Depth statistics

Karl Mosler

1 Introduction

In 1975 John Tukey proposed a multivariate median whichdsdbepest’ pointin a
given data cloud iR (Tukey, 1975). In measuring the depth of an arbitrary ppint
with respect to the data, Donoho and Gasko (1992) considhsiaatplanes through
z and determined its ‘depth’ by the smallest portion of dat Hre separated by
such a hyperplane. Since then, this idea has proved extydméful. A rich sta-
tistical methodology has developed that is based on datth @eyl, more general,
nonparametric depth statistics. General notions of dgithdeave been introduced
as well as many special ones. These notions vary regardéngcibmputability and
robustness and their sensitivity to reflect asymmetric sbab the data. According
to their different properties they fit to particular apptioas. The upper level sets
of a depth statistic provide a family of set-valued statssthamediepth-trimmed
or central regions They describe the distribution regarding its locatiorale@nd
shape. The most central region serves aseaian The notion of depth has been
extended from data clouds, that is empirical distributjiemgieneral probability dis-
tributions onRY, thus allowing for laws of large numbers and consistencyltesit
has also been extended frahvariate data to data in functional spaces. The present
chapter surveys the theory and methodology of depth statist

Recent reviews on data depth are given in Cascos (2009) aflth&€2006).
Liu et al. (2006) collects theoretical as well as appliedkvdriore on the theory
of depth functions and many details are found in Zuo and 8¢gr{l2000) and the
monograph by Mosler (2002).

The depth of a data point is reversely related twitflyingnessand the depth-
trimmed regions can be seen as multivariate set-vatjueohtiles To illustrate the
notions we consider bivariate data from the EU-27 counteggarding unemploy-
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ment rate and general government debt in percent of the GBBET). In what
follows we are interested which countries belong to a céntather homogeneous
group and which have to be regarded as, in some sense, @utlyin

Country Debt %Unempl. % Country Debt %qUnempl. %
Belgium 98.0 7.2||Luxembourg 18.2 4.9
Bulgaria 16.3 11.3|Hungary 80.6 10.9
Czech Republic  41.2 6.7||Malta 72.0 6.5
Denmark 46.5 7.6||Netherlands 65.2 4.4
Germany 81.2 5.9[|Austria 72.2 4.2
Estonia 6.0 12.5|Poland 56.3 9.7
Ireland 108.2 14.4f|Portugal 107.8 12.9
Greece 165.3 17.7]|Romania 33.3 7.4
Spain 68.5 21.7||Slovenia 47.6 8.2
France 85.9 9.6/ Slovakia 43.3 13.6
Italy 120.1 8.4||Finland 48.6 7.8
Cyprus 71.9 7.9||Sweden 38.4 7.5
Latvia 42.4 16.2|United Kingdon  85.7 8.0
Lithuania 38.5 15.4

Table 1 General government gross debt (% of GDP) and unemploymenbfahe EU-27 coun-
tries in 2011 (Source: EUROSTAT)

Overview: Section 2 introduces general depth statistidslaa notions related to
it. In Section 3 various depths fakrvariate data are surveyed: multivariate depths
based on distances, weighted means, halfspaces or sisyieetion 4 provides an
approach to depth for functional data, while Section 5 sreamputational issues.
Section 6 concludes with remarks on applications.

2 Basic concepts

In this section the basic concepts of depth statistics arednced, together with
several related notions. First we provide a general notfalepth functions, which
relies on a set of desirable properties; then a few varidritseoproperties are dis-
cussed (Section 2.1). A depth function induces an outly@sgriunction and a fam-
ily of central regions (Section 2.2). Further, a stochastiaering and a probability
metric are generated (Section 2.3).

2.1 Postulates on a depth statistic

Let E be a Banach spacé its Borel sets irE, and? a set of probability distribu-
tions on4. To start with and in the spirit of Tukey’s approach to datalgsis, we
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may regard?” as the class of empirical distributions giving equal pralitéds % to
n, not necessarily different, data pointsin= RY.

