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Abstract

In this paper simultaneous con�dence intervals for proportions in arbitrary sam-

pling schemes are constructed. To accomplish this the asymptotic joint distribution

of proportions is derived in arbitrary sampling designs. An application to household

proportions in Germany in 1993 and Monte Carlo simulations are given. It turns

out that conventional estimators fail in some sampling designs while the con�dence

intervals taking into account the sampling design behave well in all instances.
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1 Introduction

A widely used tool for displaying statistical data is the frequency distribution. Studies

on income, poverty or wealth almost always de�ne income (or wealth) classes and report

how large a proportion of the population falls into these classes. Usually, estimates of the

population proportions are derived under the assumption that samples are drawn by sim-

ple random sampling. Mukhopadhyay and Chattopadhyay (1993) give sampling designs

under which spherical con�dence regions for the estimated proportions can be determined.

However, this approach is only suited for special sampling designs. If di�erent sampling

designs are used, this method does not work any longer. Latorre (1993, 1995) derives

estimates when the sampling design is strati�ed random sampling or two-stage sampling.

In this paper Latorre's approach is generalized to arbitrary sampling designs. The goal of

this paper is to estimate population proportions fully exploiting the information which is

given in the sampling design.

Let the income variable be denoted by X with continuous cumulative distribution function

F . De�ne K income classes

[0; a1[; [a1; a2[; : : : ; [ai�1; ai[; : : : ; [aK�1;1[;

The vector p(F ) = (p1(F ); : : : ; pK(F )) with pi(F ) =
R ai
ai�1

dF (x) gives the proportion of

individuals in each class. Let p(Fn) be the corresponding vector of sample proportions of

the observations p(Fn) = (p1(Fn); : : : ; pK(Fn)) where

Fn(x) =
1

n

nX
i=1

1Xi�x

is the empirical distribution function. In in�nite populations the vector of proportions

p(F ) is to be estimated.

In �nite populations let N be the number of elements belonging to the population, and

let N1; : : : ; NK be the sizes of the income classes. In this case the vector of proportions is

given by

p(FN ) =

�
N1

N
; : : : ;

NK

N

�
= (p1(FN ); : : : ; pK(FN )):

This paper establishes simultaneous con�dence intervals for p(FN ) in this setup. The

paper is organized as follows. The next section presents an auxiliary model. Section 3

derives the asymptotic distribution of the estimators. Section 4 deals with simultaneous

con�dence intervals, section 5 gives an empirical application, and section 6 presents Monte

Carlo simulations. The last section concludes.

2 The auxiliary model

Before introducing the auxiliary model, some de�nitions are stated. A �nite population

is denoted by a set U and the elements are identi�ed by labels from 1 to N , i.e., a �nite

population is a set U = f1; : : : ; Ng. A sample ! is a subset of U .
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A sampling experiment will create a sample ! according to a probability distribution P .

This probability distribution fP (!)j! � Ug is called sampling design.

The inclusion probability of �rst order of unit i is de�ned as

�i = P (i 2 !) =
X

f!�U ji2!g

P (!):

Usually in sampling theory the sample ! is obtained according to a speci�ed sampling

design from a �nite population U and the stochastic element in this procedure is the

randomization of the sample ! 2 U . In this paper a superpopulation model will be used.

The �nite population vector xN = (x1N ; : : : ; xNN ) is assumed to be the realized outcome

of a vector random variable XN = (X1N ; : : : ;XNN ) with cumulative distribution function

FN . If X1N ; : : : ;XNN are i.i.d. with continuous cumulative distribution function FX it

yields FN = FN
X . More details on superpopulation models can be found in Cassel et al.

(1977). In superpopulation models the sample ! is assumed to be �x, i.e., the sample !

from a �nite population U is interpreted as follows: The subset ! of labels from U and

the corresponding units in the �nite population are �xed. The stochastic element in this

model is the creation of the �nite population vector xN .

