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Abstract

The DDα-classifier, a nonparametric fast and very robust procedure, is de-
scribed and applied to fifty classification problems regarding a broad spectrum
of real-world data. The procedure first transforms the data from their original
property space into a depth space, which is a low-dimensional unit cube, and then
separates them by a projective invariant procedure, called α-procedure. To each
data point the transformation assigns its depth values with respect to the given
classes. Several alternative depth notions (spatial depth, Mahalanobis depth, pro-
jection depth, and Tukey depth, the latter two being approximated by univariate
projections) are used in the procedure, and compared regarding their average error
rates. With the Tukey depth, which fits the distributions’ shape best and is most
robust, ‘outsiders’, that is data points having zero depth in all classes, appear.
They need an additional treatment for classification. Evidence is also given about
the dimension of the extended feature space needed for linear separation. The
DDα-procedure is available as an R-package.

Keywords: Classification, supervised learning, alpha-procedure, data depth, spatial
depth, projection depth, random Tukey depth, outsiders, features

1 Introduction

Many statistical procedures have been developed to classify data into two or more given
classes. Generally, if the data arise from a known class of distributions, properties of
the classifiers are established through either theoretical considerations or simulation
studies. By this, alternative classifiers are compared and procedures identified that are
optimal under properly chosen assumptions. However, real-world data do often not fit
into standard parametric distribution models. Classifying them requires nonparametric
procedures, while, due to the lack of established general properties, selecting a good
classifier has to be mainly based on empirical evidence. Usually such evidence is sought
from simulation studies mimicking certain features of the data that arise in practical
applications. At best, in a given field of application so called ‘stylized facts’ are identified
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and translated into a simulation setting. But often such ‘stylized facts’ do not exist.
Then, we cannot learn much from simulation studies how a statistical procedure really
works in practice. The adequacy and fitness of the procedure can only be demonstrated
when it is applied to real-world data, and its general fitness can be only established by
successful application to a large variety of such data.

In the sequel this is done for a newly developed nonparametric classifier, the DDα-
procedure (Lange et al., 2014a). It is applied to fifty binary classification problems
regarding real-world benchmark data.

The DDα-procedure first transforms the data from their original property space into
a depth space, which is a low-dimensional unit cube, and then separates them by a pro-
jective invariant procedure, called α-procedure. To each data point the transformation
assigns its depth values with respect to the q given classes. The depth coordinates of
the data reflect their degree of centrality w.r.t. each of the classes. This central ordering
is carried out using a properly chosen depth function. The subsequent separation in
the depth space accounts only for differences in the depth values: If q = 2 a binary
separator is determined by the α-procedure. The α-procedure stepwise selects pairs of
extended depth properties (that is, depth coordinates and powers and products of them)
and separates them by a linear rule. The separator is a hyperplane in the extended
depth space, which corresponds to a polynomial line in the basic depth plane, both
containing the origin as an element. With q > 2 classes,

(

q
2

)

such α-separations can be
performed and a majority rule applied; alternatively q one-against-all separators can be
used. We restrict the present study to the case q = 2, see Lange et al. (2014a) for q > 2.

In Lange et al. (2014a) the zonoid depth (Koshevoy & Mosler, 1997; Mosler, 2002)
is applied, which is efficiently computed also in higher dimensions. Here we employ
four alternative depths: the Mahalanobis depth, the spatial depth, the projection depth
and the Tukey depth. The first three depths are positive everywhere, while the Tukey
depth (like the zonoid depth) vanishes outside the convex hull of the data. However,
the Tukey depth reflects the shape of the data much better than the previous three
do and it is more robust against outliers than these (and than the zonoid depth as
well). For computational reasons we use the random Tukey depth (Cuesta-Albertos &
Nieto-Reyes, 2008), which approximates the Tukey (= location) depth by minimizing
univariate Tukey depths over a finite number of directions.

When using the random Tukey depth (or another depth that vanishes outside the
convex hull of the data) a first practical question is how outsiders, that is data points
having zero depth in all classes, should be treated. These points are, by construction,
represented by the origin of the depth space and, hence, arbitrarily assigned. With
real data, often a large portion of the data turn out to be such outsiders. As our task
is to classify all points, we need either a depth that does not produce outsiders, or
a supplementary treatment of outsiders. By definition, the DDα-procedure includes
a treatment of outsiders if necessary. For the DDα-classifier with the random Tukey
depth, several possible treatments are introduced in the sequel. The paper considers the
respective variants of the DDα-classifier and compares them with the DDα-classifiers
based on Mahalanobis, spatial and projection depths. Recall that the latter depths, as
they are positive on the entire R

d, do not yield outsiders.
A second question is how many directions should be chosen to approximate the
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Tukey depth and how they should be generated; it is addressed in Lange et al. (2014b)
by means of a simulation study. (For the random projection depth this question is
less important as it has no outsiders.) Broad numerical experience is provided about
the relative usefulness of the classifiers. Further we investigate how many features
in the extended depth space are needed on an average to satisfactorily separate the
data. Finally we demonstrate the robustness of our procedure when applied to real data
containing substantial amounts of outliers.

For comparison several indicators are introduced, two of which refer to a combina-
tion of classical procedures as benchmark. To evaluate the performance of the DDα-
procedure under different depths and outsider treatments (when using the random Tukey
depth) we have set up experiments with a large number of binary classification tasks
with real data. These data sets have been selected from open internet sources and
different fields of application. Some of them have already served as benchmark sets
in other classification studies. By this they are well suited for evaluating and com-
paring our new approach. The data can be downloaded in standardized form from
www.wisostat.uni-koeln.de/28969.html. The complete DDα-procedure is available
as an R-package named ddalpha.

The DDα-classifiers are also compared with three traditional procedures: linear
(LDA) and quadratic (QDA) discriminant analysis and the k-nearest-neighbors (KNN)
classifier, as in many cases (including the data sets considered here) at least one of
them performs satisfactorily. We exclude neural network methods because they offer
too many possible architectures, among which it is difficult to select in an automatic
and computationally feasible way. While we expect that, given the specific data set,
a properly adapted neural network performs rather well, such an approach affords a
by hand tuning for each data set. Therefore we do not regard neural networks as fair
competitors to theDDα-classifiers. We exclude as well the usual support vector machine
(SVM) as a classifier because for each data set it has to be specially tuned.

Overview: Sect. 2 describes the training phase of the DDα-classifier, which consists
of the depth transformation and the α-separation in the extended depth space. The
problem of generating directions for the random Tukey depth is discussed. Sect. 3
regards the classification phase, where the problem of outsiders arises. Several classical
approaches to classify the outsiders (LDA, maximum Mahalanobis depth, KNN) are
introduced, as well as a simplified SVM approach, which liaises with theDDα-separation
in two ways. Sect. 4 first describes the 50 classification tasks, which vary by absolute
and relative sizes of training classes and include different portions of outliers and ties.
Then the settings and results of the empirical study are presented. In Sect. 5 further
evidence on outsider treatments and the number of (extended) depth properties needed
is discussed. Sect. 6 concludes.

2 Constructing the DDα-classifier

Consider a q-class classification problem, q ≥ 2. The DDα-classifier has been recently
proposed by Lange et al. (2014a). Its classification phase consists of two parts: a
transformation of the data from the original space into the depth space (depth transfor-
mation) and their subsequent separation using a modified version of the α-procedure (α-

3



separation), see Lange & Mozharovskyi (2014), Vasil’ev (1991), Vasil’ev (2003), Vasil’ev
& Lange (1998). This procedure is a projective invariant method to separate the depth
transformed data.

