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1 Introduction

The recently observed increases in both earnings and income inequality in most de-
veloped countries has brought inequality back on the agenda of applied research
(Atkinson, Rainwater, and Smeeding 1994, Gottschalk and Smeeding 1998). Whether
the observed movements are indeed statistically significant is a somewhat neglected
question. Standard methods of statistical inference for inequality (or poverty and
mobility) measures are based on the assumption that income is an independent and
identically distributed random variable (Beach and Davidson 1983, Cowell 1998a,
Cowell 1998b, Hoeffding 1948). Unfortunately, income data in most empirical prob-
lems are neither identically nor independently distributed. The i.i.d. assumption
often fails in practice because of three types of violations. First, the assumption of
identical distributions is violated because inclusion probabilities are not identical for
all individuals. Second, temporal dependencies occur in panel data because the same
person is observed at different points in time and her incomes are correlated. Third,
contemporaneous dependencies arise because income receivers live in households and
labour supply decisions, for instance, are taken jointly.

This paper develops distribution-free methods in the presence of such contempo-
raneous dependencies, and thereby provides a complement to two recent advances in
statistical inferences for inequality indices, i.e., the treatment of non-identical sample
inclusion probabilities (Sandstrém 1987) and functional or temporal dependence of
income data for Lorenz curves (Davidson and Duclos 1997).

The considerations are important since inferences based on the wrong data gener-
ating mechanism are uninformative as can be seen in the following artificial example:
assume that we are interested in the mean income of individuals, that all households

consist of two persons, and that income is distributed as
(X17X2) »>N (:U’? E)

with unknown g but known > 3
1
n-§ "¢
p 1
The data are sampled on the household level, i.e., the sample is clustered. From

each household ¢ = 1,...,n we have a pair of incomes (X1, X;2). Obviously, mean
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individual income can be estimated by X = 3?—17“'3 (Xi1 + Xi2). To obtain a confi-
dence interval for X we need its variance Var );(: ._Wrongly neglecting the possible
intra-household gep,endence would result in Var X = 1/(2n), whereas the variance
actually is Var X = (14 p)/(2n). Note that whether the variance is smaller or
larger than in the i.i.d. case depends on the kind of correlation. The more unequal
the intra-household distribution the smaller the variance.

This paper is organized in the following way: Section 2 introduces the notation
and gives a brief overview over standard statistical inference for inequality measures
when the observations are in fact i.i.d. Section 3 is the main contribution of this
paper: we develop nonparametric methods of statistical inference when there are
contemporaneous dependencies. We consider both scalar measures of inequality (mo-
ments based indices and the Gini coefficient) and Lorenz curves. Section 4 compares
our estimates with the standard i.i.d. case by means of Monte-Carlo simulation. An

empirical illustration using earnings data from the German Socio-economic panel is

also given. Finally, section 5 concludes.

2 Independent observations

This section briefly recalls the standard theory of inequality measurement and infer-
ences based on i.i.d. income data. We examine members of two classes of measures,
namely moments-based measures such as the Generalised Entropy index and quantile-
based measures such as Lorenz curves and the Gini coefficient.

Let X represent the random variable income with distribution F(z), giving the
proportion of the population with income less than, or equal to, . X;, i =1,...,n
denotes an i.i.d. sample of size n from F'. It is this assumption which will be aban-
doned in subsequent sections. The empirical distribution function of X is defined
as

N 1

Fo(z) =

- 1(X; - 2)

i=1

where 1(c) is an indicator function equal to 1 if condition c¢ is met and 0 otherwise.
Let I be a moment-based inequality measure such as a Generalized Entropy mea-

sure or Atkinson’s inequality index. Let g;(X), 7 = 1,..., K be transformations of the

random variable, and 1(g;(X)) their expectations. For ease of notation let y denote
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the column vector (u(g:(X)),...u(gx(X))). All members of the class of moment-
based inequality measures can be written as I = I(u). For instance, the Generalised
Entropy index GE,(F') with sensitivity parameter o 6 0, 1 is defined by

1 (X))

o8 = e ) W

with the transformation functions ¢;(X) = X and ¢2(X) = X%, ie., K = 2.