In the following an extension of the superpopulation model, the auxiliary model, intro-

duced by Nyg�ard and Sandstr�om is used (see Sandstr�om (1983), Nyg�ard and Sandstr�om

(1985a, 1985b, 1989)). In addition to the above assumptions a vector of weights associated

with the sample and regarded as deterministic, is considered. Statistical inference in this

model is in coincidence with usual statistical inference. XN is a sequence of r.v. for which

statements on distribution properties are made.

Let T (:) be a stochastic functional. Notice that T (F ) is a parameter and T (FN ) a stochas-

tic variate. Below, asymptotic results for a statistic of the form
p
n(T (Fn)� T (FN )) will

be computed. Because both Fn and FN are random variables con�dence statements are

of the form considered in Royall (1971).

Consider a sequence of populations Ut = f1; 2; : : : ; Ntg such that Nt ! 1 with t ! 1.

For �xed t denote the sample by !t with sample size nt and assume that nt !1 so that

the sample fraction ft = nt=Nt ! f , 0 < f < 1 with t ! 1. When t increases, new

subsets of Ut are chosen such that !t is not necessarily a subset of !t+1.

De�nition 2.1

Let wit be bounded deterministic weights, 8t;8i 2 Ut and

�wt =
1

nt

X
i2!t

wit 6= 0

the mean of the weights. The weighted empirical distribution function (w.e.d.f.) is given

by

F �

nt(x) =
1

nt

X
i2!t

wit

�wt
1Xi�x: (2.1)
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Assumption 2.1

Let wit be de�ned as above. Assume that

max
i2!t

�
wit

�wt

�2

� d2 <1 8t:

If the weights are equal to some positive constant, i.e., wit = c > 0, 8i 2 !t, then F �
nt is

identical to the "ordinary" empirical distribution function Fnt . If wit = ��1it with �it being

the known inclusion probabilities, F �
nt coincides with the Horvitz{Thompson estimator of

the �nite population c.d.f. FNt . Furthermore, choosing wit as some positive constant and

substituting nt and !t by Nt and Ut, respectively, the w.e.d.f. is the �nite population c.d.f.

FNt .

Notice that the empirical distribution function can be written as:

Fnt(x) =
1

nt

X
i2!t

1Xi�x =
1

nt

X
i2!t

�Xi

with

�Xi
(x) =

8<
:

0 Xi > x

1 Xi � x

the Dirac-function, i.e., the one point distribution with mass 1 at point Xi.

3 The asymptotic distribution

Let

p(F �

nt) = (p1(F
�

nt); : : : ; pK(F
�

nt))

with

pi(F
�

nt) = F �

nt(ai)� F �

nt(ai�1)

be the estimator for the vector of proportions.

Lemma 3.1

(Asymptotic distribution of w.e.d.f.) Under assumption 2.1

(i)
q

nt
1+v2t

(F �
nt � F )

asy� B

(ii)
q

nt
1+v2t�ft

(F �
nt � FNt)

asy� B

with v2t the squared coe�cient of variation of the weights

v2t =

n�1t
P
i2!t

(wit � �wt)
2

�w2
t

and B a Brownian bridge, i. e., the distribution of B (F (x)) is normal with E(B (F (x))) = 0,

E(B (F (x)); B (F (y))) = min(F (x); F (y)) � F (x)F (y) and B (0) = B (1) � 1.



Stich: Simultaneous inference for population proportions 5

Proof:

(i):

The proof of (i) can be found in the proof of lemma 5.2 in Sandstr�om (1983). Koul (1970)

proofs the result for independent but not necessarily identical r.v.'s.

