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1 Introduction

The main tool for analysing economic inequality is the Lorenz curve. In order to
compare inequality between two distributions one draws their Lorenz curves and
concludes that inequality is unanimously higher in one distribution if its Lorenz curve
is everywhere below the curve of the other distribution: any inequality measure which
satisfies the principles of transfer and of anonymity and the Pigou-Dalton principle
will rank the two distributions in the same way as the Lorenz curves (Atkinson 1970).
The Lorenz curve provides, however, only a partial ordering of income distributions.
If the curves cross, no statement is possible unless one is willing to make further
assumptions about the social welfare function.
Population Lorenz curves are rarely known since one rarely has information about

the entire population, and empirical Lorenz curves have to be estimated from sample
data. The statistical theory for the main body of the Lorenz curve, which contains
many observations, is well-developed (Beach and Davidson 1983). However, these
methods do not apply to the tails of the Lorenz curve since the tails contain too few
observations to invoke the usual central limit theorem arguments. However, the tail
behaviour is of considerable interest, and it is precisely in the tails that crossings
often occur in practice. For instance, our experiments with realistically calibrated
parametric models, reported in detail below, suggest that about 45 percent of sample
Lorenz curves intersect in the tails, although the population curves do not. We
propose statistical methods which address such tail behaviour.
For most applied problems, the relevant testable null hypothesis is that the Lorenz

curves to be compared cross at least once. The alternative hypothesis is that there
is Lorenz dominance in either direction. However, if our analysis is built on the
empirical Lorenz curves we will never be able to reject this null hypothesis if the
empirical Lorenz curves actually cross. This is sensible if the crossing occurs in
the middle of the distributions. However, if the curves only cross in the tails, which
contain few observations, outright rejection of the null hypothesis is problematic since
extreme observations exert a large influence.
To overcome this tail behaviour problem we develop a test which is based on ex-

treme value theory and the theory of regular variation. For income distributions we
have in mind, it is reasonable to assume that their tails lie in the domain of attraction
of the Fréchet distribution, i.e. they decay like power functions. Examples of para-
metric models which exhibit this characteristic are the generalised beta distributions
of the second kind (McDonald and Xu 1995), and therefore the special cases of the
Singh-Maddala distribution and the Dagum distribution, all of which fit real world
income data reasonably well (Brachmann, Stich, and Trede 1996). We do not examine
middle heavy and thin tailed distributions, which decay like exponential functions,
such as log-normal distributions, since their associated Lorenz dominance results are
often trivial. Moreover, the fit of parametric models based on power functions to the
tails of real world income data is far superior to the fit of lognormal models.
The domain-of-attraction assumption permits us to estimate extreme quantiles

outside the data range without imposing strong assumptions on the parametric form
of the income distribution. The test procedure based on extreme value theory closes
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a vexing gap in the conventional approach to statistical inference for Lorenz curves.
Using our test we are able to infer in many cases that despite sample tail crossings,
the population Lorenz curves do in fact exhibit Lorenz dominance.
This paper is organised as follows. Section 2 provides a review of the relevant

concepts of extreme value theory. Although our test procedure is not parametric it
is nevertheless useful to investigate the tail behaviour of common parametric income
distributions. Section 3 describes the statistical test for Lorenz curve tails. Section 4
gives two illustrations: a Monte-Carlo simulation and an empirical example using data
on disposable personal income from the Luxembourg Income Study (LIS). Section 5
concludes.

2 Preliminaries

Let X1, . . . ,Xn be an i.i.d. sample from an absolutely continuous (income) distribu-
tion function FX with FX (0) = 0. As the Lorenz curve is scale invariant we assume
with loss of generality that the mean of X is normalized to µX = 1. The upper tail
of FX is denoted by FX (x) = 1− FX (x), and order statistics by X(1) ≥ . . . ≥ X(n).
The Lorenz curve of X is given by

{(p, LX (p)) , 0 ≤ p ≤ 1} with LX (p) =

Z
x≥0

I
¡
x ≤ F−1X (p)

¢
xdFX (x)

where I (.) is the indicator function. Let Y be a similarly defined random variable.
X Lorenz dominates Y if LX (p) ≥ LY (p) for all p ∈ [0, 1] and LX (p0) > LY (p0) for
at least one p0 ∈ [0, 1].
Lorenz dominance can equivalently be expressed as second order stochastic dom-

inance; since E (X) = E (Y ) = 1,

X Lorenz dominates Y ⇐⇒
Z ∞

x

FX (t) dt ≤
Z ∞

x

F Y (t) dt for all x > 0 (1)