The unbiased sample estimator of u(g;(X)), denoted by fi(g;(X)), is
Z . 1%
n,_

ﬂ(gz(X)) = gz(l')an(l') = gi(Xj)> i=1,... K. (2)

1
The method-of-moments estimator of the class of moments-based measures is I =
I(j1). Its asymptotic distribution is easily derived by the Cramer-Wold-Device (Ser-
fling 1980) and the delta method (Cramér 1946). For n ! 1 the moments are
jointly normally distributed, pﬁ(ﬂ in) i N(0,%) with covariance matrix ¥ whose

elements are

Vi = wgi(X)g; (X)) & p(g:(X))pulg; (X)), fori,j=1,..., K. (3)

This covariance matrix can be estimated consistently by replacing the population
moments p by their empirical counterparts fi.
Since the moments are asymptotically normally distributed the inequality estima-

tor itself, being a function of the moments, is normally distributed as well:

A A 1, A 1

N ol oI
I'il)§ N 0, — ¥ — 4
( 1 )l 78,” a,u ()

P
where (0I/0u) is the gradient of I. Both the covariance matrix and the derivative
of I at the true value of y are obviously unknown. However, according to Slutsky’s
theorem the asymptotic distribution of Iis unchanged if we replace ¥ and the partial
derivatives by consistent estimates.

As Sandstrom (1987) has demonstrated, taking into account different inclusion
probabilities is straightforward. However, in order to concentrate on the issue of
contemporaneous dependence, we will assume in subsequent sections that the data

are identically distributed. The modifications necessary to take nonidentical inclusion

probabilities into account are obvious.



The Lorenz curve depicts the cumulative income share of the least well-off fraction
of the population. Let x, and p denote a quantile of the income variable and its
population share, z,, = F'~*(p). A coordinate of the Lorenz curve is a pair (p; ®(p; F'))

where
1 pr
‘P(p,F):—M(X) . rdF () (5)

and p(X) is the population mean. The consistent estimator is obtained by using
the sample analogues ®(p; Fn), whose asymptotic normality, shown amongst others
in Beach and Davidson (1983), follows from the fact that order statistics are asymp-
totically normally distributed around the respective population quantiles. For the
variance estimator see Beach and Davidson (1983).

The last inequality measure to be examined is the Gini coefficient, perhaps the

most well-known quantile-based measure. The Gini coefficient is defined as

o 0(F)
Gini(F) = 201 (X) (6)

where 6(F) = R ch i y§IF(z)dF(y). Hoeffding (1948) shows that an unbiased
estimator of §(F) is[n/(n j 1)]8(F,) which is a member of the class of U-statistics. A
limit theorem (the delta-method for U-statistics) implies that the sample estimator of
the Gini coefficient is asymptotically normal. For the cumbersome variance expression

see Hoeffding (1948).

3 Contemporaneous Dependencies

The usual variance estimators are based on the assumption that the data are in-
dependent and identically distributed. Unfortunately, this assumption often fails in
practice, since, for instance, labour supply decisions are taken jointly within house-
holds. Ignoring such contemporaneous dependencies will produce wrong inferences.

In this section we propose variance estimators which allow for such dependencies.

3.1 Moment-based inequality measures

Let X; be the income of individual ¢. Each individual belongs to a (unique) household,

the households may have different sizes. Let the index sets Hy,, h = 1,..., H denote



the households, H being the number of households. JHj,Jis the size of household
h, the total number of persons in the sample is n = P nHrJ With such contem-
poraneous dependencies X;, i = 1,...,n is — if ordered by households — a sequence
of m-dependent random variables with m = m}?xflhj Using a limit theorem for
m-~dependent processes (Spanos 1986, p. 179), the Cramer-Wold-Device and the
delta-method give that

A 1, A 1
ol ol

p— .1
-z oy 2
" n Ou ol

(b ip) @ NO,X) and Var(l) = (7)

as in (4) where [ is the inequality measure.