(ii):

Because of the uniform distribution of F (X) over the interval [0; 1] for every r.v. the proof

is done for a uniformly distributed r.v.'s. The result can be used for arbitrary, continuous

r.v.'s by inserting F (x) in the formulae (see Shorack and Wellner (1986), p. 99). Using

chapter 3.3 of Shorack and Wellner (1986) shows the result of the lemma. At �rst the

interesting expression can be rewritten as

F �

nt � FNt

= F �

nt � F � (FNt � F )

=
1

nt

X
i2!t

wit

�wt
(�Xi

� F )� 1

Nt

X
i2Ut

(�Xi
� F )

=
1

nt

X
i2!t

wit

�wt
(�Xi

� F ) +
1

nt

X
i2!t

(�ft)(�Xi
� F )� 1

Nt

X
i2Utn!t

(�Xi
� F )

=
1

nt

X
i2!t

�
wit

�wt
� ft

�
(�Xi

� F ) +
1

nt

X
i2Utn!t

(�ft)(�Xi
� F )

=
1

nt

X
i2Ut

rit(�Xi
� F )

with

rit =

8<
:

wit
�wt
� ft i 2 !t

�ft i 2 Utn!t
: (3.1)

This means r
nt

1 + v2t � ft
(F �

nt � FNt) =
1rP

i2Ut

r2it

X
i2Ut

rit(�Xi
� F ); (3.2)

because of

X
i2Ut

r2it =
X
i2!t

�
wit

�wt
� ft

�2

+
X

i2Utn!t

f2t

= nt(1 + v2t ) + ntft � 2ft
X
i2!t

wit

�wt
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= nt(1 + v2t ) + ntft � 2ntft

n�1t
P
i2!t

wit

�wt

= nt(1 + v2t ) + ntft � 2ntft

= nt(1 + v2t � ft):

Furthermore

max
i2Ut

r2it
nt(1 + v2t � ft)

=

max
i2Ut

�
max

��
wit

�wt
� ft

�2
; f2t

��
nt(1 + v2t � ft)

t!1�! 0:

This is true because of assumption 2.1 and ft ! f .

Now look at the empirical process

B t(s) =
1rP

i2Ut

r2it

X
i2Ut

rit(1�i�Git(s) �Git(s)) 0 � s � 1 (3.3)

for arbitrary cumulative distribution functions Git in [0; 1] and uniformly distributed r.v.'s

�i If �i = F (X) then Git are cumulative distribution functions of a uniform distribution

over [0; 1] Thus max
i2Ut

jjGit � Ijj ! 0 for t ! 1 with I the identity in [0; 1]. From this

follows that all conditions of corollary 1 in Shorack and Wellner (1986) p. 109 are ful�lled

and hence B t converges to a Brownian Bridge. Because (3.3) with s = F (x) equals (3.2)

the statement is proved. 2

Lemma 3.2

Under assumption 2.2.1

(i) r
nt

1 + v2t
[p(F �

nt)� p(F )]
asy� N(0;�p)

with

�p =

0
BBBB@

p1(F )(1 � p1(F )) �p1(F )p2(F ) � � � �p1(F )pK(F )

�p2(F )p1(F )
. . .

...
...

. . .
...

�pK(F )p1(F ) � � � � � � pK(F )(1 � pK(F ))

1
CCCCA : (3.4)

(ii) converges additionally ft ! f for t!1r
nt

1 + v2t � ft
[p(F �

nt)� p(FNt)]
asy� N(0;�p) (3.5)

with �p as in (3.4).
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Proof:

A �nite vector of points from a Brownian Bridge is multivariate normal. Application of

the �{method (see Rao (1973), p. 387) yields the examined random vector. The elements

of the covariance matrix are

E((B (F (aj ))� B (F (aj�1)))
2) = pj(F )(1 � pj(F ))

and for j < k:

E((B (F (aj ))� B (F (aj�1)))(B (F (ak ))� B (F (ak�1)))) = �pj(F )pk(F ):

2

Using lemma 5.1 in Sandstr�om (1983) a consistent variance estimator for �2p and �p is

given by changing F to F �
nt because F

�
nt converges in probability to F . The estimator for

�p is

�̂�

p =

0
BBBB@

p1(F
�
nt)(1� p1(F

�
nt)) �p1(F �

nt)p2(F
�
nt) � � � �p1(F �

nt)pK(F
�
nt)

�p2(F �
nt)p1(F

�
nt)

. . .
...

...
. . .

...