Recall that the lower extreme order statistics are asymptotically independent from
the upper extreme order statistics, and both are asymptotically independent from the
sample mean. A well known result concerning the distribution of the maximum is
that if there exist norming constants cn > 0 and dn ∈ R such that

X(1) − dn
cn

D−→ Z,

then Z is distributed as either of the following three distributions: (1) the Gumbel
distribution defined by its distribution function exp (− exp (−x)) for x ∈ R, (2) the
Weibull distribution given by exp (− (−x)α) for x ≤ 0 and 1 otherwise, with α > 0,
and (3) the Fréchet distribution

Φα (x) =

½
0 x ≤ 0

exp (−x−α) x > 0
(2)
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with α > 0. We make the following

Assumption A1: The distribution FX lies in the domain of attraction of the Fréchet
distribution Φα.

For income models we have in mind, the Fréchet distribution is the only relevant
limiting distribution for reasons that will become clearer once we are able to translate
the assumption about the maximum into a condition on the tail of the distribution.
To this end, we use the concept of regular variation. Recall that a function g is called
regularly varying at x0 of index ρ if

lim
x→x0

g (tx)

g (x)
= tρ, t > 0.

The class of all distribution functions with regularly varying tails with parameter ρ
is denoted by Rρ . If ρ = 0, the function is said to be slowly varying.
If the distribution is in the domain of attraction of the Fréchet distribution Φα,

the index of regular variation of the upper tail FX (x) at infinity equals ρ = −α, i.e.

lim
x→∞

FX (tx)

FX (x)
= t−α, t > 0. (3)

Hence, even though the approach is not parametric we can use the model FX (x) =
x−αL0 (x) with L0 ∈ R0 asymptotically for the upper tail of the income distribution.
Assumption A1’: FX satisfies for some α > 0

FX(x) = x
−αL0(x) (4)

for some slowly varying function L0 ∈ R0.
Thus, the tails are heavy in that they decay like power functions. We do not

examine distributions with middle heavy tails which decay exponentially fast, such
as the lognormal distribution.
Similar arguments apply to the lower tail of FX (x) which we assume to be regularly

varying at 0 with index β,

lim
x→0

FX (tx)

FX (x)
= tβ, t > 0. (5)

If FX is regularly varying at zero with β then FX−1 is regularly varying at infinity
with −β:

lim
x→∞

FX−1 (tx
−1)

FX−1 (x−1)
= lim

x→0
FX (t

−1x)
FX (x)

=
¡
t−1
¢β
= t−β

since FX−1 (x
−1) = FX (x). This relationship allows us to deal with the statistical

inference of upper tails only as the same results hold for the lower tails if we consider
the reciprocals.
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The parameter α of regular variation at infinity in (4) can be estimated by Hill’s
estimator given by1

α̂ = H−1
k,n (6)

Hk,n =
1

k

kX
i=1

ln
¡
X(i)

¢− ln ¡X(k)¢ (7)

where k is the number of extreme observations to be included. This estimator was
originally proposed by Hill (1975) as the maximum likelihood estimator of the pa-
rameter α of the Pareto distribution model F (x; c,α) = cx−α (i.e. the special case in
which the slowly varying function in (4) is a constant). However, more general prop-
erties of Hill’s estimator are well-known. For fixed k, the estimator Hk,n converges
in distribution to a gamma distribution as n → ∞. It follows immediately from a
diagonalisation argument that for any F satisfying (4),

√
k (Hk,n − α−1) converges in

law to a normal distribution with variance α−2 provided k tends to infinity sufficiently
slowly. Various theorems exist in the literature which make the last statement more
precise. We present one of them below.2

Theorem 1 Under assumption A1’:

(a) (weak consistency) if k →∞ , k/n→ 0, for n→∞
α̂

p−→ α

(b) (strong consistency) if k →∞ , k/ ln lnn→∞, as n→∞
α̂

a.s.−→ α

(c) (asymptotic normality) assume limx→∞
F (tx)/F (x)−t−α

γ(x)
= t−α t

−ρ−1
−ρ , t > 0 exists

where γ(x) is a measurable function of constant sign. We refer to this as a
“second order condition” with the second order parameter of regular variation
−ρ. Let U (t) = F−1(1 − t−1), and Γ (x) = α−2γ (U (x)) and k → ∞ but
k/n→ 0. If

lim
n→∞

√
kΓ
³n
k

´
= λ ∈ R

then, as n→∞, the estimator α̂ is consistent and asymptotically normal with
√
k (α̂− α)