In order to derive the asymptotic variance of the inequality index we only need to
know the covariance matrix ¥ of the empirical moments i = (ii(g1 (X)), ..., fi(gx (X)))’
which is

¥ =Cov(jr) = E(ift') & p', (8)
since fi is unbiased. For ease of notation, abbreviate g,(X) by g, and g,(X;) by gp-
Consider a typical element (p, q) of the (K £K)-matrix E(af)

2K 1 0 13
R R 1 X 1 X
E(i(gp)i(gg) = E4 ~ O @E 9qi™®
1 J
1 X X 1 X X X
= E (9pi9q:) + E (9pi9q5)
h i€Hp h i€Hp jeHy,j#i

(i W E)

11(gp) 11(94) (9)

The first term in (9) refers to all individuals, neglecting any dependencies. The

second term in (9) may be written as

X X X magelnl X X
E (9pigqi) = E (9pi9ai)
h i€Hy jEH ), j#i s=1  hi|Hy|=si€Hy jEH), j#i
where s is an index for household size. Assuming that the (theoretical) expectation

E (gpigq5) =: ,u](f;m is constant across households of equal size, the last equation may

be written as

X X
Hpai ™ (10)
s it
where n(®) is the number of households of size s. Constructing an estimator for ,u](f;L ;

is straightforward: compute the sample cross products g,g, for all households of size

>



(s)

s. A mnatural estimator for u,,; ; thus is
) 1 X 1 X X
Fp,q,ii = . 9p(Xi)9q(X)- (11)

nl®) hi| Hp | =s s(s 1) i€Hy, jEH, j#i
The first and third term in (9) are estimated in the obvious way. Thus, all the
components necessary for calculating the asymptotic variance of the inequality index
are available: Having estimated F (i) in (8) by (9) we immediately arrive at the
variance estimator (7). If there are no intra-household dependencies only the first
term in (9) is non-zero and we arrive at the usual (i.i.d.) variance estimator.

Note that we do not need any information regarding the position of individual
¢ in the household. We simply impose symmetry on all household members and
assume that the stochastic nature of the dependencies between any two members are
symmetric as well. This assumption is rather strong: it presumes that the correlation
of earnings between husband and wife is the same as the correlation between, say,

son and father. However, using the suggested approach immediately permits further

refinement of such assumptions.

3.2 Lorenz curves

The Lorenz curve ordinates as defined in (5) may be written as

PYp
d(p, F) =
P, ) 1 (X)
with pr
= zdF(x) (12)

0
being the conditional mean income of persons with income less than the p-quantile of

the distribution, z, = F~(p). The unconditional mean x (X) can be interpreted as a
special conditional mean as well (1 (X) = 71). In order to obtain the joint asymptotic
distribution of the Lorenz curve ordinates we first derive the covariance matrix of the
estimators of (12) and then apply the delta method. For notational convenience and
without loss of generality, we restrict attention to households of identical size m and
we make a slight change of notation. Income of individual j = 1,...,m in household
i=1,...,n will be denoted by X;;. The marginal income distribution (of individuals)
has distribution function F', the joint distribution of any two household members is

written as G (@G5 see below.



As in Beach, Davidson, and Slotsve (1995) we will work with more general condi-

tional moments than (12). Let

— T h(2)dF(z 13
PYp S (z)dF () (13)

i = 9@ar() (14

be conditional moments of some functions h() and g() of income. Obviously, (12) is
just a special case of (13), h (x) = z. The quantities (13) and (14) can be estimated
nonparametrically by

Yo=—h(Xy) 1 (X - )

and similarly for the other estimator. The estimators can (with an error of order at

most o(n™1)) also be written as (see Beach and Davidson 1983)

1 X

Py = p(h(l“p))Jr% - (h(Xy) Th(z) (X - )
) L X

g6, = q(g (%))Jr% - (9(Xy) 1g(2g) (X - zg)

By definition (and again with an error of order at most o (n=1))
= -
Cov pYp, qd,