�pK(F �
nt)p1(F

�
nt) � � � � � � pK(F

�
nt)(1� pK(F

�
nt))

1
CCCCA : (3.6)

For �xed sample size n de�ne n� = (1 + v2 � f)=n and 	 = n��p: From this de�nition

it follows that the variance of p(F �
nt) is 	, and a consistent estimator of 	 is given by

	̂� = n��̂�
p. Furthermore, for large samples equation (3.5) is equivalent to p(F �

nt) �
N(p(FN );	).

Notice that the distribution of p(F �
nt) is K{variate singular multinormal since the compo-

nents of the random vector p(F �
nt) add to unity, because of

KX
i=1

pi(F
�

nt) =

KX
i=1

�
F �

nt(ai)� F �

nt(ai�1)
�
=

KX
i=1

F �

nt(ai)�
KX
i=1

F �

nt(ai�1)

= F �

nt(1)� F �

nt(0) = 1� 0 = 1:

4 Simultaneous inference

With the result of the above section con�dence intervals can be built for the unknown

population proportions pi(FN ). This section follows the work of Latorre (1995). The

results can be applied directly to the estimation problem dealt with in this paper be-

cause of the asymptotic normality of the proportion estimator. Latorre (1995) gives three

types of simultaneous con�dence intervals: the Sche��e-type, the Bonferroni-type and the

Sid�ak-type. Thomas (1989) carries out a Monte Carlo simulation for various simultaneous

con�dence intervals using data from a two{stage cluster sample. He found that Bonfer-

roni intervals based on transformations of the estimated proportions behave best. Because
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the development of the intervals can be found in the articles only short sketches of the

derivation and the intervals are given here.

Let 1K:i be a vector of length K whose elements are zero except the i{th which is equal to

one. Furthermore, let p�i and p+i be the lower and upper limits of the con�dence interval

for pi(FN ) and p0(F
�
nt) the vector consisting of the �rst K � 1 elements of p(F �

nt) with

a nonsingular multinormal distribution and mean vector p0(FN ) whose elements are the

�rst K�1 elements of p(FN ). The dispersion matrix is 	0 which is consistently estimated

by the nonsingular matrix 	̂�
0, being the (K � 1) � (K � 1) upper-left sub-matrix of 	̂�.

Following Latorre (1995) the (1 � �){simultaneous con�dence intervals examined by the

classical Sche��e projection method are.

10K�1:ip0(FN ) 2 10K�1:ip0(F
�

nt)�
q
�2K�1;1��1

0

K�1:i	̂
�
01K�1:i (4.1)

i = 1; : : : ;K � 1 and

pK(FN ) 2 p(F �

nt)�
q
�2K�1;1��	̂

�

KK (4.2)

where �2l;� is the �-quantile of a �2-distribution with l degrees of freedom and 	̂�

KK the

K-th diagonal element of 	̂�. The intervals obtained in (4.1) and (4.2) are conservative.

Shorter intervals can be computed using the Bonferroni inequality. The simultaneous

con�dence intervals of Bonferroni-type are

10K:ip(FN ) 2 10K:ip(F
�

nt)� z�=2K

q
10K:i	̂

�1K:i i = 1; : : : ;K (4.3)

where z� is the �-quantile of the standard normal distribution.

The Sid�ak-type simultaneous con�dence intervals are given by

10K:ip(FN ) 2 10K:ip(F
�

nt)� z(1�(1��)1=K )=2

q
10K:i	̂

�1K:i i = 1; : : : ;K: (4.4)

These intervals are shorter than the Bonferroni-type intervals. The di�erent lengths can

be explained by the di�erent critical values. At usual levels of � the following inequality

holds q
�2K�1;� > jz�=2K j > jz(1�(1��)1=K )=2j:

For a suitably smooth function g, g(pi(F
�
nt)) will be asymptoticallyN(g(pi(FN )); (g

0(pi(F )))
2	̂�

ii).