2.1 Depth transformation

The depth transformation maps z ∈ R
d into [0, 1]q, the depth space, where the coor-

dinates of the transformed data reflect their degree of centrality w.r.t. each of the q
classes, so that the subsequent class separation accounts only for the depth ordering.
This central ordering is carried out using a properly chosen depth function D(·|·). For
more information on depth functions the reader is referred to the literature: e.g. Zuo
& Serfling (2000) for properties and Mosler (2013) for a recent survey. Here we only
briefly recall definitions of those used in the current work. The depth representation of
the training sets in [0, 1]q is called the depth plot.

First we briefly regard three depths whose empirical versions take positive values
beyond the convex hull of the data. For a point z ∈ R

d and a random vector X in
R

d (especially one having an empirical distribution on a set of d-variate observations
{x1, . . . ,xn}) the Mahalanobis depth (Mahalanobis, 1936) of z w.r.t. X is defined as

DMah(z|X) = (1 + (z− µX)
′Σ−1

X (z− µX))
−1, (1)

where µX measures the location (e.g. the mean) of X , and ΣX the scatter (e.g. the
covariance matrix) of X .

The affine invariant spatial depth (Vardi & Zhang, 2000; Serfling, 2002) of z regarding
X is defined as

DSpt(z|X) = 1− ‖EX

[

v(Σ
−1/2
X (z−X))

]

‖ . (2)

Here v(y) = ‖y‖−1y for y 6= 0 and v(0) = 0, and ΣX is the covariance matrix of X .
As the Mahalanobis and spatial depths lack robustness when using standard moment
estimates for ΣX and µX , we consider also robustified versions of them, where ΣX and
µX are estimated by MCD (minimum covariance determinant).

The projection depth (Zuo & Serfling, 2000) of z regarding X is given by

DPrj(z|X) = (1 +OPrj(z|X))−1, (3)

with

OPrj(z|X) = sup
u∈Sd−1

|u′z−m(u′X)|

MAD(u′X)
, (4)

where m(u′X) denotes the (univariate) median of m(u′X) and MAD(u′X) the (uni-
variate) median of the absolute deviation of u′X from its median.

The Tukey depth or location depth (Tukey, 1975; Zuo & Serfling, 2000) of z w.r.t. X
is defined as the minimal probability of X lying in a halfspace bounded by a hyperplane
through z,

Dloc(z|X) = inf {P (H) : H is a closed halfspace containing z}, (5)

where P is the probability distribution of X . (A closed halfspace is the set of all points
that lie on one side of a hyperplane including that hyperplane.) If P is an empirical
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Figure 1: Depth level sets for two dimensions (total number of donations and months
since first donation) of the “blood-transfusion” data set, class of not donating in March
2007. Top, from left to right: data; spatial depth using moment estimate; projection
depth. Bottom: Mahalanobis depth using MCD estimates with robustness parameter
0.75; spatial depth using the same MCD estimates; Tukey depth. The level sets are
pictured for the depth values 1/570, 1/114, 1/57, 2/57, ..., 19/57 for the Tukey depth,
and for 0.04, 0.08, ..., 1 for the rest of the depths.

distribution, this means that Dloc(z|X) is the minimal portion of the data that can be
cut off by a hyperplane through z. Obviously, in general, the Tukey depth vanishes
outside the convex hull of the distributions’ support.

The Mahalanobis, spatial, projection depths are everywhere positive; thus outsiders
cannot occur. However they are not very sensitive to the shape of the underlying
distribution, which is illustrated in Figure 1. It exhibits the data of the “non-donating”
class in the “blood-transfusion” task. The Figure shows the level sets of Mahalanobis,
spatial, projection and Tukey depths. Observe that the Mahalanobis depth yield ellipses,
while with the spatial and projection depth rather symmetric, ellipsis-like level sets are
obtained. The asymmetric shape of the data is much more reflected by the Tukey
depth (bottom right); therefore it appears to be better suited to extracting the relevant
information from the training classes. Note that, by construction, the Mahalanobis
depth has exact elliptical regions and the projection depth contains a symmetric factor,
namely MAD, which accounts for the quasi-symmetric shape of the level sets. Moreover,
the projection depth comes with an enormous computational cost. For these reasons we
include the Tukey depth in our study, in spite of its need for extra outsider treatments.

DMah and DSpt are easily computed. To estimate µX (for DMah) and ΣX we use
empirical moments and minimum covariance determinant (MCD) estimates that have

5



outlyingness parameter 0.75, see Hubert & Van Driessen (2004), Rousseeuw & Van
Driessen (1999). The Tukey depth as well as the projection depth satisfy the weak
projection property Dyckerhoff (2004), i.e. the depth of a point can be represented
as the minimum of the depths on all unidimensional projections. Based on this we
approximate the Tukey depth by the random Tukey depth (Cuesta-Albertos & Nieto-
Reyes, 2008), which is the minimum univariate Tukey depth over a set of unidimensional
projections in randomly selected directions. As the exact calculation of DPrj is rather
elaborate (Liu & Zuo, 2014b), we approximate it in the same way.

2.2 α-separation

For each binary separation the α-procedure constructs a decision hyperplane in the
extended property space E1 = [0, 1]r, r =

(

p+q
q

)

− 1. The extended property space
includes the powers and products of objects’ attributes up to some degree p as additional
coordinates. We mention the original depth coordinates as the basic, and the other
coordinates as the extended properties. From all these properties, the relevant ones
are stepwise chosen by the α-procedure. The final separation then is performed by an
‘optimal’ hyperplane in [0, 1]r.

Let X1 and X2 be two training classes in R
d having n1 and n2 elements respectively.

Each data point x ∈ X1∪X2 is transformed to (d1, d2) ∈ [0, 1]2, with d1 = D(x|X1), d2 =
D(x|X2). In the first step all pairs of (basic or extended) properties are selected that
involve depths in both classes and the respective two-dimensional coordinate subspaces
are considered. In each of these planes we separate the two classes by a straight line
passing through the origin. The separating line is determined by the angle α (formed
with one of the axes) that yields the minimal empirical misclassification rate (EMR).
Among all considered two-dimensional property spaces we choose the one delivering the
smallest EMR; then we project its points onto a straight line f1 that is orthogonal to
the separating one. Now, separation in f1 is performed by the origin, and f1 becomes
the first projection axis of a synthesized space.

We illustrate the procedure with data from the Pima Indians diabetes study; see
www.stats.ox.ac.uk/pub/PRNN/pima.tr2. A subsample consisting of q = 2 classes (68
diseased and 132 not diseased females) has been selected, having seven attributes (num-
ber of pregnancies, 2 hours glucose concentration, blood pressure, triceps skin thickness,
body mass index, diabetes pedigree function, age). The data points are represented in
the unit square by their random Tukey depths regarding the two classes (using 10 000
random directions), and powers and products of depth values are considered up to degree
p = 2; thus the extended depth space has dimension r = 5.

Figure 2 (left) shows the first step applied to the Pima data. Here, after mapping
X1 ∪X2 into [0, 1]2, the depth space was extended up to degree p = 2, which yields the
extended depth space [0, 1]5. With the Pima data the smallest EMR is achieved at the
two basic depth properties d1 and d2.

After the first step the extended space is reduced by removing the two (possibly
extended) properties that have obtained minimal EMR, and a similar second step is
performed. In the second step we consider all planar subspaces based on f1 and one of
the properties of [0, 1]r−2 and find a separating straight line minimizing EMR in each
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Figure 2: α-separation; step 1 (left) and step 2 (right).

of them. Again, among these planes we choose the one that yields the smallest EMR
and obtain the second projection axis f2. It separates the data at its zero point, as the
first axis did in the initial step; see Figure 2 (right) for the Pima example. Similarly,
after Step 2 the extended space is reduced to an (r − 3)-dimensional unit hypercube.
The steps are iterated, and properties are selected from the extended space, as long as
the minimum EMR decreases and the remaining extended space is non-void. Note that
with the Pima data, the procedure stops after Step 2.