1 X X
— (m)® s g E(h(Xy) ih(z)1(Xy - 2p) (9(Xu) §9 @)1 (X - z,)]

iE[(h(Xig) i h(2p) 1(Xsy = 2p)] E(9(Xn) §9(2) 1 (Xu - 20)]. (15)

The last two expectations in (15) are taken with respect to F'(z):
Z
[h (@) Th(z)]1(z - 2p) dE(x) = p (v i D (2p))
and analogously for the other term. The first expectation in (15) is investigated in

some detail in the appendix. Assuming without loss of generality that p - ¢ we finally

arrive at
1 b7
~ 2 m
Cov(pyp, q0,) = m; C—i—% ®p T VpOp
+[1 i mq] [ ih(xp)@fq i9(z,)] (16)

+[h(zp) § W] [0 T 6



where
pop = E[h(Xij) g (X)) 1( Xy - )]

and

C = Gz, x% Npq + 1 (2p) g (z4) G (2, x%
i9(x,) " h(@)dG (@,3,) i k() " 9(@)dG (z,)

with
G (x;m xq) Np,g = E [h (Xz) g (Xz ) 1 (Xz - xp) 1 (Xz‘l - xq)] .

In the special case where all observations are independent, i.e., G(z,y) = F(x)F(y),
equation (16) reduces to the result derived in Beach and Davidson (1983).
It is possible to estimate the unknown quantities in (16) consistently from the

sample without making any distributional assumptions.

3.3 The Gini coefficient

The Gini coefficient can be written in a form equivalent to (6) but more convenient

as

2A

Gini(p, A) =1 § —

1

i i Ry i i
where 1 = p(X) is the population mean and A = | py,dp is the integral of the
conditional moments defined in (12). Its estimator uses the sample counterparts
. R . A

f(X)and A = | pldp, ie. @ini = Gini(i(X),A). Since both i and A are
normally distributed, application of the delta method implies that the Gini coefficient
is normally distributed as well. Let €2 denote the covariance matrix of the vector
(i, fl) The variance of i has already been derived in section 3.1. Consider next the
second moment and variance of A. The notation H(p,x) is used to emphasise that
the estimated Lorenz ordinate depends on the realisation of the random variable and

that integration is over the population share p. Expectations are taken with respect

to the distribution function F'(z).

HZ, Z, il
E(A*) = E | pe(p, X)dp qhlg, X)dg
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lelzoo

= php, v)g¥q, v)dF (x)dpdq
2,2,

= C Cov(p%,q%)dpdq—i—/lz

using (16). Thus Var(fl) = Rol Rol Cov(ph,, ¢ip)dpdyg.
The off-diagonal element of Q is Cov(f, fl) but noting that 4 = 9 we have im-
mediately
.4
Cou(jp, A) = Cou(py, t)dp

The variance estimator of (%ini is thus (9Gini/d(u, A))Q(OGini (i, A)) evaluated

at (i, A).

4 Simulation and empirical illustration

We turn to examining the precision of the variance estimator proposed in the previous
section and compare its performance to that of the usual (i.i.d.) estimator given in
(2). Using artificially generated data the performance is assessed in terms of the
coverage success of confidence intervals. In each iteration of the experiment, we check
whether or not the (1 ja)-confidence interval contains the true value of the inequality
index. If the number of repetitions is large, a good variance estimator would generate
confidence intervals which fail to capture the true population value o £100% of the
time. We have used 1000 repetitions.

Two data models are examined in the simulation study. Model I is a traditional
male breadwinner model. The population consists of two-person households composed
of a spouse who does not earn and a breadwinner, whose earnings are drawn from a

lognormal distribution LN (x = 1,0 = 0.5) with density

Model II is an assortative mating model. The population are two-person households
whose members receive earnings from a bivariate lognormal distribution LN (1,0.5)
with the same marginal densities as above and correlation coefficient p where either

p=0.750r p=0.3.



Since model I generates observations where half of the population have zero earn-
ings we need an inequality index capable of handling zeros. We opted for the Gener-
alized Entropy index with parameter a = 2 and parameter oo = 1.