D−→ N

µ
α3

−ρ− α
λ,α2

¶
. (8)

1Following the preceding remarks, Hill’s estimator is readily adaptable for an estimation of β for
the lower tails, being now based on the k smallest observations X(n−k+1), . . . ,X(n):

β̂ =

Ã
1

k

kX
i=1

ln
³
X−1(n−i+1)

´
− ln

³
X−1(n−k+1)

´!−1
.

2See, for instance Embrechts, Klüppelberg, and Mikosch (1997, chap. 6.4). Theorem 1.c is due
to de Haan and Peng (1999). Another version is given in Haeusler and Teugels (1985). See also
Weissman (1978).
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Asymptotic normality is also obtained by Hall (1982) using a different approach.
He assumes that the true distribution satisfies

F (x) = x−αc(1 + dx−ρ + o(x−ρ)) (9)

asymptotically, an assumption which more stringent than (4). The Fréchet distribu-
tion can be expanded into the above form, i.e. F (x) = cx−α (1− 0.5cx−α + o (x−α)).
If the distribution can be expanded to m+1 terms, so that F (x) = cx−α(1+d1x−α+
.. + dmx

−mα + o(x−mα)), he shows that if k →∞ such that k = o
¡
n2m/(2m+1)

¢
then√

k (α̂− α)→D N (0,α2σ2). In particular, if F (x) = cx−α(1 +O(x−ρ)) as x→∞, if
k →∞ and if k = o

¡
n2ρ/(2ρ+α)

¢
as n→∞, then √k (α̂− α)→ N (0,α2).

Hall’s result and theorem 1.c can be linked by observing that

L (x) = c
¡
1 + dx−ρ +O(x−2ρ)

¢
(10)

is a slowly varying function, L ∈ R0. Moreover,
L (tx)

L (x)
− 1 =

(1 + t−ρdx−ρ +O(x−2ρ))
(1 + dx−ρ +O(x−2ρ))

− 1 (11)

=
¡
t−ρ − 1¢ dx−ρ +O ¡x−2ρ¢

(after expanding (1 + dx−ρ +O(x−2ρ))−1 ) so −ρ in (9) is in fact the second order
variation parameter of theorem 1.c, and the required function is

γ (x) = (−ρ) dx−ρ. (12)

In order to implement the Hill estimator, it remains to choose k appropriately. For
a sample with given size, there is no universal optimal choice, and different methods
have been proposed. One method is a Hill plot: plot the estimate H−1

k,n against k and
select a value of k for which the plot is (roughly) constant. Embrechts, Klüppelberg,
and Mikosch (1997, p. 194) observe that the Hill estimator can perform poorly if the
slowly varying function in (4) is far from being a constant. This poor performance
manifests itself in a volatile “Hill’s horror plot”. It is therefore informative in a
parametric context to examine whether a given parametric model is close to the
Pareto model asymptotically. We examine this point below. If the Hill plot is too
volatile, using a logarithmic scale for k may increase the display space taken up by
H−1
k,n around the true value α. This “alternative Hill plot”, proposed in Drees, de

Haan, and Resnick (2000) is thus given by {(θ,H−1
[nθ],n

), 0 ≤ θ ≤ 1}. We consider both
methods below.
In order to illustrate theorem 1 we discuss some parametric models. The results

will also be of use in the simulation study below in which k will be chosen by min-
imising the mean-squared error of the Hill estimator α̂ = H−1

k,n.

2.1 Pareto distribution

The Pareto model F (x; c,α) = cx−α appears to capture empirically well the upper
tails of actual income and wealth distributions (Pareto 1965). However, it obviously
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performs empirically inadequately for the lower tail and the main body of income
distributions. It suffices to note that the Hill estimator is the maximum likelihood
estimator of the parameter α of the Pareto model.

