenario 3

σjmp = 0.0134 - 0.735 1.155 1.342 1.501 1.484 0.921 1.409 1.539 1.728 1.714 1.759
σjmp = 0.05 0.897 1.081 1.623 2.019 2.188 2.396 1.197 2.075 2.281 2.617 2.699 2.670
σjmp = 0.1 0.837 1.280 2.038 2.282 2.618 2.694 1.796 2.490 2.560 2.998 2.939 3.134
σjmp = 0.25 - 1.363 2.373 2.386 2.911 2.862 1.803 2.945 3.028 3.368 3.430 3.621
Scenario 4

λjmp = 0.058 - 1.287 2.296 2.398 2.691 2.608 1.841 2.613 2.757 3.311 3.077 3.159
λjmp = 0.082 0.767 1.216 1.858 2.165 2.401 2.590 1.915 2.252 2.559 2.932 2.927 3.147
λjmp = 0.118 - 1.326 2.078 2.344 2.653 2.600 2.000 2.577 2.740 3.220 3.072 3.164
λjmp = 0.5 0.847 1.154 1.863 2.101 2.385 2.380 1.550 2.224 2.540 2.915 2.907 2.916

Remarks: Simulated realization of the HMJ for 7650 days with basic parameter specifications, reported in table 3. The level of significance α is set to 1%.
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designed for the replacement of the season contract. The first observation in the dataset is

on May 3rd, 2002 and ends with the last observation on June 30th, 2008. In total, the time

series contains 1536 active trading days with tick-by-tick transaction prices. The contracts

are traded from 8:00am to 3:30pm only on weekdays. Its path is graphed in figure 7. We

Figure 7: Season-quarter electricity forward closing prices over the full-sample

Remarks: The solid line graphs closing prices (in e) for the season forward contract (realizations 1-841) and for
the quarter forward contract (realizations 842-1534).

picked this time series due to several reasons. First, the time series is economically substantial.

Speaking in terms of traded contract volume and terawatt hours (TWh), the quarter forward

contract belongs to the most liquid category of derivative contracts. Among the offered variety

of forward contracts, the quarter contract is the most heavily traded one. Furthermore, the

contract is traded on a market place with favorable features: the Nord Pool Energy Market

is the world’s first international power exchange, the leading and most liquid power exchange

in Europe, and the largest power derivatives exchange in the European Union.15 The market

offers both a physical and financial market. For further market specific information, the reader

is referred to a discussion paper of Simonsen, Weron and Mo (2004) and the public appearance

of the Nord Pool Energy Exchange. Besides, arguments concerning the advantages of the Nord

Pool Market with respect to other European markets can be found in Amundsen and Bergman

(2006).

Beyond its economic importance, the time series is still characterized by infrequent trading.

Indicators for trading frequency are the previously introduced fraction of zero-returns for dif-

ferent sampling frequencies (see figure 2), number of trades per day, intertrade duration, and

number of price changes per day. These features are reported in table 9. In table 9 we can

15An increasing importance can also be attributed to the most recent event as on October 22th 2008, NASDAQ
OMX completed the acquisition of Nord Pool International AS.
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ascertain that there is on average a considerable amount of trading activity over a trading

day. But, if you compare the average intertrade duration of this time series with the ones of

the individual stocks in the S&P100 for February 2006, reported in the paper of Bandi and

Russell (2006, pp. 666-667), you can notice that the intertrade duration of the forward is

roughly 3 to 100 times longer. Bearing this issue in mind, we now turn to determine realized

Table 9: Indicators for trading frequency

Mean Max Min
Number of trades p.d. 169 868 7
Intertrade duration 3.16 min 3.64 h 1 s
Number of price changes p.d. 61 267 3

Remarks: Sample from May 2002 to June 2008. The original dataset separates each trade, even trades executed
at the same time. The reported sample intertrade duration does not incorporate trades executed at the same
trading time.

variance in equation (4) over a trading day by summing up squared returns, sampled at a suf-

ficient small equidistant interval length. Problematic at this point is to determine the interval

length because if you choose the sampling interval too small, you receive a highly distorted

realized variance measure due to the dominant influence of microstructure noise. However, if

you choose the sampling interval too long, you lose valuable information for realized variance

but decrease the influence of microstructure noise. For this purpose, Bandi and Russell (2008)

propose an analytical approach to identify an optimal equidistant interval length to compute

log returns. This method determines the interval length by optimally balancing the continu-

ous time arbitrage-free setup underlying the measure for realized variance and the troublesome

effect coming from microstructure frictions. The application of this method to our time series

produced an optimal sampling length of 15 minutes (or M = 30), conformable with the re-