2.3 Directions for the random Tukey depth

As mentioned above, we approximate the d-variate Tukey depth by the minimum uni-
variate depth of the (on lines in several directions) projected data. The random Tukey
depth inherits the robustness from the Tukey depth. When implementing the random
Tukey depth we have to answer the following questions in a way that makes our classifier
reasonable and computationally feasible.

(1) How should the random directions be generated?

(2) How many directions should we consider?

(3) Shall we generate a new set of directions for each point z?

Ad (1): As in Cuesta-Albertos & Nieto-Reyes (2008) we generate directions that are
uniformly and independently distributed on the unit sphere and independent of the data.
Alternatively we could proceed as in Christmann et al. (2002); Christmann & Rousseeuw
(2001), i.e. search through the normals of randomly formed (d− 1)-simplices. However
we find it more efficient to spend computational time on generating random directions
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and evaluating univariate depths rather than computing exact directions from the data;
moreover, a moderate number of random directions proves to be enough.

Ad (2): We mention two qualitative arguments concerning this number. Firstly, a
larger dimension of the space needs a larger number of directions, which is obvious from
the geometry of Rd. However, we are not able to indicate the precise dependency of this
number on the dimension d. Secondly, we point out that there exists a trade-off between
the number of directions used for the random Tukey depth and the number of outsiders.
A simulation study that illuminates this trade-off has been conducted in Lange et al.
(2014b). If the data stems from a centrally symmetric distribution (e.g. Gaussian or
another elliptical distribution) the depth can be rather precisely approximated with a
small number of directions. But if the data exhibit asymmetries and possible outliers, as
real-world data mostly do, we need a larger number of directions to adequately represent
them in the depth space. The degree of asymmetry and fat-tailedness found in the data
may guide us in choosing this number; see Lange et al. (2014b). To be able to compare
the procedure on different data sets we have chosen a fixed number of directions. This
number has been set to 10 000 as a practical compromise between accuracy of the depth
calculation and computational load.

It is obvious (see e.g. Liu & Zuo (2014a)) that the random Tukey depth of a point
can widely deviate from the Tukey depth. On the other hand, the α-separation is
rather robust, since the only invariant it uses is whether a point belongs to a class
or not. Therefore an upward bias at a few points does not much influence the final
separation. Further, a trade-off exists between the number of directions used for the
random Tukey depth and the number of effective outsiders, which favors a moderate
number of directions.

Ad (3): We use the same set of directions for each data point. Though the generation
of a new set of directions for each point produces different depth values, there is no
reason to expect them to be more precise. By keeping the set of directions constant we
increase the speed of calculations in the training phase. The computations are boosted
by avoiding the generation of the directions and projection of the points onto them.
Let k be the number of random directions. When instantly generating the direction
set for each point the complexity of the depth calculation amounts to O(kd(n1 + n2)

2).
If the direction set is not constantly changed, first, the time for their generation is
saved. Second, recall that in the training phase the depth of all points of the training
sample w.r.t. each class has to be computed. Hence, univariate projections are ordered,
and all the univariate depths on each projection can be determined in a single pass.
This yields complexity O(k(d + log (n1 + n2))(n1 + n2)). Note that d(n1 + n2) > d +
log (n1 + n2) holds. Therefore, for all d, n1 and n2 that are large enough to suppress
eventual constants, the constant direction approach is substantially faster, see also Lange
et al. (2014b). It also enhances the classifier’s stability in the classification phase, as the
same directions are used to approximate the depth of a new point to be classified.

2.4 Directions for the projection depth

Exact calculation of the projection depth appears to be a heavy computational task
(Liu & Zuo, 2014b). Therefore we approximate the projection depth in the same way
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as the Tukey depth by minimizing the univariate depth of projections in randomly
drawn directions. Compared with the Tukey depth, many more directions are needed to
produce a reasonable approximation of the projection depth: When traversing the unit
sphere the projection depth (which is a piecewise linear function) changes direction much
more frequently because of the median and MAD estimates. To be able to compare the
procedure on different data sets we have chosen two fixed numbers of directions. These
have been set to 10 000 and 100 000 as a practical compromise between accuracy of the
depth calculation and computational load.

3 Classifying outsiders

The classification phase proceeds as follows. Consider a point z to be classified. First
the depth transform of z is calculated as (d1, d2) = (D(z|X1), D(z|X2)). If d1 is zero but
not d2, the point z is assigned to class X2, and viceversa. If both d1 and d2 are non-zero
the point is classified according to the separation rule determined by the α-procedure.
This is always the case when using the Mahalanobis, spatial or projection depths. When
employing the random Tukey depth some z may have (d1, d2) = (0, 0), then z is regarded
as an outsider. An outsider, being represented by the origin of the depth plot, cannot
be readily classified but needs some special treatment. Specifically, a point z that, in
the original data space, lies outside the convex hulls of the two training sets has zero
Tukey depth in both classes and, thus, is an outsider. If a point z is no outsider it is
mentioned as an insider. Insiders are instantaneously classified by the α-procedure.

As in Lange et al. (2014a), outsiders may be classified by determining their nearest
neighbors. In doing so, Euclidean and Mahalanobis distances can be employed, the
latter to account for scatter within the classes. Alternatively outsiders can be classified
according to their maximum Mahalanobis depth, which is always positive. Mosler &
Hoberg (2006) introduce a depth function, which is the maximum of the zonoid depth
and a properly scaled Mahalanobis depth, and thus circumvent the outsider problem.
Paindaveine & Van Bever (2012) propose an approach that avoids the outsider problem
as well. In the classification phase, for each point z to be classified, (1) the sample is
extended by reflecting the training classes symmetrically at center z, (2) the depth of
points in the extended sample is considered, and (3) a k-nearest-neighbor rule that uses
depth in place of distance is applied for classifying z. Here not only the classification
phase is computationally hard (by instantaneous calculation of the depths of all data
points), but also the training phase, where the classifier has to be validated in order to
determine k. This requires onerous computations.

In the sequel we compare several alternative outsider treatments, which are classifiers
applied to data in the original space. The treatments include three well known classifiers:
linear discriminant analysis, maximum Mahalanobis depth, and k-nearest neighbors
as well as a new one, which we call SVM-simplified. The performance of the DDα-
classifier with Mahalanobis, spatial and projection depth is contrasted as well. Note
that all depths (Tukey, Mahalanobis, spatial and projection) are affine invariant as
well as all treatments used (LDA, KNN with an affine invariant distance, Mahalanobis
depth and the support vector machine). Therefore all considered DDα-classifiers are
affine invariant (under appropriate moment assumptions), if the exact versions of the
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depths are calculated. Since the random Tukey depth and the random projection depth
converge to the exact versions, using them makes the DDα-classifiers approximately
affine invariant.

The random Tukey depth (RTD) used for the depth transform is very efficiently
calculated, but yields outsiders. As it approximates the Tukey depth (TD) from above,
some TD-outsiders will have non-zero RTD and, by this, be assigned to one of the classes.
A smaller number of directions yields a worse approximation of the TD, but reduces
the number of outsiders. The remaining RTD-outsiders still need a special treatment,
though. Thus, when using the RTD, we face a trade-off between the quality of depth
approximation and the extent of outsider treatment needed. As we will see below with
real data, choosing a moderate number of random directions gives best results.

3.1 Classical approaches as treatments

Linear discriminant analysis (LDA), introduced in Fisher (1936), separates the classes
by a hyperplane in the original data space; see also Hastie et al. (2009). The LDA
classifier is particularly simple. It is optimal if the data follow a Gaussian or, more
general, a unimodal elliptical distribution and the classes differ by location shifts only.
However, in classifying real data it is often outperformed by other approaches. In many
applications, the real data cannot be assumed to be Gaussian and ask for procedures
different from LDA. However, after having classified the RTD-insiders, the remaining
task of classifying the outsiders appears to be a much less exigent task and may be
successfully done by a simple procedure like LDA.