2.2 The generalised beta distribution of the second kind

This class of distributions, proposed in McDonald and Xu (1995), has density

f (x; a, b, c, d) =
bxbd−1

abdB (d, c)
h
1 + (x/a)b

id+c (13)

where B (·, ·) denotes the Beta function, and nests various distributions as special
cases. For instance, if d = 1 then (13) reduces to the Singh-Maddala distribution,
which captures many actual income distributions, as regards both tails and the main
body (Singh and Maddala 1976). Its tail is given explicitly by F (x; a, b, c) = (1 +
(x/a)b)−c.3 Another example is the Dagum distribution (for c = 1).
To obtain an approximation to the upper tail of the distribution function, expandh

(x/a)b
id+c

/
h
1 + (x/a)b

id+c
to second order and integrate:

F (x; a, b, c, d) = g1x
−bc ¡1 + g2x−b +O ¡x−2b¢¢ (14)

for some constants gi. Thus, the upper tail is regularly varying with parameter
−α = −bc, and using (10) and (11), the second order parameter is −ρ = −b.4
Equation (14) is also in a form which permits direct application of Hall’s result, so
that k of the Hill estimator α̂ = H−1

k,n must satisfy o
¡
n2/(2+c)

¢
to ensure unbiasedness.

To apply theorem 1.c directly, it follows from (12) that γ (x) = (−b) g2x−b. In order
to derive u (.), just consider the first order term in (14) and invert to get u (x) ∝ x1/bc.
Hence, k0.5Γ

¡
n
k

¢ ∝ k0.5+1/cn−1/c, so to obtain no bias we require k = o ¡n2/(2+c)¢.
As regards the lower tail, the usual expansion yields

F (x, a, b, c, d) = g3x
bd
¡
1 + g4x

b +O
¡
x2b
¢¢

for some constants gi. Hence the lower tail varies with parameter β = bd, and the
second order parameter is b. Direct application of Hall’s result shows that k of the
Hill estimator bβ = H−1

k,n must satisfy o
¡
n2/(2+d)

¢
to ensure unbiasedness. The “second

order condition” can be verified in a similar fashion.

3Note that this distribution is of the Pareto type for large x since F̄ (x) = abcx−bc+O(x−b(1+c)).
Thus x needs to be large to avoid Hill’s horror plots for the upper tail estimation. As regards
the lower tail, we observe that F (x) = xb

¡
ca−b +O

¡
xb
¢¢
. Hence a good result for the lower tail

estimation is to be expected.
4Note that the first order result could also have been obtained directly from (13) using the lemmas

in Embrechts, Klüppelberg, and Mikosch (1997, pp. 564) by observing that its numerator is regularly
varying at infinity with parameter bd− 1, the denominator with bd+ bc, so the ratio regularly varies
with −bc− 1, and the tail of the distribution function with −bc.

7



2.3 The lognormal distribution

It is evident from the definition of the lognormal distribution that its tails decay
exponentially fast, i.e. much faster than the class of distribution functions with regu-
larly varying tails given in (4), which decrease like power functions. This distribution
is rapidly varying. We do not examine such middle heavy tailed or thin tailed dis-
tributions in this paper. Note, however, that this is no restriction since the Lorenz
ordering of Lorenz curves of lognormal distributions is trivial.5

3 Statistical inference for Lorenz curve tails

The income distribution functions of X and Y are given by FX and FY , respectively.
Let −αX be the index of regular variation of FX (at infinity) and βX the index of
regular variation of FX at zero, and define −αY and βY for FY similarly.
Extreme upper and lower order statistics are asymptotically independent. Let k

and k denote the number of upper and lower extreme observations, respectively, to
be included in the estimators. Under conditions of Theorem 1.c with k and k growing
sufficiently slowly so that the bias term λ equals 0, the joint asymptotic distribution
of α̂X and β̂X is " √

k (α̂X − αX)√
k
³
β̂X − βX

´ #→ N

µ·
0
0

¸
,

·
α2X 0
0 β2X

¸¶
.

Further, if the samples of X and Y are independent, so are α̂X and α̂Y , and β̂X and
β̂Y .
Since this paper is concerned with inference for tail behaviour of Lorenz curves,

and methods of inference for the main body of the Lorenz curve are well-known, we
assume the following:

Assumption A2: FX Lorenz dominates FY in the middle of the distribution.

Theorem 2: Under assumptions A1 and A2,

X Lorenz dominates Y ⇐⇒ αX ≥ αY and βX ≥ βY . (15)

A proof of the sufficiency statement of the theorem is given in Kleiber (1999),
which we reproduce here for the upper tail only. From (1), Lorenz dominance of
X over Y is equivalent to g (x) =

R∞
x
F Y (t) dt/

R∞
x
FX (t) dt ≥ 1 for all x > 0.