Bonferroni intervals can be obtained by inverting the corresponding intervals on the

g(pi(FN ))'s:

10K:ip(FN ) 2 g�1
�
g(10K:ip(F

�

nt))� z�=2kg
0(10K:ip(F

�

nt)

q
10K:i	̂

�1K:i

�
(4.5)

(see Thomas (1989), chapter 3.4). Suitable choices for g are, e.g., g1(y) = ln(y) or the logit

g2(y) = ln(y=(1 � y)). For two stage cluster sampling Thomas (1989) shows that these

intervals with tr�1;1��=2k, the 1��=2k{Quantile of the Student{t{distribution with r� 1

degrees of freedom and r the number of clusters, instead of z�=2k are the best simultaneous

con�dence intervals. Because arbitrary sampling designs are considered in this note this

transformation will not taken into account. Further investigations for special sampling

designs are necessary.

The limits of the simultaneous con�dence intervals can be found in the following table
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Table 1: Simultaneous con�dence intervals for population proportions

Sche��e p�i pi(F
�
nt)�

r
�2K�1;1��

1 + v2 � f
n pi(F �

nt)(1� pi(F �
nt))

p+i pi(F
�
nt) +

r
�2K�1;1��

1 + v2 � f
n pi(F �

nt)(1� pi(F �
nt))

Bonferroni p�i pi(F
�
nt) + z�=2K

r
1 + v2 � f

n pi(F �
nt)(1� pi(F �

nt))

p+i pi(F
�
nt)� z�=2K

r
1 + v2 � f

n pi(F �
nt)(1� pi(F �

nt))

Sid�ak p�i pi(F
�
nt) + z(1�(1��)1=K )=2

r
1 + v2 � f

n pi(F �
nt)(1 � pi(F �

nt))

p+i pi(F
�
nt)� z(1�(1��)1=K )=2

r
1 + v2 � f

n pi(F �
nt)(1 � pi(F �

nt))

transf. p�i g�1

 
g(pi(F

�
nt)) + z�=2Kg

0(pi(F
�
nt))

r
1 + v2 � f

n pi(F �
nt)(1� pi(F �

nt))

!

Bonferroni p+i g�1

 
g(pi(F

�
nt))� z�=2Kg

0(pi(F
�
nt))

r
1 + v2 � f

n pi(F �
nt)(1� pi(F �

nt))

!

5 Application to the Socio{Economic{Panel data

The German Statistical Yearbook 1995 gives the number of households in 1993 classi�ed

by their monthly household net income (see Statistisches Bundesamt (1995), p. 554, table

21.7.2). From this table the household proportions (i.e., pi) in the di�erent income classes

can be computed. To show the di�erent behaviour of the estimates based on the sampling

design and the "usual" proportion estimates, this paper examines these estimates and

simultaneous con�dence intervals of the household proportions which fall into the di�erent

net income-classes in Germany in 1993 using the German Socio{Economic{Panel (SOEP)

data. The panel participants are interviewed annually; the data are recorded on the

household level as well as on the individual level.

The panel includes a large section on income and earnings in the preceding year. The

main respondent of a household is asked in each wave of the SOEP: "If you add all: What

is the total monthly amount of the household net income of all household members today?

Please report the monthly net amount, i.e. the amount after tax and social insurance.

Regular payments like aid for dwelling and children, student loans, alimony payments, etc.

add to the amount! In the case of "I don't know", please estimate the amount".
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Notice that the "usual" proportion estimates are

pi(Fn) =
ni

n
i = 1; : : : ; k

with ni the number of observations which fall in class i. Simultaneous con�dence intervals

are given in Latorre (1995). They are

pi(F ) 2 pi(Fn)�
r
�2K�1;1��

1

n
pi(Fn)(1� pi(Fn)) i = 1; : : : ;K (5.1)

and

pi(F ) 2 pi(Fn)� z�=2K

r
1

n
pi(Fn)(1 � pi(Fn)) i = 1; : : : ;K: (5.2)

The sample of the SOEP consists of three subsamples with slightly di�erent sampling

designs. The basic design in all subsamples is a two-stage sampling with systematic

sampling and sampling probability proportional to size. More information can be found in

Rendtel (1995), pp. 23{25. The inclusion probabilities of the di�erent households are given

in the SOEP data. With this information the sampling design can be taken into account

by using Horvitz-Thompson-estimates (HT-estimates) for the household proportions by

setting the weights in (2.1) to ��1i . For the transformed Bonferroni intervals g1(y) = ln(y)

is used.