A depth functions a functionD : E x & — [0,1], (z,P) — D(z|P), that satisfies
the restrictions (or ‘postulated)1 to D5 given below. For easier notation we write
D(zX) in place ofD(z|P), whereX is an arbitrary random variable distributedras
Forze E, P € &2, and any random variabk having distributiorP it holds:

e D1 Translation invariant: D(z+b|X +b) =D(zX) forallbc E.

e D2 Linear invariant: D(AZAX) = D(zX) for every bijective linear transforma-
tionA:E—E.

e D3 Null at infinity: IimHZH%m D(zX)=0.

e D4 Monotone on rays: If a point z* has maximal depth, that B(z*|X) =
maxce D(Z]X) , then for anyr in the unit sphere oE the functiona — D(z" +
ar|X) decreases, in the weak sense, vaith- 0.

e D5 Upper semicontinuous:The upper level sefd, (X) = {ze E: D(Z]X) > a}
are closed for albr .

D1 and D2 state that a depth function &ffine invariant D3 and D4 mean that
the level setdy, a > 0, are bounded and starshaped al®utf there is a point
of maximum depth, this depth will w.l.o.g. be set to05 is a useful technical
restriction. An immediate consequence of restrictizhis the following:

Proposition 1. If X is centrally symmetric distributed about sonie=zE, then any
depth function D-|X) is maximal at z.

Recall thaiX is centrally symmetridistributed about* if the distributions ofX — z*
andz' — X coincide.

Our definition of a depth function differs slightly from thgitven in Liu (1990)
and Zuo and Serfling (2000). The main difference betweeretipestulates and
ours is that they additionally postulate Proposition 1 tdrbe and that they do not
require upper semicontinuifs.

D4 states that the upper level €& (x, ..., x") are starshaped with respectzto
If a depth function, in place db4, meets the restriction

e D4con:D(-|X) is aquasiconcaveunction, that is, its upper level sebs, (X) are
convex for alla >0,

the depth is mentioned ascanvex depthObviously, as a convex set is starshaped
with respect to each of its point®4conimpliesD4. In certain settings the restric-
tion D2 is weakened to

e D2iso: D(AZAX) = D(zX) for everyisometric linear transformatiorA: E —
E.

Then, in cas€ = RY, D is called anorthogonal invariant deptlin contrast to an
affine invariantdepth wherD2 holds. Alternatively, sometimd32 is attenuated to
scale invariance

e D2sca:D(AzAX)=D(zX) forallA >0.
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2.2 Central regions and outliers

For givenP and 0< a < 1 the level setPy(P) form a nested family oflepth-
trimmedor central regionsThe innermost region arises at somgax < 1, which in
general depends dh Dq,,.,(P) is the set ofleepest point1 andD2 say that the
family of central regions is affine equivariant. Centraliogg describe a distribution
X with respect to location, dispersion, and shape. This hasyragplications in
multivariate data analysis. On the other hand, given a ddataily {Cq (P)}qc(o,y
of set-valued statistics, defined oA, that are convex, bounded and closed, the
functionD,

D(z]P) =sup{a :z€ Cy4(P)}, z€E,Pec 2, 1)

satisfiesD1 to D5 andD4con hence is a convex depth function.

A depth functionD orders data by their degree of centrality. Given a sample, it
provides a center-outwantder statistic The depth induces amsutlyingness func-
tion RY — [0, oo by

1
DEX)
which is zero at the center and infinite at infinity. In tud{z|X) = (1+Out(z/X)) 1,
Points outside a central regi@y have outlyingness greater thafdl— 1; they can
be regarded asutliersof a specified levedr.

Out(z]X) =

2.3 Depth lifts, stochastic orderings, and metrics

Assumeamax = 1 for P € &2. By adding a real dimension to the central regions
Dq(P),a € [0,1], we construct a set, which will be mentioned asdeeth lift

D(P) ={(a,y) €[0,1] x E:y=ax,xe Dq(P), a € [0,1]}. (2)

The depth lift gives rise to aorderingof probability distributions in?: P <p Q

if
D(P) cD(Q). ®3)

The restrictionD(P) c D(Q) is equivalent toDq(P) C Da(Q) for all a. Thus,
P <p Q means that each central set@fs larger than the respective central set of
P. In this senseQ is more dispersedhanP. The depth ordering is antisymmetric,
hence arorder, if and only if the family of central regions completely chater-
izes the underlying probability. Otherwise it is a preordely. Finally, the depttD
introduces grobability semi-metrion &2 by the Hausdorff distance of depth lifts,

5 (P,Q) = &4(D(P),D(Q)). (4)
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Recall that theHausdorff distanced (C;,C;) of two compact set€; andC; is
the smallest such thaiC; plus theg-ball includesC, and vice versa. Again, the
semi-metric is a metric iff the central regions charactetize probability.