The maximum-Mahalanobis-depth classifier is given by

class = argmax
i

πiD
Mah(z|Xi) , (6)

where πi is the prior probability for class i. The priors are estimated by the training
class portions. Again, this classifier has optimality properties under ellipticity. Applied
to outsiders it is expected to perform satisfactorily.

The k-nearest-neighbors classifier is still another option for treating outsiders. Its
parameter k, the number of the nearest neighbors, has to be chosen by cross-validation.
Often a relatively small k is enough; see, e.g., Lange et al. (2014a), where already k = 1
produces satisfying results. To make the procedure affine invariant we use Mahalanobis
distances (based on the pooled data set) for finding nearest neighbors.

3.2 SVM-simplified as an outsider treatment

As another way to handle the outsider problem we propose to supplement the DDα-
classifier by an additional SVM-rule, which is restricted to classifying the outsiders. It
has a particularly simple structure. Recall that the DDα-procedure delivers a separator
which is a hyperplane in the extended depth space. This hyperplane induces a decision
rule in the original data space. Next, we remove all training points which are not
correctly classified by this rule (so that EMR = 0) and subject the remaining points to
an additional SVM classification step that involves determining a single kernel parameter
but no box-constraint. This new approach is named SVM-simplified (SVM-s). As the
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SVM-s rule is defined on the whole Rd, it is able to assign points which are outsiders in
the DDα-classification.

Figure 3, left panel, shows two classes, each containing 250 points, which are sim-
ulated from N(

[

0
0

]

,
[

1 1
1 4

]

) (red) and N(
[

1
1

]

,
[

4 4
4 16

]

) (blue), together with the separating
lines of the optimal Bayes (dashed) and DDα (solid) classifiers. The left panel regards
the original data, while the right panel exhibits the data after the removal step.
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Figure 3: Decision rules of different classifiers: optimal Bayes (dashed lines), DDα (left,
solid line), and SVM-simplified (right, solid line) classifiers.

The SVM-s step consists in solving the following quadratic programming problem
(Cortes & Vapnik, 1995):

maximize
λ

W (λ) = λ′1−
1

2
λ′Dλ (7)

subject to the constraints
λ ≥ 0, (8)

λ′y = 0. (9)

Here we notate l = n1 + n2, λ = (λ1, ..., λl)
′, 1 = (1, . . . , 1)′ and 0 = (0, . . . , 0)′ ∈ R

l. y
stands for the l-dimensional vector of responses y1, ..., yl ∈ {−1, 1}, andD is a symmetric
l × l-matrix with elements

Dij = yiyjKγ(xi,xj), i, j = 1, ..., l, (10)

where Kγ(xi,xj) = exp(−γ‖xi−xj‖
2) is a Gaussian kernel. Note that no box-constraint

condition is needed here as the points are separable without error. But still the kernel
parameter γ has to be chosen. For given γ a solution λ0 = (λ0

1, ..., λ
0
l ) of (7) is obtained,

provided the two classes are linearly separable in the reproducing kernel Hilbert space
that corresponds to Kγ(·, ·). Every such solution λ0 determines a margin between the

classes ρ0 =
√

2
W (λ0)

and a number of support vectors, ♯{λ0
i |λ

0
i > 0, i = 1, ...l}.
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In Figure 4, depending on γ, the values of ρ0 (dashed line) and the corresponding
numbers of support vectors (solid line) are plotted for the above example. A zero value
of the margin ρ0 or of the number of support vectors indicates that with the given γ no
errorless discrimination is possible.
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Figure 4: The number of support vectors (solid line, right scale) and the margin between
the classes (dashed line, left scale) for different values of the parameter lg(γ) (logarithm
to the base 10).

Loosely speaking, γ controls the complexity of the SVM-s rule; for small values of
γ the decision rule is not able to separate the classes at all. Therefore it suggests itself
to use the simplest separating rule, i.e. selecting the smallest γ for which the classes are
separated without error (as indicated by the small circle in Figure 4). This also comes
out as a most stable decision rule. Figure 3 exhibits the corresponding decision rule in
its right panel as a solid line, while the dashed line indicates the same optimal Bayes
decision rule as on the left panel of the Figure; the rules appear to be very similar. Most
important, calculating the SVM-s rule needs no parameter tuning besides selecting the
parameter γ, which is a straightforward task.

Needless to say, with the usual support vector machine (SVM) a solution can be
obtained that is at least as good as the one achieved here. However, obtaining this
solution needs a tuning of parameters that is computationally much more intensive.

To summarize the above procedure: The training phase consists of two steps, first
determining the DDα-classifier and then determining an SVM-s rule based on the cor-
rectly DDα-classified points. Note that the classification performance of this procedure
is determined by the DDα-classifier, and the SVM-s step just extrapolates this classifier
to treat the outsiders. In our experiments the whole training phase took between a few
seconds and several minutes of computation time (64-bit, 1 kernel of the iCore 7-2600
having enough operative memory). The time reached a maximum of 10 minutes with
four very large data sets only.

In the classification phase we have two choices: Either using the obtained SVM-s
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rule for all points z to be classified, or first check for each z whether it is an insider or an
outsider and then classify it with the DDα-rule if it is an insider and with the SVM-s
rule otherwise. The first choice yields a particularly fast procedure, as the SVM-s rule
does not involve any depth calculations in the classification phase. We choose the second
one as it is in line with the application of the outsider treatments mentioned above. Its
results are presented in column ‘SVM-s’ of Tables 3 and 4.

4 Real data experiments

To evaluate the DDα-procedures with different outsider treatments and to judge their
usefulness in practical applications we have set up experiments based on a large variety
of real data sets. The methodology is applied to 50 binary classification tasks, which
have been obtained from partitioning 33 freely accessible data sets, see Tables 1 and 2.
The subset of the “Pima Indian Diabetes” described above is included in the Table as
“pima” (No. 35).

The authors and introducers of the accessed data sets are Cox et al. (1982) (“biomed”),
Miller et al. (1979) (“cloud”), Greaney & Kelleghan (1984) (“irish-ed”), McGilchrist
& Aisbett (1991) (“kidney”), Nierenberg et al. (1989) (“plasma-retinol”), Biblarz &
Raftery (1993) (“socmob”) and Kalbfleisch & Prentice (1980) (“veteran-lung-cancer”);
these data sets have been downloaded from
lib.stat.cmu.edu/datasets.
Data sets “chemdiab” (Reaven & Miller, 1979) and “hemophilia” (Habemma et al.,
1974) have been taken from the R-packages ‘locfit’ and ‘rrcov’ respectively. The “pima”
data set constitutes a training subsample of the “diabetes” (see below) and can be down-
loaded from
www.stats.ox.ac.uk/pub/PRNN (Ripley, 1996).
Datasets “baby”, “banknoten” (Flury & Riedwyl, 1988), “crab” (Ripley, 1996), “gem-
sen” , “groessen” (Galton, 1886), “tennis”, “tips” and “uscrime” (Hand et al., 1994)
have been downloaded from the teaching data base
stat.ethz.ch/Teaching/Datasets.
The rest of the data sets is taken from
archive.ics.uci.edu/ml (Frank & Asuncion, 2010);
it in particular originates from Yeh et al. (2009) (“blood-transfusion”), Wolberg & Man-
gasarian (1990) (“breast-cancer-wisconsin”) and Turney (1993) (“vowel”).