Table 2: Proportions of household by income classes, "usual" point estimates

and 95% con�dence intervals 1993

income classes pi pi(Fn) 95% con�dence intervals

in DM in % in % with (5.1) with (5.2)

<1200 8.68 6.68 [5.45,7.91] [5.81,7.55]

1200 - 1800 13.32 10.11 [8.62,11.60] [9.06,11.15]

1800 - 2500 18.64 18.55 [16.63,20.47] [17.20,19.90]

2500 - 3000 11.15 13.25 [11.58,14.92] [12.07,14.43]

3000 - 4000 17.94 22.10 [20.05,24.15] [20.66,23.54]

4000 - 5000 12.33 14.52 [12.78,16.26] [13.30,15.75]

5000 - 6000 7.29 7.10 [5.84,8.37] [6.21,8.00]

6000 - 10000 8.57 7.06 [5.79,8.32] [6.17,7.95]

>10000 2.08 0.63 [0.24,1.02] [0.35,0.90]

Table 3: Proportions of household by income classes, HT{point estimates and

95% con�dence intervals 1993

income classes pi pi(F
�

nt
) 95% con�dence intervals

in DM in % in % Sche��e Bonferroni Sid�ak tr. Bonferroni

<1200 8.68 9.35 [7.27,11.44] [7.88,10.82] [7.89,10.82] [7.99,10.94]

1200 - 1800 13.32 12.52 [10.15,14.89] [10.85,14.19] [10.86,14.19] [10.96,14.31]

1800 - 2500 18.64 19.45 [16.62,22.29] [17.46,21.45] [17.46,21.44] [17.56,21.55]

2500 - 3000 11.15 11.91 [9.59,14.23] [10.28,13.54] [10.28,13.54] [10.38,13.66]

3000 - 4000 17.94 18.90 [16.10,21.71] [16.93,20.88] [16.93,20.87] [17.03,20.98]

4000 - 5000 12.33 13.33 [10.90,15.77] [11.62,15.05] [11.62,15.04] [11.72,15.16]
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income classes pi pi(F
�

nt
) 95% con�dence intervals

in DM in % in % Sche��e Bonferroni Sid�ak tr. Bonferroni

5000 - 6000 7.29 6.95 [5.13,8.77] [5.67,8.23] [5.67,8.23] [5.78,8.36]

6000 - 10000 8.57 6.90 [5.09,8.72] [5.62,8.18] [5.63,8.18] [5.74,8.31]

>10000 2.08 0.68 [0.09,1.26] [0.26,1.09] [0.26,1.09] [0.37,1.25]

Intervals in bold print cover the value given by the o�cial statistics. It can easily be seen

that the con�dence intervals of the HT-estimates cover most of the o�cial proportions

while the "usual" estimates only cover the true values in two out of nine income classes.

6 Monte Carlo simulations

In this section Monte Carlo simulations are carried out in order to test the behaviour of

the design based estimators. HT-estimators are used for the simulations.

There are many possible candidates as population income distribution functions. Func-

tional forms which capture empirically observed income distributions more or less well

are, e.g., the Lognormal, Pareto, Gamma, Singh-Maddala distribution, Generalized Beta

of �rst and second kind etc. (see e.g. Brachmann et al., 1996, for a discussion). Monte

Carlo simulations for the Lognormal (LN) and the Singh-Maddala (SM) distribution are

performed. The former has two parameters, LN(�; �2), and distribution function

F (y) =

Z y

�1

1p
2��t

exp

 
�1

2

�
ln(t)� �

�

�2
!
dt:

A nice property of the Lognormal is that the shape of the distribution (and thus the

inequality) is entirely driven by the parameter �2. The simulations were carried out with

parameters � = 1 and �2 = 0:25 (�tting a Lognormal distribution to German data would

bring about a parameter estimate for �2 of roughly 0.28).