3 Multivariate depth functions

Originally and in most existing applications depth statstare used with data in
Euclidean space. Multivariate depth statistics are paetity suited to analyze non-
gaussian or, more general, non-elliptical distribution®f. Without loss of gen-
erality, we consider distributions of full dimensiointhat is, whose convex hull of
supportco(P), has affine dimensiod.

A random vectoX in RY has aspherical distributiorif AX is distributed a¥ for
every orthogonal matriA. It has arelliptical distributionif X = a+ BY for some
acRY, B e RYY, and spherically distributed; then we writeX ~ Ell(a,BB, ¢),
where¢ is the radial distribution o¥. Actually, on an elliptical distributiod® =
Ell(a,BB, ¢), any depth functio®(-, P) satisfyingD1 andD2 has parallel elliptical
level setsDq (P), that is, level sets of a quadratic form wisicatter matrix BB
Consequently, all affine invariant depth functions are et$sky equivalent if the
distribution is elliptical. Moreover, iP is elliptical and has a unimodal Lebesgue-
densityfp, the density level sets have the same elliptical shape lenddnsity is a
transformation of the depth, i.e., a functigrexists such thatp(z) = ¢ (D(z|P) for
all ze RY. Similarly, on a spherical distribution, any depth satisfypostulate®1
andD2isohas analogous properties.

In the following, we consider three principal approacheddfine a multivariate
depth statistic. The first approach is based on distancesgdroperly defined central
points or on volumes (Section 3.1), the second on certaitatistics {iz. decreas-
ingly weighted means of order statistics; Section 3.2),tttiel on simplices and
halfspaces iR? (Section 3.3). The three approaches have different coesess
on the depths’ ability to reflect asymmetries of the distiidmy, on their robustness
to possible outliers, and on their computability with higldénensional data.

Figures 1 to 4 below exhibit bivariate central regions fovesal depths and
equidistantr. The data consist of the unemployment rate (in %) and the GiaRes
of public debt for the countries of the European Union in 2011

Most of the multivariate depths considered are convex diteahvariant, some
exhibit spherical invariance only. Some are continuousiégointz or in the dis-
tribution P (regarding weak convergence), others are not. They diff¢hé shape
of the depth lift and whether it uniquely determines the ulyileg distribution.
A basic dispersion ordering of multivariate probabilitystdibutions serving as a
benchmark is thalilation order, which says thalY spreads out more thaxX if
E[¢ (X)] < E[¢(Y)] holds for every convey : RY — R; see, e.g. Mosler (2002).
It is interesting whether or not a particular depth ordeiimgoncordant with the
dilation order.
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3.1 Depths based on distances

The outlyingness of a point, and hence its depth, can be methé&y a distance
from a properly chosen center of the distribution. In thédfelng notions this is
done with different distances and centers.

L,-depth. The Lo-depth,D'2, is based on the mean outlyingness of a point, as
measured by the, distance,

D“(ZX) = (1+E|z—X[)) . (5)

It holds aimax = 1. The depth lift isD'2(X) = {(a,2) :El[z—aX||<1-a} and
convex. For an empirical distribution on pointsi = 1,...,n, we obtain

. -1
DR2(zxt,... X" = <1+%_Z||z—xi||> : (6)

Obviously, theLy-depth vanishes at infinityQ3), and is maximum at thepatial
medianof X, i.e., at the poinz € RY that minimizes Bz— X||. If the distribution
is centrally symmetric, the center is the spatial medianchéhe maximum is at-
tained at the center. Monotonicity with respect to the deepeint 04) as well as
convexity and compactness of the central regi@vscpn, D5) derive immediately
from the triangle inequality. Further, the-depth depends continuously anThe
Lo-depth converges also in the probability distribution: Barniformly integrable
and weakly convergent sequerige— P it holds lim,D(z|R,) = D(Z]P).