Figure 8: Signature plot

Remarks: Left panel: each triangle-shaped realization in the graph represents the full-sample average of daily
realized variance computed based on different return sampling intervals. Analogously, the quadratic/dagger/dot-
shaped realizations graph the full-sample average of daily bipower variation computed according to equation (6)
for i = 0/1/opt. Right panel: quadratic/dagger/dot-shaped realizations graph the full-sample average of daily
tripower quarticity computed according to equation (10) for i = 0/1/opt.
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sult of the variance signature plot in the left panel of figure 8.16 The actual computation of

interval returns follows in our case the previous tick method, theoretically discussed by Hansen

and Lunde (2003, 2006). As the optimal sampling methodology of Bandi and Russell (2008)

only applies to realized variance and not directly to realized bipower variation, we compute

likewise a bipower variation plot, following the discussion of Andersen, Bollerslev, Frederiksen

and Nielsen (2006). Additionally, we graphed a tripower quarticity signature plot in the right

panel of figure 8. Based on the results of figure 8 we conducted the jump analysis additionally

with 30 minute sampling intervals (M = 15). Out of sensitivity interests we varied also to 5

minute sampling intervals (M = 90).

4.2 Testing for Jumps

In this section we conduct the jump detection analysis using the conventional (i = 1) and

the zero-adjusted estimation (i = opt) for Zt,i, different levels of significance and sampling

interval lengths. In the empirical analysis, we are confronted with the fact that the distribution

of zero-returns is not uniformly distributed. There are trading days in the dataset with an

extremely low trading activity causing, for specific choices of i, zero value for BPt,i, thereby

referring to the illustrative example in table 1. Obviously, if this happens, we have to exclude

the day from the jump analysis. This kind of incident occurred 3 to 19 times, lowest for 30

minute sampling using the zero-adjusted estimation, to highest for 5 minute intervals using the

conventional estimation. Furthermore, the average/minimum/maximum choice of i = opt is

27.6/0/43 for 5 minute, 8.0/0/13 for 15 minute, and 2.9/0/5 for 30 minute sampling intervals.

These results are very similar to our simulation. In table 10 we report the proportion of detected

jump days with respect to all considered trading days. To interpret the empirical results, we

compare them first with a simulation experiment most feasible. One appropriate scenario is

Table 10: Proportion of significant jump days for the conventional and zero-adjusted estimation

α = 1% α = 0.1% α = 0.01%
5min 15min 30min 5min 15min 30min 5min 15min 30min

Z1 t,i

i = 1 0.887 0.436 0.182 0.757 0.248 0.065 0.626 0.156 0.020
i = opt 0.508 0.177 0.077 0.170 0.030 0.020 0.044 0.012 0.006
Z2 t,i

i = 1 0.604 0.170 0.058 0.438 0.088 0.020 0.343 0.058 0.011
i = opt 0.270 0.054 0.031 0.106 0.022 0.010 0.043 0.011 0.005

Remarks: Sample from May 2002 to June 2008.

16Referring to Andersen, Bollerslev, Diebold and Labys (1999), a rough indication for the optimal sampling
frequency is the highest possible sampling frequency at which the corresponding total average of realized variance
does not systematically differ from longer sampling frequencies. Besides they mention that the shape of the
variance signature plot as of the right panel in figure 8 is typical for illiquid financial assets.
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scenario 1 with the parameter specifications δ = 1, σjmp = 0.0134 and λjmp = 0.058, due

to its similarity in distribution of interval returns. Detailed, we compare the empirical ratio

of detected jump days to all trading days in table 10 with the derivable simulated ones in

table 4.17 The empirical analysis likewise yields for i = 1 and α = 1% a high ratio of jump

days, highest for 5 minutes. Moreover conformable with the simulation, Z2t,i is emerging

to be more conservative on detecting jump days than Z1t,i. The application of the zero-

adjusted estimation greatly reduces the ratio of jump days, in line with the simulation results

in table 10. We graphically processed this effect in figure 9, which visualizes in the left panels

the daily test statistic for Z1t,i=1 and in the right panels Z1t,i=opt for 5, 15 and 30 minute

sampling frequencies. Here we can clearly observe to what extent the zero-adjusted estimation

is shifting the daily test statistic downwards over the full-sample. Beyond that, these results

can be understood as an improvement in general precision of the test statistic, referring to the

simulation result of table 8. Interesting is also the comparison of our empirical results with the

ones of Andersen, Bollerslev and Diebold (2007) who analyzed the foreign exchange spot market

of German DM/U.S. dollar, equity futures market of U.S. S&P 500 index, and interest rate

futures market of thirty-year U.S. Treasury yield. In their extensive analysis using 5 minute

sampling intervals, they obtained far smaller ratios. Despite similarities in stylized facts of the

mentioned time series to the electricity forward, this result is not surprising as the electricity

forward is highly exposed to zero-returns. To further grasp the advances of the zero-adjusted

estimation, we briefly analyze the results more closely for the optimal sampling frequency of

15 minutes. Therefore, we initially analyze the characteristic of trading days with Z1t,i=1 ≥ 6.