While the advantage of the Lognormal distribution is its dependency on just one parameter

the advantage of the Singh-Maddala distribution (SM) is its good �t to real world data.

It is a three parameter distribution, SM(a; b; c), but only b and c are shape parameters.

The distribution function is

F (x) = 1� 1

(1 + axb)c

Two sets of parameters are used for the SM. The �rst one (SM1), namely a = 100, b = 2:8

and c = 1:7, roughly mirrors the German household income distribution. The second one

(SM2) is an extremely unequal distribution with arbitrarily chosen parameters, a = 100,

b = 2 and c = 0:7.

From each distribution a �nite population of 10000 observations is drawn. 10 classes are

created and the true proportions for the populations are computed. The values can be

found in table 4. For the Monte Carlo simulations 4 sampling designs are considered:

� Simple random sampling without replacement (SRS). The inclusion probabilities are:

�i = n=N 8i 2 U .
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� Poisson sampling: For each element of the population a Bernoulli-experiment with

parameter �i is carried out. If the realization is 1 the i-th element enters the sample.

This sampling design produces samples with random sample size. For this sampling

design the inclusion probabilities are �i = �i

� Strati�ed sampling with 2 classes (strat. 1): The �rst class contains the 25% smallest

observations. The sampling design within the classes is SRS. The sample size for

each class is n=2.

� Strati�ed sampling with 5 classes (strat. 2): The �rst class contains the 50% smallest

observations, the second class the next 25%, the third class 12.5% the fourth class

6.25% and the last class 6.25%. The sampling design within the classes is SRS. The

sample size for each class is n=5.

For each sampling design 10000 samples with sample size n = 500 and n = 1000 are

drawn from the three �nite populations. The coverage probabilities for the simultaneous

con�dence intervals for � = 0:05 are given in tables 5 { 7.

Table 4: Classes and true proportions for the Monte-Carlo simulations

LN SM1 SM2

[ai�1; ai[ pi (in %) [ai�1; ai[ pi (in %) [ai�1; ai[ pi (in %)

[0; 1[ 2.41 [0; 0:05[ 3.50 [0; 0:1[ 38.78

[1; 2[ 23.54 [0:05; 0:10[ 18.26 [0:1; 0:2[ 28.07

[2; 3[ 31.12 [0:10; 0:15[ 27.09 [0:2; 0:3[ 12.55

[3; 4[ 20.18 [0:15; 0:20[ 22.55 [0:3; 0:4[ 6.28

[4; 5[ 11.40 [0:20; 0:25[ 13.05 [0:4; 0:5[ 3.56

[5; 6[ 5.62 [0:25; 0:30[ 6.97 [0:5; 0:6[ 2.36

[6; 7[ 2.77 [0:30; 0:35[ 3.73 [0:6; 0:7[ 1.46

[7; 8[ 1.46 [0:35; 0:40[ 1.84 [0:7; 0:8[ 1.15

[8; 9[ 0.63 [0:40; 0:45[ 0.96 [0:8; 0:9[ 0.79

[9;1[ 0.78 [0:45;1[ 1.60 [0:9;1[ 5.00

Table 5: Coverage probabilities (in %) of the simultaneous 95%{con�dence

intervals for LN

CI-type sampling design

n = 500 n = 1000

SRS Poisson strat. 1 strat. 2 SRS Poisson strat. 1 strat. 2

Sche��e 93.03 92.13 77.19 96.05 97.09 97.86 94.41 98.93

Bonferroni 79.42 77.57 71.34 94.72 85.78 87.30 81.96 95.51

Sid�ak 79.42 77.39 71.23 94.72 85.78 87.15 81.96 95.51

trans. Bonf. 89.47 87.99 74.25 96.58 96.10 94.08 90.81 97.29

(5.1) 99.08 98.84 00.00 00.00 98.27 98.12 00.00 00.00

(5.2) 83.85 86.13 00.00 00.00 89.85 90.23 00.00 00.00
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Table 6: Coverage probabilities (in %) of the simultaneous 95%{con�dence