However, the ordering induced by the-depth is no sensible ordering of disper-
sion, since thé,-depth contradicts the dilation order. fg— x|| is convex inx, the
expectation Bz— X|| increases with a dilation &®. Hence (5) decreases (!) with a
dilation.

The L,-depth is invariant against rigid Euclidean motioixl{ D2is0), but not
affine invariant. An affine invariant version is construcéesdfollows: Given a posi-
tive definited x d matrix M, consider thév-norm,

llz|m = vVZM~1z, zeRY. (7)

Let Sk be a positive definitd x d matrix that depends continuously (in weak conver-
gence) on the distribution and measures the dispersighniofan affine equivariant
way. The latter means that

Skarb = ASKA"  holds for any matrixA of full rank and anyb. (8)
Then anaffine invariant lo-depthis given by
(1+El|lz—X][s,) " )

Besides invariance, it has the same properties aksuepth. A simple choice for
Sx is the covariance matriXx of X (Zuo and Serfling, 2000). Note that the covari-
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ance matrix is positive definite, as the convex hull of thexeupco(P), is assumed
to have full dimension. More robust choices &rare theminimum volume ellipsoid
(MVE) or theminimum covariance determinafNlCD) estimators; see Rousseeuw
and Leroy (1987), Lopuhaa and Rousseeuw (1991).

%pain %pain

20

Gree Greecé’

Yatvia

Lithuania,

150
Fig. 1 Governmental debtxfaxis) and unemployment ratg-éxis); Mahalanobis regions (mo-
ment, left; MCD, right) witha = 0.1(0.1),...,0.9.

Mahalanobis depths.Let cx be a vector that measures the locationXoin a
continuous and affine equivariant way and, as befSgehe a matrix that satisfies
(8) and depends continuously on the distribution. Basedhemstimatesx andSx
a simple depth statistic is constructed, temeralized Mahalanobis depthiven by

DMaN(ZX) = (1+|lz—cx|I3) (10)

Obviously, (10) satisfie®1 to D5 andD4con taking its unique maximum aiy.
The depth lift is the convex s@a"(X) = {(a,2) : [|z— acx|[3 < a®(a —1)},
and the central regions are ellipsoids aroondThe generalized Mahalanobis depth
is continuous orz andP. In particular, withcx = E[X] andSx = Zx the (moment)
Mahalanobis deptlis obtained,

D™8N(ZX) = (1+ (z— EIX)) I 'z~ EX))) (11)

Its sample version is

DMManZxl L x) = (1+ (z-x)/f;l(z—x)) , (12)

whereXx is the mean vector anﬁx is the empirical covariance matrix. It is eas-
ily seen that then-central set of a sample frof converges almost surely to the
a-central set ofP, for any a. Figure 1 shows Mahalanobis regions for the debt-
unemployment data, employing two choices of the maixnamely the usual mo-
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ment estimatex and the robust MCD estimate. As it is seen from the Figuresghe
region depend heavily on the choice®{. Hungary, e.g., is rather central (having
depth greater than 0.8) with the moment Mahalanobis degthewt is much more
outlying (having depth below 0.5) with the MCD version.

Concerning uniqueness, the Mahalanobis depth fails irtiigérg the underly-
ing distribution. As only the first two moments are used, anydistributions which
have the same first two moments cannot be distinguished mMhaéalanobis depth
functions. Similarly, the generalized Mahalanobis degtésinot determine the dis-
tribution. However, within the family of nondegenerateariate normal distribu-
tions or, more general, within any affine family of nondegeted-variate distribu-
tions having finite second moments, a single contour seteofthhalanobis depth
suffices to identify the distribution.

Bpain Bpain

Qatvia

T T
0 50 100 150

Fig. 2 Governmental debt and unemployment rate; projection deglons (left), Oja regions
(right); both witha = 0.1(0.1),...,0.9.