Multiclass problems were reasonably split into binary classification problems, and
some of the data sets were slightly processed by removing correlated attributes, by
dropping objects with missing values, and by selecting prevailing classes. For detailed
descriptions of the data considered we refer to the corresponding literature and public
repositories; the fifty tasks together with short descriptions of the data can be found on
the web page
www.wisostat.uni-koeln.de/28969.html.
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4.1 Data

As we see from Tables 1 and 2, the classification tasks are much different. The Tables
show their basic parameters: dimension d of the original space, log ratio of the cardi-
nalities n1 and n2 of the training classes (so that the sign reflects which is larger), total
sample length n = n1 + n2, percentages of outliers and outsiders. As we see, up to
13 attribute dimensions are considered. The total sample sizes range from 47 to 1349,
while the relative size of the two classes varies between 1 and 6.5.

Almost all data contain outliers ; see column ‘% outl.’. In particular “diabetes”,
“glass”, and “segmentation” contain substantial portions of them. The outliers of each
data set have been identified by cutting moment Mahalanobis regions at a χ2

d(0.975)-
quantile as, e.g., in Rousseeuw & Van Driessen (1999). We take a pure data-analytic
view and thus treat a potential outlier in the same way as any other point. Observe
that regarding eventual outliers the DDα-procedure is highly robust for two reasons:
Firstly, the classification is done by the α-procedure - a very robust approach - in a
low-dimensional compact set, the unit cube of Rq. Secondly, a robust depth like the
Tukey depth can be employed.

Nevertheless the Tukey-DD-classifier suffers from the existence of outsiders as the
Tukey depth vanishes outside the convex hulls of the training classes. The performance
of this procedure obviously depends on the portion of outsiders in the data. We measure
the outsider proneness of a training set by the portion of points lying outside the convex
hulls of all classes. I.e. for each point we check (leaving it out) whether it lies inside the
convex hull of at least one class of the remaining training sample. As shown in the two
Tables (last column) the portion of outsiders varies from 0.029 to 1; see Sect. 5.1 for
discussion.

An important parameter of a data set is the ratio of the sample size over the dimen-
sion, (n1 + n2)/d. It relates to the ability of the trained procedure to classify new data.
The ratio varies from 3.6 to 249.3.

Finally, real data can contain ties, which require additional consideration by learning
algorithms like KNN and depth based classifiers, and thus increase computation time.
The number of tied points (in the pooled classes) is shown in column ‘# tied’ of both
Tables. It is determined as the smallest number of points that has to be removed from
the training sample to make the remaining ones pairwise distinct.

4.2 Study settings

In constructing the depth transform of theDDα-classifier, the Mahalanobis depth (based
on moment estimates as well as robust MCD estimates with outlyingness parameter
0.75) is computed exactly, while the projection depth is approximated using 10 000 and
100 000 random directions. Instead of the exact Tukey depth we calculate the random
Tukey depth (RTD) with 10 000 randomly chosen directions which are the same for all
points of a given data set. Since the RTD approximates the Tukey depth from above
and points having depth zero in both classes are treated as outsiders, the number of
outsiders is systematically underestimated when using the RTD. These outsiders are
treated with the techniques described in Sect. 3.1 and Sect. 3.2.

The α-separation is performed in a polynomially extended depth space, where the
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Table 1: Data set parameters; Part 1.
No. Data set n1 + n2 ln(n1/n2) d (n1 + n2)/d # tied % outl. % outs.

1 baby 247 0.63 5 49.4 0 5.3 31.6
2 banknoten 200 0.00 6 33.3 0 4.5 68.0
3 biomed 194 -0.63 4 48.5 0 4.6 27.8
4 blood-transfusion 748 -1.17 3 249.3 246 5.1 2.9
5 breast-cancer-wisconsin 699 0.64 9 77.7 236 8.3 46.9
6 bupa 345 -0.33 6 57.5 4 8.4 44.3
7 chemdiab 1vs2 112 -0.76 5 22.4 0 2.7 67.9
8 chemdiab 1vs3 69 0.09 5 13.8 0 2.9 81.2
9 chemdiab 2vs3 109 0.83 5 21.8 0 2.8 67.9
10 cloud 108 0.00 7 15.4 0 6.5 91.7
11 crab BvsO 200 0.00 5 40.0 0 2.0 57.5
12 crab MvsF 200 0.00 5 40.0 0 1.5 59.0
13 crabB MvsF 100 0.00 5 20.0 0 4.0 76.0
14 crabF BvsO 100 0.00 5 20.0 0 4.0 71.0
15 crabM BvsO 100 0.00 5 20.0 0 1.0 74.0
16 crabO MvsF 100 0.00 5 20.0 0 1.0 69.0
17 cricket CvsP 156 0.00 4 39.0 7 1.3 26.9
18 diabetes 768 -0.62 8 96.0 0 8.9 56.8
19 ecoli cpvsim 220 0.62 5 44.0 0 5.9 42.3
20 ecoli cpvspp 195 1.01 5 39.0 0 5.1 43.1
21 ecoli imvspp 129 0.39 5 25.8 0 8.5 61.2
22 gemsen MvsF 1349 0.36 6 224.8 27 1.9 32.3
23 glass 146 -0.08 9 16.2 1 11.6 91.1
24 groessen MvsF 230 0.02 3 76.7 0 2.6 20.4
25 haberman 306 1.02 3 102.0 23 2.9 7.5
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Table 2: Data set parameters; Part 2.
No. Data set n1 + n2 ln(n1/n2) d (n1 + n2)/d # tied % outl. % outs.

26 heart 270 -0.22 13 20.8 0 4.4 100.0
27 hemophilia 75 -0.40 2 37.5 0 1.3 13.3
28 indian-liver-patient 1vs2 579 0.92 10 57.9 13 7.8 68.4
29 indian-liver-patient MvsF 579 -1.14 9 64.3 13 7.9 54.7
30 iris setosavsversicolor 100 0.00 4 25.0 2 4.0 48.0
31 iris setosavsvirginica 100 0.00 4 25.0 3 4.0 48.0
32 iris versicolorvsvirginica 100 0.00 4 25.0 1 2.0 51.0
33 irish-ed MvsF 500 0.00 5 100.0 44 6.2 14.2
34 kidney 76 -1.02 5 15.2 0 2.6 73.7
35 pima 200 0.66 7 28.6 0 5.0 86.0
36 plasma-retinol MvsF 315 1.87 13 24.2 0 8.3 98.1
37 segmentation 660 0.00 10 66.0 62 9.4 57.7
38 socmob IvsNI 1156 0.00 5 231.2 45 4.2 14.1
39 socmob WvsB 1156 0.00 5 231.2 8 3.0 15.1
40 tae 151 -1.43 5 30.2 43 1.3 26.5
41 tennis MvsF 87 -0.07 15 5.8 0 6.9 100.0
42 tips DvsN 244 0.95 6 40.7 1 5.3 48.8
43 tips MvsF 244 -0.60 6 40.7 1 5.7 37.3
44 uscrime SvsN 47 -0.65 13 3.6 0 0.0 100.0
45 vertebral-column 310 0.74 6 51.7 0 4.8 54.5
46 veteran-lung-cancer 137 0.01 7 19.6 0 8.8 80.3
47 vowel MvsF 990 0.13 13 76.2 0 2.1 99.7
48 wine 1vs2 130 -0.19 13 10.0 0 3.8 100.0
49 wine 1vs3 107 0.21 13 8.2 0 0.9 100.0
50 wine 2vs3 119 0.39 13 9.2 0 3.4 100.0
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degree of the polynomial is chosen by 50-fold cross-validation. The complexity of the
separation rule is, in a natural way, characterized by the dimension of the space needed.
See Sect. 5.2 for results on the expected number of such features.

In classifying outsiders by KNN the number k is selected by the same cross-validation
strategy as with the traditional KNN classifier. We determine the number k of neighbors
in the KNN classifier by leave-one-out cross-validation, performed over a wide range of
neighborhoods, but - to save computation time - not over the whole sample size; the
performance is still highly satisfactory.