Using the decomposability of the Generalized Entropy index the population in-
equality values are easily computed from the parameters of the lognormal distri-
butions. We will derive the true population values for o = 2, the same approach
can be used for a = 1. There are two groups, earners (denoted by subscript 1)
and non-earners (subscript 2). Mean earnings are zero for the latter group and
exp (4 0?/2) = 3.0802 for the former; £ (X;) = 3.0802 and E (X,) = 0. The
overall mean is therefore £ (X) = 1.5401. Although the Generalized Entropy index
is not properly defined for distributions with zero incomes only, it obviously makes

sense to set its value to zero. Inequality in the earners group is

h i
1,2 = 2 -
exp 5 (a® ja)o 1
op, <SPl i il (17)

oa? jo

which is GE5; = 0.1420 for the earners. The Generalized Entropy can be decom-

posed as
E, = E E., withi
G « G a,betui;ag—i_% a,wzthzn! 3 .
1 E(X,) “
Faa 0 By PO

where f; is the relative size of group j, hence f; = fo = 1/2, and the weights
w; = f; (E(X;)/E (X)), hence w; = 0 and wy = 27!, Therefore, under model I
the true population value is GE, = 0.7840. For o = 1 the population value can be
computed along the same lines, it is GE; = 0.8178.

Under model II there are no between inequalities since both groups have the same
distribution. Applying (17) yields GE; = 0.1250 and GE, = 0.1420.

For the simulation study we varied the coverage probability of the confidence inter-
vals, the sensitivity parameter of the inequality index, and the correlation coefficient
p in Model II. The number of observations is n = 2500 households (i.e. 5000 individ-
uals). Table 1 reports the results of the simulations. The most noteworthy result is
the good coverage performance of confidence intervals constructed from our variance

estimator. In contrast, the confidence intervals build on the iid variance estimator

10



perform poorly, particularly so in model I where the coverage failure is much too small
(i.e. the variances are grossly over-estimated). In model II we observe the opposite:
the iid variances are under-estimated and, as a result, the confidence intervals are too
narrow. This effect vanishes if the correlation is small — for p = 0.3 there is hardly
any difference in the coverage performances — as it should be since as the correlation

falls, the data generating mechanism approaches the iid case.

Table 1: Proportion of coverage failure
Index Model 1 Model II, p = 0.75 | Model II, p = 0.3

o) 50% | 5% | 50% 5% 50% 5%

GE(2) | iid || 0.250 | 0.001 | 0.590 0.098 0.506 0.052
dep || 0.524 | 0.064 | 0.524 0.052 0.493 0.047
GE(1) | iid || 0.011 | 0.000 | 0.597 0.134 0.531 0.050
dep || 0.537 | 0.052 | 0.515 0.062 0.511 0.044

To apply the proposed variance estimator on real data, we estimate the inequality
of annual earnings for the 1983 cross-section of the German Socio-Economic Panel
(GSOEP). The cross-section consists of 4253 households, whose size varies from 1 to
10, the average size being 3.06. Although the sampling probabilities of the households
are in fact not exactly identical we assume for simplicity that the sample is identi-
cally distributed. Roughly 47% of the individuals in the sample have zero earnings.
We compare the variance estimates from section 3.1 to the iid variance estimates.
Because of the zero observations we use the same inequality indices as above, i.e., the
Generalized Entropy index with a > 0.

Table 2 lists the results. Obviously, the variance estimates differ a lot for smaller
values of the parameter « (high sensitivity at low incomes, in particular at zero) while
the differences are rather small for large values of a.. This findings are consistent with

the simulation results above.