Projection depth. The projection deptthas been proposed in Zuo and Serfling
(2000):

—1
proj _ |<p,z)—mec{<p,X))|
DPPl(zX) = <1+p€s;p1 Bmed(p, X)) ) , (13)

whereS'1 denotes the unit sphere &9, (p,2) is the inner product (that is the
projection ofzon the line{A p: A € R}), medU) is the usual median of a univariate
random variabldJ, and DmedU) = med|U — medU)| is the median absolute
deviation from the median. The projection depth satisfidsto D5 and D4con
It has good properties, which are discussed in detail by ZubSerfling (2000).
For breakdown properties of the employed location and ecatétistics, see Zuo
(2000).

Oja depth. The Oja depth is not based on distances, but on average veloime
simplices that have vertices from the data (Zuo and Serfig0):



Depth statistics 9

e (4 E(vola(co{z Xa, ... Xa}) ) -
DOl (z|X)_<1+ N ) ;

whereXy, ..., Xq are random vectors independently distributed®aso denotes the
convex hullVy thed-dimensional volume, angx is defined as above. In particular,
we can choos®x = >x. The Oja depth satisfid31 to D5. It is continuous ore
and maximum at the Oja median (Oja, 1983), which is not unidhe Oja depth
determines the distribution uniquely among those measuhésh have compact
support of full dimension.

Figure 2 contrasts the projection depth regions with ther@jéons for our debt-
unemployment data. The regions have different shapesgoaean making Spain
and Greece the most outlying countries.

3.2 Weighted mean depths

A large and flexible class of depth statistics corresponds talled weighted-mean
central regions, shortly WM regions (Dyckerhoff and Mos2011, 2012). These
are convex compacts iRY, whose support function is a weighted mean of order
statistics, that is, an L-statistic. Recall that a convempactK ¢ RY is uniquely
determined by its support functidm,

hk(p) =max{p'x: xeK}, pest.

To define the WMa-region of an empirical distribution oxt,x?, ..., X", we con-
struct its support function as follows: Fare S*1, consider the lingAp € RY :
A € R}. By projecting the data on this line a linear ordering is oted,

p/x®1) < p/x®@) < ... < x| (14)

and, by this, a permutatiorns, of the indices 12,...,n. Consider weightsv; 4 for
j€{1,2,...,n} anda € [0,1] that satisfy the following restrictions (i) to (iii):

(i) ¥-1Wja =1,wjq >0 foralljanda.
(if) wjq increasesirj forall a.
(i) a<p implies ¥ wjo<3X  wjg, k=1...n.

Then, as it has been shown in Dyckerhoffand Mosler (201&)thctionhp,, a )

jeeny

n .
hDa(xl,...‘x”)(p) = Z Wj.a plxnp(” » PE 31717 (15)
=1

is the support function of a convex bo@y, = Dq(x},...,x"), andDy C Dg holds
wheneverr > 3. Now we are ready to see the general definition of a family of WM
regions.
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Definition 1. Given a weight vectowg = wy ¢,...Wn o that satisfies the restrictions
(i) to (iii ), the convex compa®y = Dy (XL, ..., x") having support function (15) is
named theV/M regionof x*, ... x" at levela , a € [0,1]. The corresponding depth
(1) is theWM depthwith weightswg, a € [0,1].

It follows that the WM depth satisfies the restrictiddé to D5 andD4con More-
over, it holds

n .
Da(X,... . X") = conv{ w;j ox™) ;T permutation of{l,...,n}} . (16)
=

This explains the name by stating that a WM region is the cohud#t of weighted
means of the data. Consequently, outside the convex huleadata the WM depth
vanishes. WM depths are useful statistical tools as theitrakregions have attrac-
tive analytical and computational properties. Sample Wilaes are consistent es-
timators for the WM region of the underlying probability. 8ees beingontinuous
in the distribution and irr, WM regions aresubadditivethat is,

DC{(Xl+y17"'7Xn+yn) C DC{(le"' 7Xn)®DC!(y17"' 7yn)7
andmonotonelf X < y' holds for alli (in the componentwise ordering Bf), then

Da(Yh,...,¥y") € Do (X,..., X" @ RY  and
Da(x},....X") € Da(yt,...,y" ) & RY,

where® signifies the Minkowski sum of sets.