By assumption the tail of F Y is regularly varying with parameter −αY , and its
integral with −αY + 1. Hence g regularly varies with αX −αY , but limx→∞ g (x) ≥ 1
iff αX ≥ αY . The result for the lower tail is established similarly. The necessity
statement is obvious considering assumption A2.

5For instance, if X ∼ N
¡
µ1,σ

2
1

¢
and Y ∼ N

¡
µ2,σ

2
2

¢
, the Lorenz curves for the lognormal

distributions of exp (X) and exp (Y ) cannot cross. They are either identical (σ1 = σ2) or there is
Lorenz dominance.
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To test whether FX Lorenz dominates FY throughout, the null and alternative
hypotheses concerning the tails are

H0 : the population Lorenz curves cross at the bottom or the top

= (αX < αY or βX < βY )

H1 : not H0

= (αX ≥ αY and βX ≥ βY )

Because of theorem 2, rejecting the null hypothesis firmly establishes Lorenz domi-
nance of X over Y . Let kX , kX and kY , kY denote the number of extreme observations
for the estimation of α̂X , β̂X and α̂Y , β̂Y , respectively. A suitable test is based on the
two statistics

T1 =
α̂X − α̂Yq
α̂2X
kX
+

α̂2Y
kY

, (16)

T2 =
β̂X − β̂Yr
β̂2X
kX
+

β̂2Y
kY

. (17)

These test statistics are asymptotically normal, despite the dependence between nu-
merator and denominator, as can be seen from an application of Slutsky’s theorem6.
As T1 and T2 are asymptotically independent and standard normally distributed,

the null hypothesis is rejected when both T1 and T2 are too large. The critical value δ
for significance level γ is chosen such that P (T1 > δ and T2 > δ) ≤ γ under the null
hypothesis. Because of

P (T1 > δ and T2 > δ) = P (T1 > δ)× P (T2 > δ)

= (1− Φ (δ))2

the critical value is given by δ = Φ−1
¡
1−√γ¢ where Φ−1 is the quantile function of

N (0, 1).
If the parameters are on the boundary of H0 the (true) null hypothesis is rejected

(asymptotically) with a probability of γ. If the parameters are inside H0 the error
probability of the first kind is less than γ. The power of the test depends, of course,
on the true parameter values, and we have approximately

P (H0 rejected|αX ≥ αY and βX ≥ βY )

= P (T1 > δ and T2 > δ)

=

1− Φ

δ − αX − αYq
α2X
kX
+

α2Y
kX

×
1− Φ

δ − βX − βYq
β2X
kX
+

β2Y
kX

 .
6Consider τ = (α̂X − α̂Y )

¡
α2X/kX + α2Y /kY

¢−0.5
. It is easily seen that τ has a limiting Gaussian

distribution, but it cannot be implemented since αX and αY are, of course, unknown. Define the ran-

dom sequence ckX ,kY =
¡
α2X/kX + α2Y /kY

¢0.5
/
¡bα2X/kX + bα2Y /kY ¢0.5, which has the property that

ckX ,kY
p−→ 1. By Slutsky’s theorem, T1 = τckX ,kY converges to the same (Gaussian) distribution as

τ . Similarly for T2.
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4 Illustrations

We first present some evidence which reveals that sample Lorenz curves may intersect
in the tails, although the population Lorenz curves do not cross: in our experiments
45% of sample Lorenz curves intersect in the tails. This is precisely the situation
about which we would like to make statistical inference. Using our test we are able to
infer in many cases that despite sample tail crossings, the population Lorenz curves
exhibit statistically significant Lorenz dominance.