The max-Mahalanobis-depth classifier is calculated either with moment or MCD
estimates, setting α = 0.75. As a basis for the SVM-simplified classifier Joachims’s
C++ implementation of SVMlight (Joachims, 1999) is used with slight modifications
and interfaced to the R-environment.

We use an R-implementation for the traditional KNN with ties broken at random;
similarly when treating the outsiders by the affine invariant KNN. In SVM-simplified
ties are neglected. The α-procedure is tie-immune as well, but in contrast to SVM, it
accounts for the number of tied points.

4.3 Empirical comparison

We solve the above fifty classification problems by the following fourteen approaches:
three classical approaches (LDA, QDA and KNN), the DDα-classifier with the ran-
dom Tukey depth and five outsider treatments from Sect. 3 (LDA, KNN, maximum
Mahalanobis depth classifier with both moment and robust estimates and SVM-s), the
DDα-classifier based on Mahalanobis, spatial (both using moment estimates and robust
MCD-estimates with outlyingness parameter equal to 0.75), and projection depth (using
10 000 and 100 000 random directions). The performance of each classifier is evaluated
by leave-one-out cross-validation; we refer to this as the average error rate (AER). Ta-
bles 3 and 4 exhibit their average error rates for each of the fifty settings, and for eleven
classifiers. (For reasons of space, the DDα-classifiers based on Mahalanobis and spatial
depth with MCD-estimates and the one based on projection depth with 10 000 random
directions are left out; short cumulative results are given in Table 5 and Figure 5.)

The results are mixed. Some are surprising, e.g. the classification tasks “bupa”,
“glass”, “indian-liver-patient 1vs2/FvsM” show error rates for QDA that are substan-
tially higher than those for LDA. We attribute this to the poor estimation of the covari-
ance matrix of the smaller class.

In Tables 3 and 4 classification error of the best classifier for each task is printed
in bold. In almost all tasks none of the considered procedures dominates the others.
Exceptions are “blood-transfusion”, “indian-liver-patient FvsM” and “irish-ed MvsF”,
where the DDα-classifier with the robust Mahalanobis depth (not shown in the Tables)
dominates; also “haberman”, where the DDα-classifier with the projection depth using
on 10 000 directions dominates, and “cricket CvsP”,where they both are prevailing.

While at first sight the error rates of the diverse DDα-classifiers show comparable
sizes among each other and with the classical approaches (LDA, QDA, and KNN), it
seems worthwhile to have a closer look at the performance of the different depths and
treatments of outsiders.
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Five aggregating measures are used to compare the overall performance of the con-
sidered classifiers. The absolute performance is measured by the average classification
error (ACE), which is the average error of a classifier over all the classification tasks.
The relative measure is the average relative classification edge (ARCE) calculated as
the average of ((1 − AER) − (1 − AERtrd))/(1 − AERtrd) over all classification tasks,
with AERtrd being the AER of the best of the three traditional classifiers (LDA, QDA
and KNN) for each data set. We mention it as ARCEtrd. Its negative values relate to
the best of the traditional classifiers, i.e. to an absolute reference. We also use ARCE
with a relative reference (AERbest), which is the smallest AER among all considered
classifiers for a given task (the bold values in Tables 3 and 4); it depends on the variety
of the classifiers chosen. The corresponding measure is mentioned as ARCEbest, which
is always non-positive. Two indicator measures denoted ‘#≥ trd’ and ‘#≥ best’ count
how often AER of a classifier is not worse than AERtrd, respectively AERbest.

The five measures are given in Table 5, the best classifier w.r.t. each of the measures
is printed in bold. Note, that all proposed classifiers have negative ARCEtrd, i.e. none
of them can outperform (on an average) the best of the traditional triplet. On the other
hand, the traditional classifiers perform mostly not satisfactory as well, although LDA
shows favorable indicator values and competitive ACE.

To visualize the empirical evidence, the measures have been standardized to values in
∈ [0, 1], with larger numbers indicating better performance of the classifier, see Figure 5.
Three groups of the classifiers are easily distinguishable. The first group consists mainly
of the DDα-classifier based on spatial depth followed by the one with Mahalanobis
depth, both calculated using moment estimates. These two perform best. They also
perform close to the best of the traditional classifiers (in terms of ARCEtrd, see Table 5),
and not worse than this in (approximately) half of the cases (in terms of ‘#≥ trd’, see
Table 5). Results of the second group are mixed, only the DDα-classifier based on the
random Tukey depth supplemented with the LDA-treatment lies in parts on the positive
border.

The DDα-classifier based on random Tukey depth as transformation and moment-
based Mahalanobis depth as outsider treatment performs worst. Similarly, that based
on projection depth with 10 000 random directions is mostly outperformed; this can be
explained by insufficient approximation. (Note that with 100 000 random directions its
performance increases).

5 Some evidence from the empirical study

The empirical study sheds light on the nature and possible treatment of potential out-
siders. It also provides practical evidence on the number of features (= extended depth
properties) that is normally needed in the linear separating procedure.

5.1 Outsiders

It is seen from Tables 1 and 2 see that 10 (resp. 20%) data sets contain more than
90% outsiders, which actually means that less than 10% of the points are classified by
the DDα-procedure, when the Tukey depth is employed. It is clear that this variant
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Table 3: Comparison of classification performance (average error rate); Part 1.
DDα + random Tukey depth + treatment DDα +

Mah.depth Mah. Spt. Prj.
No. Dataset LDA QDA KNN LDA KNN Moment MCD0.75 SVM-s depth depth depth

1 baby 21.86 22.27 21.86 21.46 25.10 25.51 23.48 21.46 23.89 25.51 24.29
2 banknoten 0.50 0.50 0.50 0.50 1.00 4.00 0.50 2.00 1.00 1.00 1.50
3 biomed 15.98 12.37 11.34 11.34 11.34 13.92 10.82 11.86 12.37 13.40 13.40
4 blood-transfusion 22.86 22.19 22.59 22.33 22.19 21.93 22.86 23.93 20.86 22.06 20.72
5 breast-cancer-wisconsin 4.86 5.01 4.29 4.72 6.87 11.44 6.72 6.72 3.43 3.00 4.43
6 bupa 30.72 40.58 31.30 26.96 28.70 30.43 31.88 26.09 30.72 29.57 32.17
7 chemdiab 1vs2 3.57 7.14 7.14 3.57 5.36 14.29 5.36 0.89 3.57 3.57 8.93
8 chemdiab 1vs3 10.14 8.70 7.25 8.70 8.70 17.39 13.04 2.90 10.14 7.25 10.14
9 chemdiab 2vs3 3.67 0.92 0.92 3.67 6.42 1.83 0.92 0.00 1.83 1.83 1.83
10 cloud 53.70 50.93 66.67 54.63 64.81 40.74 48.15 59.26 51.85 49.07 49.07
11 crab BvsO 0.00 0.00 3.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

12 crab MvsF 4.00 5.00 9.00 4.50 7.00 5.50 5.50 3.50 4.50 3.50 6.00
13 crabB MvsF 9.00 10.00 15.00 8.00 9.00 10.00 8.00 7.00 6.00 6.00 9.00
14 crabF BvsO 0.00 1.00 5.00 0.00 5.00 2.00 1.00 0.00 1.00 1.00 2.00
15 crabM BvsO 0.00 0.00 5.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

16 crabO MvsF 3.00 2.00 7.00 3.00 6.00 3.00 3.00 3.00 2.00 2.00 2.00

17 cricket CvsP 68.59 64.10 59.62 64.74 67.31 64.10 62.82 57.05 61.54 57.69 58.33
18 diabetes 22.53 26.04 24.61 26.04 25.52 29.04 27.21 27.34 23.57 24.22 34.24
19 ecoli cpvsim 1.36 1.82 2.27 1.82 2.73 5.91 1.82 4.55 1.36 1.36 2.73
20 ecoli cpvspp 3.08 4.10 4.10 4.62 4.62 5.64 6.15 9.23 4.62 5.13 5.13
21 ecoli imvspp 5.43 3.88 5.43 5.43 4.65 9.30 6.20 5.43 2.33 3.88 5.43
22 gemsen MvsF 19.13 14.16 14.01 16.46 15.86 16.90 16.53 18.53 14.97 13.94 23.28
23 glass 27.40 39.73 19.18 29.45 27.40 34.93 30.82 28.77 30.14 28.08 39.73
24 groessen MvsF 10.87 10.43 14.35 12.61 13.48 13.48 13.48 13.04 12.61 7.83 7.83

25 haberman 25.16 24.51 25.82 28.43 27.12 28.76 26.80 28.43 26.14 25.16 23.53
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Table 4: Comparison of classification performance (average error rate); Part 2.