Depending on the choice of the weightg, different notions of data depths are
obtained. For a detailed discussion of these and otherapdil depths and central
regions, the reader is referred to Dyckerhoff and Mosled (2@012).

%pain %pain

Greecé’ Greecé’

Jd-uxembourg )
Netherland® dustria

d-uxembourg )
Netherland® J\ustria

T T
0 50 100

T
150

0 50

T
100

T
150

Fig. 3 Governmental debt and unemployment rate; zonoid regi@fg,(ECH" regions (right);

both witha = 0.1(0.1), ..., 0.9.
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Zonoid depth. For an empirical distributioR onx!,...,x" and 0< a < 1 define
the zonoid region (Koshevoy and Mosler, 1997)

n . 1 n
DZNP) = AX T 0< A< — Ai=15.
a(P) {izilx _I_na’i;I }

See Figure 3. The corresponding support function (15) eysglee weights

0 ifj<n—|na],
Wjg =< 2=l if j—n—|nal, (17)

na
1

g Fj>n—[na].
Many properties of zonoid regions and the zonoid dé&piti(zX) are discussed in
Mosler (2002). The zonoid depth lift equals the so calledinoid, which fully
characterizes the distribution. Therefore the zonoidldgpherates an antisymmet-
ric depth order (3) and a probability metric (4). Zonoid g are not only invariant
to affine, but to general linear transformations; specificahy marginal projection
of a zonoid region is the zonoid region of the marginal disttion. The zonoid
depth is continuous onas well asP.

Expected convex hull depth.Another important notion of WMT depth is that
of expected convex hull (ECHYepth (Cascos, 2007). Its central regidgp (see
Figure 3) has a support function with weights

(1Y

Wi =
J,a nl/a

(18)
Figure 3 depicts zonoid and ECHegions for our data. We see that the zonoid
regions are somewhat angular while the EGElgions appear to be smoother; this
corresponds, when calculating such regions in higher déioes, to a considerably
higher computation load of ECH

Geometrical depth. The weights

W — Edamlif0<a<1,
ha 0 ifa=1,

yield another class of WM regions. The respective depth ésgiometrically
weighted mean dep{Dyckerhoff and Mosler, 2011).

3.3 Depths based on halfspaces and simplices

The third approach concerns no distances or volumes, babtheinatorics of half-
spaces and simplices only. In this it is independent of theimstructure ofRY.
While depths that are based on distances or weighted meanberaddressed as
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metric depthsthe following ones will be mentioned asmbinatorial depthsThey
remain constant, as long as the compartment structure afateedoes not change.
By this, they are very robust agairistation outliers Outside the convex support
co(X) of the distribution every combinatorial depth attains iisimal value, which
is zero.

Bpain Bpain

Greecé Greecé

0 - d-uxembourg X
Netherlandg” S\ustria
T T

T T T T
0 50 100 150 0 50 100 150

Fig. 4 Governmental debt and unemployment rate; Tukey regiofty{igh a = Z(%),..., 127,

simplicial regions (right) witta = 0.25,0.3(0.1),...,0.9.

Location depth. Consider the population version of tleeation depth
D'°(ZX) = inf{P(H) : H is a closed halfspace,c H} . (19)

The depth is also known dmlfspaceor Tukey depthits central regions abukey re-
gions The location depth is affine invariai®?{, D2). Its central regions are convex
(D4con) and closed5); see Figure 4. The maximum value of the location depth
is smaller or equal to 1 depending on the distribution. Thesall such points is
mentioned as thbalfspace median seind each of its elements adakey median
(Tukey, 1975).

If X has anangular symmetridistribution, the location depth attains its max-
imum at the center and the center is a Tukey median; this gitiens Propo-
sition 1. (A distribution is callecangular (= halfspac¢ symmetricaboutz* if
P(X € H) > 1/2 for every closed halfspace H haviagon the boundary; equiv-
alently, if (X — z)/||X — Z*|| is centrally symmetric with the conventiori@= 0.)