4.1 The experiments

We letX and Y have Singh-Maddala distributions defined in (13) with d = 1 such that
X Lorenz dominates Y : X is distributed with densities fX(.; 5, 2.8, 1.7, 1) and Y with
fY (.; 5, 2.4, 1.8, 1). The parameters are chosen such that (a) the Lorenz curves look
similar to curves encountered in empirical applications and (b) the Lorenz curves are
far apart in the middle of the distribution, in order to make assumption A2 sensible.
Comparing the parameters of regular variation at the upper and lower tails, it follows
that the parameter choice is consistent with Lorenz dominance7. The analytical form
of the Lorenz curves, given for the Singh-Maddala distribution by

p 7→ IB1−(1−p)1/c
µ
1

b
+ 1, c− 1

b

¶
where IB (·, ·) is the incomplete Beta function, establishes Lorenz dominance (Schader
and Schmid 1988). The population Gini coefficients are GiniX = 0.2887 and GiniY =
0.3275. Figure 1 displays the theoretical Lorenz curves. X Lorenz dominates Y , but
the corresponding empirical Lorenz curves L̂X and L̂Y may, of course, intersect. A
Monte Carlo simulation with N = 10 000 replications of empirical Lorenz curves esti-
mated from samples of size n = 5000 reveals that the proportion of non-intersecting
L̂X and L̂Y is as low as 0.549, see table 1. In about 45 percent of the cases the
empirical curves cross even though the theoretical curves do not. The reason for this
unsatisfactory performance is the large number of intersections in the tails as shown in
the table (where the lower and upper tails are defined by the 0.05- and 0.95-quantiles,
respectively).

intersecting curves 45.1 %
intersections in lower tail 21.8 %
intersections in upper tail 29.3 %
rejections of H0 62.3%

Table 1: Results of the Monte Carlo simulations: intersections of sample Lorenz
curves when the population Lorenz curve of X dominates that of Y . The lower and
upper tail regions are defined by the 0.05- and 0.95-quantiles.

7Using (15) since, as regards the upper tail, −2.8 × 1.7 < −2.4 × 1.8 and, for the lower tail,
−2.8 < −2.4.
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Figure 1: Theoretical Lorenz curves for the Monte Carlo experiment

We proceed to examine the performance of our test. For each of the N replications
we estimate the parameters αX , αY , βX and βY using the respective Hills’s estimators.
In order to do so, a choice about the number of extreme observations to be used must
be made. Since it is impractical to evaluate a Hill plot for each iteration of the
simulation, we let k and k minimise the mean-squared error of the Hill estimator in
the parametric model on which the simulation is based. Clearly, this simplification is
not possible in empirical applications where the population values are unknown. From
theorem 1.c it is immediate that the mean-squared error of the upper tail parameter
estimate is

MSEα̂ =
1

k

µ
α2 +

α6λ2k,n

(ρ− α)2

¶
and k = argmin

k
MSEα̂

where ρ is the second order regular variation parameter and λ = λk,n is defined in
the theorem.
For the Singh-Maddala distribution it follows that, as regards the upper tail,

α = bc, ρ = −b, and λk,n = (bc)−1 k1/c+1/2n−1/c. For a sample size n = 5, 000
and the Singh-Maddala distribution FX(.; 100, 2.8, 1.7) we obtain kX = 142, and for
FY (.; 100, 2.4, 1.8), kY = 128.
For the lower tail, let k minimise MSEbβ which is defined as above. From section

2.2 we know that α = b, ρ = −b, and λk,n = b−1k3/2n−1. Irrespective of the parameters
of the Singh-Maddala distribution, k = 21/3n2/3 , so for n = 5000 we have kX = kY =
369.
From the estimates α̂X , α̂Y , β̂X , β̂Y and from kX , kX , kY and kY we compute the

statistics (16) and (17). The last row of table 1 shows the proportion of rejections of
the null hypotheses that

H0 : the population Lorenz curves cross at the bottom or the top
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at a significance level of γ = 0.1. We conclude that rejecting the null hypothesis
implies strong statistical evidence in favour of the alternative hypothesis, i.e. that the
population Lorenz curves exhibit dominance. The formal test procedure therefore
improves considerably on merely basing one’s judgement on whether or not the sample
Lorenz curves intersect.

4.2 Empirical examples

The LIS database provides comprehensive and comparable information about house-
hold composition and income for many countries, and has been used for many in-
equality analyses (see e.g. Atkinson, Rainwater, and Smeeding (1994)). We illustrate
the merits of our test procedure by investigating Lorenz dominance relations of four
major economies in 1994: the United States, Canada, Italy and, at the other end of
the inequality spectrum, Germany. The LIS definition of disposable income8 includes
earnings, other factor income, means and non means tested social insurance transfers
and public and private pension transfers; mandatory social insurance contributions
and income tax are subtracted. The left hand side of table 2 reports summary statis-
tics of the income distributions (number of observations, coefficient of variation and
the Gini coefficient).