DDα + random Tukey depth + treatment DDα +
Mah.depth Mah. Spt. Prj.

No. Dataset LDA QDA KNN LDA KNN Moment MCD0.75 SVM-s depth depth depth

26 heart 16.30 16.67 33.70 22.59 21.85 22.96 22.96 24.44 20.37 18.15 27.78
27 hemophilia 14.67 16.00 16.00 16.00 17.33 18.67 18.67 18.67 17.33 16.00 21.33
28 indian-liver-patient 1vs2 29.88 44.56 31.26 30.92 28.15 30.57 31.61 36.96 29.88 28.50 29.19
29 indian-liver-patient FvsM 24.53 63.04 25.39 27.63 26.08 26.60 26.25 33.51 25.39 25.39 24.70
30 iris setosavsversicolor 0.00 0.00 0.00 0.00 0.00 12.00 0.00 0.00 0.00 0.00 0.00

31 iris setosavsvirginica 0.00 0.00 0.00 0.00 0.00 12.00 0.00 0.00 0.00 0.00 0.00

32 iris versicolorvsvirginica 3.00 4.00 3.00 3.00 3.00 6.00 4.00 10.00 3.00 6.00 5.00
33 irish-ed MvsF 45.00 43.40 45.40 42.80 44.60 42.60 42.40 44.60 40.20 43.60 39.60
34 kidney 28.95 28.95 34.21 28.95 28.95 31.58 35.53 30.26 28.95 31.58 28.95

35 pima 24.50 27.50 29.00 26.00 28.50 31.00 31.00 28.00 30.50 30.00 27.50
36 plasma-retinol MvsF 14.29 13.97 13.33 15.24 16.83 16.51 15.24 25.08 15.24 13.97 15.56
37 segmentation 8.33 9.24 4.55 4.55 4.09 7.58 5.30 14.55 7.73 8.79 12.73
38 socmob IvsNI 34.34 34.34 33.48 32.70 33.30 32.61 33.13 33.04 32.09 30.36 34.17
39 socmob WvsB 28.89 29.15 19.12 17.99 17.91 17.65 18.08 18.94 20.16 19.64 21.89
40 tae 17.22 19.87 23.18 11.92 13.91 14.57 17.22 15.89 17.22 16.56 17.22
41 tennis MvsF 41.38 44.83 43.68 45.98 49.43 47.13 39.08 52.87 37.93 36.78 41.38
42 tips DvsN 6.15 3.69 8.20 5.33 6.15 12.70 9.84 8.20 3.28 4.10 9.84
43 tips MvsF 36.48 38.52 32.38 42.21 43.85 40.16 39.34 41.39 38.11 38.11 34.43
44 uscrime SvsN 17.02 19.15 8.51 17.02 6.38 48.94 21.28 2.13 19.15 19.15 6.38
45 vertebral-column 15.81 17.42 15.81 17.10 18.06 21.94 23.55 19.03 14.52 15.16 16.45
46 veteran-lung-cancer 64.23 51.82 51.82 53.28 43.80 48.91 42.34 40.15 47.45 49.64 53.28
47 vowel MvsF 0.10 0.71 0.00 1.41 1.92 11.82 0.00 2.02 0.51 0.51 12.63
48 wine 1vs2 0.00 0.77 6.15 1.54 2.31 5.38 2.31 3.08 1.54 1.54 1.54
49 wine 1vs3 0.00 0.00 11.21 0.00 0.93 0.93 0.00 0.00 0.00 0.00 0.00

50 wine 2vs3 0.84 0.00 23.53 1.68 2.52 5.04 4.20 5.04 0.00 0.00 8.40
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Table 5: Comparison of classification indicators: average classification error (ACE);
average relative classification edge (ARCE) w.r.t. the best traditional and the overall
best classifier for a classification task; frequencies of better performance than the best
traditional (#≥trd) and the overall best (#≥bst) classifier.

N Classifier ACE ARCEtrd ARCEbst #≥trd #≥bst

1 LDA 16.79 -2.95 -4.73 0.52 0.32

2 QDA 18.10 -3.99 -6.28 0.36 0.18

3 KNN 18.00 -3.57 -5.84 0.42 0.16

4 DDα+RTD+LDA 16.58 -2.05 -4.37 0.38 0.22

5 DDα+RTD+KNN 17.16 -2.82 -5.13 0.30 0.12

6 DDα+RTD+Mah.d.(mom.) 19.52 -4.88 -7.27 0.20 0.08

7 DDα+RTD+Mah.d.(MCD0.75) 17.22 -2.37 -4.83 0.32 0.14

8 DDα+RTD+SVM-s 17.38 -2.74 -5.18 0.38 0.28

9 DDα+Mah.d.(mom.) 16.02 -1.05 -3.48 0.48 0.28

10 DDα+Mah.d.(MCD0.75) 17.43 -2.42 -4.79 0.42 0.28

11 DDα+Spt.d.(mom.) 15.79 -0.68 -3.15 0.52 0.30

12 DDα+Spt.d.(MCD0.75) 17.63 -2.83 -5.24 0.30 0.12

13 DDα+Prj.d.(10 000 dirs) 18.39 -4.09 -6.35 0.22 0.12

14 DDα+Prj.d.(100 000 dirs) 17.51 -2.70 -5.12 0.36 0.16
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Figure 5: Goodness of the 14 considered classifiers (abscissa) w.r.t. the five performance
measures (ordinate), obtained after standardizing the measures. The classifiers are
numerated as in Table 5.

of the DDα-procedure may be not the best solution, as it constructs a separation rule
only from a small fraction of the training sample. In addition there are data sets (not
that rarely encountered), where the outsider share amounts to 100% so that the pure
DDα-approach does not separate anything. This also explains the result obtained in
Section 4.3 that the better classifiers are based on non-vanishing depths.
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5.2 Dimension of the depth-feature space

Finally, we come to the question, how many depth features are needed on an average
to satisfactorily separate the data. The DDα-procedure uses the centered version of
the α-procedure (Vasil’ev, 2003; Vasil’ev & Lange, 1998) to separate the classes in the
depth space. As the α-procedure is a heuristic approach, it is of interest how close
this separation rule comes to the optimal one. Such a point of view corresponds to the
theoretical assumption that the depth transformation does not impair the separability
of the data set. By its nature the resulting separating rule is similar to that proposed
in Li et al. (2012), where the polynomial degree is chosen by cross-validating. Other
possible approaches are regression depth (Christmann & Rousseeuw, 2001; Christmann
et al., 2002) or SVM (Christmann et al., 2002; Vapnik, 1998). It is clear that in general
the obtained separating hypersurface is not the one minimizing EMR, if more than two
features are needed. But in which of the applications are they really needed?