If X has a Lebesgue-density, the location depth depends constyonz oth-
erwise the dependence aiis noncontinuous and there can be more than one point
where the maximum is attained. As a functiorRothe location depth is obviously
noncontinuous. It determines the distribution in a unique vf the distribution is
either discrete (Struyf and Rousseeuw, 1999; KoshevoyZ 00continuous with
compact support. The location depth of a sample fRooonverges almost surely to
the location depth o (Donoho and Gasko, 1992). The next depth notion involves
simplices inRY.
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Simplicial depth. Liu (1990) defines theimplicial depthas follows:
D¥M(ZX) = P(z€ co({X4, ..., Xa11})), (20)
whereXy, ..., Xq;1 are i.i.d. byP. The sample version reads as

_
~ (aT)

The simplicial depth is affine invarianD{, D2). Its maximum is less or equal to
1, depending on the distribution. In general, the point okimaim simplicial depth

is not unique; thesimplicial medians defined as the gravity center of these points.
The sample simplicial depth converges almost surely umifpin zto its population
version (Liu, 1990; Dimbgen, 1992). The simplicial depés Ipositive breakdown
(Chen, 1995).

If the distribution is Lebesgue-continuous, the simpliciapth behaves well: It
varies continuously oz (Liu, 1990, Th. 2), is maximum at a center of angular
symmetry, and decreases monotonously from a deepest peihtThe simplicial
central regionsof a Lebesgue-continuous distribution are connected antpaot
(Liu, 1990).

However, if the distribution is discrete, each of these praps can fail; for coun-
terexamples see, e.g., Zuo and Serfling (2000). The siraptigipth characterizes
an empirical measure if the supporting points argemeral positionthat is, if no
more thard of the points lie on the same hyperplane.

As Figure 4 demonstrates, Tukey regions are convex whilplgiral regions are
only starshaped. The Figure illustrates also that thesenmmare rather insensitive
to outlying data: both do not reflebbw far Greece and Spain are from the center.
Whether, in an application, this kind of robustness is araathge or not, depends
on the problem and data at hand.

Other well known combinatorial data depths are thajority depth(Liu and
Singh, 1993) and theonvex-hull peeling deptiBarnett, 1976; Donoho and Gasko,
1992). However the latter possesses no population version.

DSM(ZxL, ..., x") #{{il,...,id+1} Lz co({xil,...,xid+1})}. (21)

4 Functional data depth

The analysis of functional data has become a practicallpiapt branch of statis-
tics; see Ramsay and Silverman (2005). Consider a dgpa¢éunctions|0,1] — R
with the supremum norm. Like a multivariate data depth, afional data depth is
a real-valued functional that indicates how ‘deep’ a fumtti € E is located in a
given finite cloud of functiong E. Let E’ denote the set of continuous linear func-
tionalsE — R, andE’? thed-fold Cartesian product d&’. Here, following Mosler
and Polyakova (2012), functional depths of a general for2) é2e presented. Some
alternative approaches will be addressed below.
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®-depth. For z € E and an empirical distributioX onx!,...,x" € E, define a
functional data deptlby

D(ZX) = deng(¢(Z)|¢(X)), (22)

whereDY is a d-variate data depth satisfying1 to D5, ® C E" and ¢ (X) is
the empirical distribution o (x}),...,¢(x"). D is called a®-depth A population
version is similarly defined.

Eachg¢ in this definition may be regarded as a particular ‘aspectavneeinter-
ested in and which is representediidimensional space. The depthzi§ given as
the smallest multivariate depth ptinder all these aspects. It implies that all aspects
are equally relevant so that the deptreafannot be larger than its depth under any
aspect.

As thed-variate depttD? has maximum not greater than 1, the functional data
depthD is bounded above by 1. At every poirt of maximal D-deptht holds
D(z‘|X) < 1. The bound is attained with equali(z‘|X) = 1, iff DY (¢ (z°)|¢ (X)) =
1 holds for allp € @, that is, iff

z e ()¢ '(DY((X))). (23)

pcd

A @-depth (22) always satisfiéxl, D2scg D4, andD5.