Country No. obs. CV Gini k k α̂ β̂

Canada (CN) 100207 0.5562 0.2835 101 101 4.83 1.27
Germany (GE) 15084 0.5379 0.2460 123 93 4.16 1.60
Italy (IT) 23725 0.7807 0.3431 255 155 2.83 0.82
USA (US) 162380 0.7286 0.3629 403 403 4.26 0.58

Table 2: Summary statistics of income distributions, number of extreme values, and
Hill estimates

Table 3, reporting the pairwise Lorenz orderings, makes clear that the tails cannot
be ignored: apart from the pair Canada-Italy all other pairs have intersecting sample
Lorenz curves, in most cases the intersection occurs in the tails. Even despite the large
difference between the Gini coefficients, Germany does not appear to Lorenz dominate
the USA. Considering just the Lorenz curve ordinates at deciles, a common practice, is
an improper procedure because the entire sample Lorenz curve needs to be taken into
account. The sample tail crossings invalidate conclusions about Lorenz dominance
based on the limited consideration of deciles. However, this “decile approach” does
yield a positive insight: recognising that this approach focuses only on the main body
of the Lorenz curve, we can use it to test our assumption A2. Our test becomes
appropriate if assumption A2 can be inferred to be met, and sample tail crossings
occur. Table 3 suggests a crossing of the Lorenz curves of Italy and the USA in the
main body of the distribution (more precisely at about p = 0.85). Our test is then
appropriate for all other pairs.

8See http://www.lis.ceps.lu/summary.htm for a detailed description.
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at deciles entire curve
Canada Germany Italy Canada Germany Italy

Germany > x
Italy < < < x
USA < < x x x x

Table 3: Lorenz dominance. Note: “<” means that the row country is dominated by
the column country, “>” the reverse, “x” indicates crossing

In order to test whether the tail crossings are statistically significant we apply
our test procedure. The number of extreme observations to be included into the
estimators are determined by investigating the alternative Hill plots (see appendix).
The right part of table 2 gives the numbers of extremes (k and k) as well as the
resulting Hill estimates of the index of regular variation for the upper tail (α̂) and for
the lower tail (β̂).
Table 4 states the null hypotheses that the Lorenz curves cross, given that there

is Lorenz dominance in the main body of the distribution (hence Italy-US is disre-
garded). Further, we provide the values of the test statistics T1 and T2, the test
results at 10% significance level are reported in the right-most column.

Pair Null hypothesis (Lorenz curves cross) T1 T2 Test result
CN-GE αCN > αGE or βCN > βGE 1.1082 −1.5777 do not reject
CN-IT αCN < αIT or βCN < βIT 3.9195 3.1354 reject
GE-IT αGE < αIT or βGE < βIT 3.2151 4.3479 reject
CN-US αCN < αUS or βCN < βUS 1.0904 5.2965 reject
GE-US αGE < αUS or βGE < βUS −0.2381 6.0340 do not reject

Table 4: Null hypotheses, test statistics, and test results

We conclude that there is strong statistical evidence that Canada Lorenz dom-
inates Italy, Germany Lorenz dominates Italy, and that Canada Lorenz dominates
the USA, even if the tails are taken into account. This demonstrates the success and
usefulness of the proposed test: in many cases we are able to infer that despite sample
tail crossings the population Lorenz curves do, in fact, exhibit Lorenz dominance.

5 Conclusion

The appeal of the Lorenz dominance criterion is undermined by the fact that many
sample Lorenz curves intersect in the tails. Tests for Lorenz dominance which ignore
tails (such as those considering only deciles) are therefore invalidated. Moreover, the
usual inferential methods, based on central limit theorem arguments, do not apply to
the tails of the Lorenz curve since the tails contain too few observations. By contrast,
we have proposed a test procedure, based on a domain of attraction assumption,
which fully takes into account the tail behaviour of Lorenz curves. Our experiments
and empirical examples demonstrate the success and usefulness of the proposed test:
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in many cases we are able to infer that despite sample tail crossings the population
Lorenz curves do, in fact, exhibit Lorenz dominance.
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A Alternative Hill plots

The alternative Hill plots for Canada (CN), Germany (GE), Italy (IT), and the USA
(US) are shown in figures 2 (parameter α for the upper tail) and 3 (parameter β for
the lower tail).

Figure 2: Alternative Hill plots for the upper tail parameter (α)
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Figure 3: Alternative Hill plots for the lower tail parameter (β)
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