Referring to the limit consideration of Z1t,i in Section 2.4 (equaling 7.02 for 15 minute interval

returns), we want to know whether days with large Z1t,i values show a high fraction of zero-

returns, and therefore likely yield non-plausible conclusions about jumps. Our analysis shows

that these days are characterized by under average trading activities, i.e. above average fraction

of zero-returns (here: 68.02%). Besides, there is mostly no clear indication of abnormal price

movements, speaking in terms of unusually large interval returns. Second, we track these days

after implementing the zero-adjusted estimation, i.e. we want to know whether they are still

considered as days with jumps. We obtain that most of these days have test statistic values

smaller than the quantile function at α = 0.1% – a result clearly more plausible and militating

in favor of our zero-adjusted estimation. Very similar are the results when we conduct the

analysis for Z2t,i ≥ 6, as the trading days of Z1t,i ≥ 6 coincide with those of Z2t,i ≥ 6. A final

note is that it remains difficult to decide on Z2t,i outperforming Z1t,i, and vice versa.

17To derive the ratio of detected jump days to all trading days in table 4, compute the following equation:
(435 × ‘t-j’ + (7650 − 435)× (1 − ‘t-nj’))/7650.
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Figure 9: Daily Z1t,i statistic for 5, 15, 30 minute intervals and i = 1, opt

Remarks: Upper left and upper right panel are based on 5min sampling intervals, middle left and middle right
are based on 15min sampling intervals, and lower left and lower right are based on 30min sampling intervals.
Left (right) panels graph daily Z1t,i statistic for i = 1 (i = opt). The solid horizontal line graphs in each panel
the level of significance for α = 0.1%.

5 Conclusion

In this article we studied in depth the effect of infrequent trading on an elaborated jump de-

tection methodology for realized variance by Barndorff-Nielsen and Shephard (2004a, 2006).

Analytically, we showed in detail that the considered test statistics are positively distorted if
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a certain level of zero-returns causes daily realized bipower variation to be relatively small to

realized variance, and tripower quarticity to squared realized bipower variation being less or

equal than one. Besides this extreme case, we studied on the one hand how sensitive the limit

results of the test statistics are, and on the other hand to what extent the jump and no-jump

detection rate is influenced by infrequent trading. In a Monte Carlo experiment we proposed

an algorithm to simulate infrequent return series with and without jumps on the basis of the

Heston model in order to discuss the research questions for various market scenarios.

The simulation results show first and foremost that given a certain level of trading activity,

higher sampling frequencies cause a more intense distortion towards overrejection than for

longer sampling frequencies in both test statistics. This effect manifests for lessening trade

activities. In other words, the theoretical limit results of the test statistics are quite sensitive

with respect to a small increase in the fraction of zero-returns. Secondly, we find that the jump

detection rate is primarily negatively influenced by longer sampling intervals and a decreasing

fraction of zero-returns. The detection rate for days without jumps is, on the contrary, pos-

itively affected by longer sampling intervals and a decreasing fraction of zero-returns. Third,

we proposed a more conservative zero-adjusted estimation, which in realistic market scenar-

ios performs better than the conventional estimation, especially for short sampling intervals.

The zero-adjusted estimation, which is based on the theory of Barndorff-Nielsen and Shephard

(2004a, 2006), improves the validity of two considered jump detection test statistics in case of

infrequent trading.

Adjacent to the Monte Carlo study we provide a new empirical investigation using an econom-

ically substantial time series, the most heavily traded electricity forward contract of the Nord

Pool Energy Exchange. Herein, we can corroborate the evidence of a corresponding simulated

market scenario - small and rare jumps - to a considerable extent. Furthermore, we refer to the

reduction in bias using our zero-adjusted estimation.

Our simulation study and empirical analysis raise further interesting research questions. It

would be of interest to work on additional approaches which are robust against zero-returns.

This can be either done based on existing price jump detection methodologies or by introducing

a new method. Moreover of interest is to establish additional plausibility checks for price jumps

in empirical analyses.
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