Tables 6 and 7 exhibit the relative frequency of feature numbers, as they are selected
by α-separation and leave-one-out cross-validation. Surely these tables cannot be regard
as histograms (since we would need some bootstrap for that), but it can be concluded
that (on an average) in 99% of the cases two features are sufficient for the separating
rule. Note that the two-feature separators may include depth features of the extended
type. Such a two-feature rule clearly minimizes the EMR in the relevant plane. Of
course it may be possible to find a hyperplane in a more extended space, delivering a
smaller EMR than that obtained by the α-separation. On the other hand, no space
extension is needed in around 78% of the cases. In these cases no polynomial products
of depths are involved and the resulting separating rule is linear.

6 Conclusions

A fast classification procedure, the DDα-procedure, has been introduced that is es-
sentially nonparametric, robust, and computationally feasible for any dimension d of
attributes. The DDα-procedure is available in the R-package ddalpha. The DDα-
classifier is particularly robust for two reasons: first, as the classification is done by
the α-procedure, which is per se robust; second, as the data are transformed into a
low-dimensional compact space. Generally, two cases are to be distinguished with the
depth transform: non-vanishing depth or depth vanishing beyond the convex hulls of
the training classes. Non-vanishing depths, e.g. Mahalanobis or spatial, often induce a
spurious symmetry and are intrinsically non-robust (though, can be robustified). The
projection depth, which is non-vanishing, also produces ellipsis-like regions. It is robust,
but computationally inefficient when d ≥ 3. The last problem is faced by the Tukey
depth, which best reflects the shape of the data. In place of the exact versions of projec-
tion and Tukey depth we employ their random versions by minimizing univariate depths
in directions that are uniformly distributed on the sphere. A very large number of these
directions is needed for the calculation of the projection depth, while for the random
Tukey depth the number of directions can be kept low, as there is a tradeoff between
this number and the number of points being classified by their depth values.

On the other hand the random Tukey depth yields outsiders when classifying, i.e.
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Table 6: Numbers of features selected by the α-separation; Part 1.
No. Dataset 2, % 3, % ≥ 4, %

1 baby 99.19 0.81 0.00
2 banknoten 100.00 0.00 0.00
3 biomed 100.00 0.00 0.00
4 blood-transfusion 91.31 1.34 7.35
5 breast-cancer-wisconsin 97.57 2.43 0.00
6 bupa 100.00 0.00 0.00
7 chemdiab 1vs2 100.00 0.00 0.00
8 chemdiab 1vs3 100.00 0.00 0.00
9 chemdiab 2vs3 100.00 0.00 0.00
10 cloud 100.00 0.00 0.00
11 crab BvsO 100.00 0.00 0.00
12 crab MvsF 100.00 0.00 0.00
13 crabB MvsF 100.00 0.00 0.00
14 crabF BvsO 100.00 0.00 0.00
15 crabM BvsO 100.00 0.00 0.00
16 crabO MvsF 100.00 0.00 0.00
17 cricket CvsP 98.72 1.28 0.00
18 diabetes 99.61 0.13 0.26
19 ecoli cpvsim 100.00 0.00 0.00
20 ecoli cpvspp 100.00 0.00 0.00
21 ecoli imvspp 100.00 0.00 0.00
22 gemsen MvsF 99.85 0.07 0.07
23 glass 100.00 0.00 0.00
24 groessen MvsF 99.57 0.00 0.43
25 haberman 100.00 0.00 0.00

Average 99.08 0.65 0.27

points lying outside the convex hulls of all classes, which cannot be readily classified
and need additional treatment. In real data applications the percentage of outsiders
can be large (see the introduced measure of outsider proneness) and thus substantially
influence the classification performance. Therefore, the choice of the treatment is im-
portant when applying the random Tukey depth. The treatments considered subject
the outsiders either to linear discriminant analysis (LDA), classification according to k-
nearest neighbors (KNN), maximum Mahalanobis depth classification based on moment
or MCD estimates, or the newly introduced SVM-simplified procedure (SVM-s). The
latter is very fast as it needs no tuning of a box-constraint; only the smallest separat-
ing γ has to be computed. Additional calculations (not included here, see also Lange
et al. (2014a)) show, that regarding the other possible outsider treatments, the choices
of number k in KNN as well as of the covering parameter in MCD do not much influence
their performance.

Thus the DDα-procedure needs practically no parameter tuning. The degree of
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Table 7: Numbers of features selected by the α-separation; Part 2.
No. Dataset 2, % 3, % ≥ 4, %

26 heart 100.00 0.00 0.00
27 hemophilia 100.00 0.00 0.00
28 indian-liver-patient 1vs2 99.48 0.52 0.00
29 indian-liver-patient MvsF 98.96 1.04 0.00
30 iris setosavsversicolor 100.00 0.00 0.00
31 iris setosavsvirginica 100.00 0.00 0.00
32 iris versicolorvsvirginica 100.00 0.00 0.00
33 irish-ed MvsF 99.60 0.20 0.20
34 kidney 98.68 1.32 0.00
35 pima 93.00 5.50 1.50
36 plasma-retinol MvsF 99.37 0.63 0.00
37 segmentation 93.48 4.85 1.67
38 socmob IvsNI 99.57 0.35 0.09
39 socmob WvsB 99.83 0.09 0.09
40 tae 93.38 6.62 0.00
41 tennis MvsF 100.00 0.00 0.00
42 tips DvsN 99.59 0.41 0.00
43 tips MvsF 100.00 0.00 0.00
44 uscrime SvsN 100.00 0.00 0.00
45 vertebral-column 98.39 1.61 0.00
46 veteran-lung-cancer 100.00 0.00 0.00
47 vowel MvsF 94.75 3.43 1.82
48 wine 1vs2 100.00 0.00 0.00
49 wine 1vs3 100.00 0.00 0.00
50 wine 2vs3 100.00 0.00 0.00

Average 99.08 0.65 0.27

the separating polynomial is chosen by cross-validation within the depth representation
only, where the modified α-procedure, on each of the planar subspaces considered, has
a quick sort complexity, O((n1 + n2) log(n1 + n2), and by that is very fast.

The above introduced variants of the DDα-procedure are challenged by 50 binary
classification problems that arise from a broad range of real data. The tasks are com-
plicated by the presence of outliers and ties. As competitors of the DDα-procedure
three traditional classification methods (LDA, QDA, and KNN) are evaluated with the
same data. Naturally, none of the classifiers is best at all tasks in terms of the average
error rate, but each classifier is best at some of them. Our results also show that no
single depth or outsider treatment dominates the others. Just for almost all data sets
the classification of outsiders according to their maximum moment-Mahalanobis depth
is outperformed by the same with the MCD-Mahalanobis depth. This can be explained
by the outliers present.

Five goodness measures are introduced aggregating performance of the classifiers
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over the 50 classification tasks w.r.t. different aspects and allowing for direct comparison
of the classifiers. Clearly, classification performance greatly depends on the choice of
the depth and, if needed, the outsider treatment. The measures point out two DDα-
classifiers (starting with the best): based on spatial and Mahalanobis depth (both using
moment estimates). The rest of the classifiers show varying performance for different
goodness measures, which is demonstrated by the goodness visualization.

The experience with real-data problems tells us further that, in most practical cases,
the separation procedure in the depth space stops after a few steps. In most cases the
subspace spanned by the depth features needed has dimension two, which points out
the high stability of the separating rule.

The problems and solutions investigated in this study are also of interest in more
general settings: The problem of coping with outsiders is common to any statistical
procedure that is based on depth plots and involves a notion of depth vanishing outside
the convex hull. Using the random Tukey depth as an efficient approximation of the
Tukey depth and selecting the random directions has many applications. Available
algorithms for exactly calculating the Tukey depth (Rousseeuw & Struyf, 1998; Liu &
Zuo, 2014a) are computationally expensive, but can serve as a benchmark. Finally, the
SVM-simplified method is introduced and appears as a simple and efficient way to avoid
the computational burden of tuning the SVM.
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