intervals for SM1

CI-type sampling design

n = 500 n = 1000

SRS Poisson strat. 1 strat. 2 SRS Poisson strat. 1 strat. 2

Sche��e 97.10 95.31 91.74 97.47 99.28 98.58 97.78 98.83

Bonferroni 84.23 84.30 81.80 90.95 89.73 90.01 84.45 95.73

Sid�ak 84.23 84.10 81.80 90.95 89.69 89.82 84.41 95.73

trans. Bonf. 94.27 93.07 89.05 96.72 94.91 94.25 93.03 97.15

(5.1) 97.82 98.28 00.00 00.00 99.55 99.54 00.00 00.00

(5.2) 86.02 86.68 00.00 00.00 94.27 94.00 00.00 00.00

Table 7: Coverage probabilities (in %) of the simultaneous 95%{con�dence

intervals for SM2

CI-type sampling design

n = 500 n = 1000

SRS Poisson strat. 1 strat. 2 SRS Poisson strat. 1 strat. 2

Sche��e 95.23 95.04 84.91 100.00 98.17 98.42 93.92 100.00

Bonferroni 80.79 79.00 70.72 99.62 88.34 87.42 83.18 99.77

Sid�ak 80.79 78.89 70.72 99.56 87.83 87.23 82.57 99.77

trans. Bonf. 93.39 91.96 82.36 99.58 95.55 94.38 91.65 99.73

(5.1) 97.10 97.27 00.00 00.00 98.40 98.54 00.00 00.00

(5.2) 81.37 83.99 00.00 00.00 89.48 91.99 00.00 00.00

It can be seen that the Sche��e-intervals are conservative and exceed the nominal cov-

erage level in 16 out of 24 cases, while the coverage probabilities of the Bonferroni and

Sid�ak-intervals are almost always too small. The transformed Bonferroni-intervals behave

better than the former two. Their coverage probabilities are much closer to 95% than the

probabilities of the Bonferroni and Sid�ak-intervals. Furthermore they are less conservative

than the Sche��e-intervals.

The "usual" con�dence intervals only give good results for the SRS and Poisson sampling

designs. In these cases they show the same behaviour as the Sche��e and Bonferroni-

intervals, but have always higher coverage rates. In the SRS design the similar behaviour

is due to the fact that the only di�erence of the estimators is the lack of the factor �f
in (5.1) and (5.2). In strati�ed sampling both intervals fail. The coverage rate is 0 in all

Monte Carlo simulations.

In small sample sizes the Sche��e and transformed Bonferroni-intervals give good results,

while for n = 1000 the trans. Bonferroni-intervals are the better choice as they are less

conservative. This is true for the three populations considered here. The Bonferroni and

Sid�ak-intervals have coverage probabilities which are too small in most cases (except strat.

2).

The "usual" intervals should only be used for the sampling designs SRS and Poisson-

sampling. However, in these designs the design based intervals can be used, as well,

because they are slight transformations of the "usual" intervals.
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The Monte Carlo simulations show that the design based con�dence intervals behave

reasonably well in a range of sampling designs of practical interest. Thus they should

preferred to the "usual" intervals.

7 Conclusion

As can be seen in this paper the joint distribution of proportion estimates is asymptoti-

cally multinormal in a quite general framework. With this result simultaneous con�dence

intervals can be given for arbitrary sampling designs. Now it is possible to take the addi-

tional information into account which is given by knowing the sampling design. So better

estimates and con�dence intervals can be computed. Surely, this can only be done if there

is some information about the sampling design. The example in section 5 shows that the

sampling design based estimators behave much better than the "usual" estimators. Hence

the former estimators should be used for the SOEP data. This result is supported by

Monte Carlo simulations, which show that the sampling design based estimators behave

better in strati�ed sampling where the "usual" estimators fail completely. Further research

has to be done whether the design based estimates are better in other situations as well.
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