5 Conclusion

In this paper we consider the effect of intra-household dependencies of earnings or

income on the statistical inference of inequality indices and Lorenz curves. The stan-
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Table 2: Variance estimates under i.i.d. and dependence

Parameter Variance estimate Variance estimate

Q under i.i.d. assumption under dependence
0.01 1.927e-01 6.351e-03
0.05 7.952e-03 2.024e-04
0.10 2.085e-03 4.632e-05
0.50 1.768e-04 4.196e-05
1.00 2.985e-04 2.210e-04
1.50 1.681e-03 1.578e-03
2.00 1.733e-02 1.706e-02

dard methods of statistical inference are usually based on the assumption of income
being an independent and identically distributed random variable. Most micro data
sets have information about individuals but are sampled on the household level. It is
unlikely that earnings or incomes of individuals living in the same household are in-
dependent since, for instance, labour supply decisions are taken either simultaneously
or stepwise.

We show that the variance estimates based on the i.i.d. assumption may be mis-
leading if there are in fact intra-household dependences. Theoretical considerations
as well as Monte Carlo simulations show that whether the i.i.d. estimates are too

wide or too narrow depends on the kind of dependence.
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Appendix

In order to derive the covariance structure of the Lorenz curve ordinates, we
adapt an argument suggested by Beach, Davidson, and Slotsve (1995) to the case
with contemporaneous dependencies. For the first expectation in (15) we need to

distinguish three cases; we assume without loss of generality that p - q.
1. ¢ =Fk and j = [, there are nm such cases.
E(h(Xig) §h () 1(Xs5 = 2p) (9 (Xij) 19 () 1(Xyg = )]
= E [1( wp) (h(Xi3) 9 (Xij) § h(Xi5) g (xg) & 9(Xij) h(2p) + h(2p) g (24))]
= ]i‘ _)} Xij) g (X %}”?g (zg) Vo W PR () 6p + P (2p) g (24)
Pdp

(
(h

= plop i g (xq) Yo K h(Tg) 6 + h(xp) g (2]

2. i =k but j 6 [, there are nm (m j 1) such cases. Let the joint income distri-

bution of two members of the household be denoted by G(z,y).

E§ (1)) (9 (Xa) 1 9(2y))

(X5 - po} (Xa - xq%

::i(Xiijil)

= Eli(Xy, Xa) (h(Xiy) g (Xa) §h (X)) g(2q) § () g(Xa) +h(zp) g (z,))]-

1
I

Examine this expression term by term:
Z

Eli (X, Xa) h(Xy) g (Xa)] = h(2)g(y)i(e,y)dC (z,y)

= 1 G (Tp, Tq) Mpg

E i (X, Xa) h(xp) g (z,)] = %(xp)g(xq)G(xqu)
E i (X5, Xa) b (Xi) g (zg)] = h(ﬂf)i(ﬂféy)g(ﬂfq) dG (z,y)
= gl h(@)G (wy)dyds
ijp 0
- g(ﬂfq)_ﬁ h(z)dG (z,z,)
Eli (X Xa) g (Xa) h (0,)] = h(zy)  g(2)dG (z,2).

0
If G (z,y) is symmetric and g (z) = h (z) = z, the last two expressions become

Zq 4 zdG (x,x,)

T " 2dG (x,xp) .

13



3. i 8 k, there are nm (n § 1) m such cases.

EL(Xy = ap) (h(Xiy) i h(2p) 1 (X = 24) (9 (Xa) & 9 (2))]

= P 1h(zp)q (6 i9(z))-
Putting all terms together we arrive at

h(zp))q(ég i 9(zy))

COU(p'Aqugq) = ip('Ypi
M2

H
nmp (¢p & 9(2g) W ¥ h(xp) 0+ h(zp) g (24))

where

C = Gz, xg Mpa + R (2p) 9 (24) G (2, x%
i9(e) | h()dG (x,3) §h(e,) 9 (2)dG (zp,7).

and

pop = E[h(Xy)g(Xi)1(Xij - xp)]
G (Tp, ) Mpg = E[h(Xy)g(Xa)1(Xij - 2p) 1(Xa - 29)].

The expression can be simplified to

.3 m gl
Cov(pp, qog) = C
nml/z

h i
p - - - _
+—nm Gp B0 1 imal[yp §Tp) 6 i T

2
+
s

k<]
| 1}
2
>
e}

14
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