It satisfiesD3 if for every sequencé?) with ||Z|| —  exists ap in @ such that
¢(Z) — o. (For some special notions of functional data depth thisipate has to
be properly adapted.)

D4conis met if D4conholds for the underlying-variate depth.

We now proceed with specifying the sét of functionals and the multivariate
depthDK in (22). While many features of the functional data depth) 28emble
those of a multivariate depth, an important difference nbesfpointed out: In a
general Banach space the unit Halls not compact, and properti&3 andD5 do
not imply that the level sets of a functional data depth aragact. So, to obtain a
meaningful notion of functional data depth of type (22) oas to carefully choose
a set of functionsp which is not too large. On the other hard should not be too
small, in order to extract sufficient information from theala

Graph depths.Forx € E denotex(t) = (x1(t)...,%q(t)) and consider

O ={¢":E—=RI: ¢ (x) = (xa(t)...,xq(t)), t e T} (24)

for someT < [0,1], which may be a subinterval or a finite set. Ft use any
multivariate depth that satisfi€l to D5. This results in thgraph depth

GD(Zx%, ..., X") = inf DY(z(t)]xE(t),...,x"(t)). (25)

In particular, with the univariate halfspace depths= 1 andT = J we obtain
the halfgraph depth(Lopez-Pintado and Romo, 2005). Also, with the univariate
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simplicial depth theband depth(Lopez-Pintado and Romo, 2009) is obtained, but
this, in general, violates monotoniciB.

Grid depths. We choose a finite number of pointsdnty, ..., tx, and evaluate a
functionz € E at these points. Notate= (ty,...,t) andz(t) = (z(t),...,z(t))".
That is, in place of the functionthek x d matrix zZ¥ is considered. Ayrid depth
RDis defined by (22) with the followingp,

®={¢":¢"(2) = ((rnal),....(rz)).r e S, (26)
which yields

RD(Z,...x") = inf DU(rz0) |\ (W),.. (nX'W)).  (27)
re3*

A slight extension of the>-depth is theprincipal components dep{Vosler and
Polyakova, 2012). However, certain approaches from thealitire are n@-depths.
These are mainly of two types. The first type emplagsdom projection®f the
data: Cuesta-Albertos and Nieto-Reyes (2008b) define ththds a function as
the univariate depth of the function values taken at a ratglchosen argumerit
Cuevas et al. (2007) also employ a random projection mefhloel other type uses
average univariate depths. Fraiman and Muniz (2001) catietihe univariate depths
of the values of a function and integrate them over the whalerval; this results
in kind of ‘average’ depth. Claeskens et al. (2012) intradacnultivariated > 1)
functional data depth, where they similarly compute a wigidlaverage depth. The
weight at a point reflects the variability of the function was at this point (more
precisely: is proportional to the volume of a central regabthe point).

5 Computation of depths and central regions

The moment Mahalanobis depth and its elliptical centrabmgjare obtained in any
dimension by calculating the mean and the sample covariaatex, while robust
Mahalanobis depths and regions are determined with theoBegdures “cov.mcd”
and “cov.mve”. In dimensiod = 2, the central regions of many depth notions can
be exactly calculated by following @rcular sequencéEdelsbrunner, 1987). The
R-package “depth” computes the exact locatidn=2,3) and simplicial ¢ = 2)
depths, as well as the Oja depth and an approximative lotagpth for any di-
mension. An exact algorithm for the location depth in anyetigion is developed
in Liu and Zuo (2012). Cuesta-Albertos and Nieto-Reyes &0)@ropose to cal-
culate instead theandom Tukey depttwhich is the minimum univariate location
depth of univariate projections in a number of randomly emodirections. With
the algorithm of Paindaveine ai®iman (2012), Tukey regions are obtaindd; 2.
The bivariate projection depth is computed by the R-pack&x®D2D”; for the
respective regions, see Liu et al. (2011). The zonoid deguhbe efficiently deter-
mined in any dimension (Dyckerhoff et al., 1996). An R-pagk&'WMTregions”)
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exists for the exact calculation of zonoid and general WMaes; see Mosler et al.
(2009); Bazovkin and Mosler (2012). The R-package “rainboalculates several
functional data depths.

6 Conclusions

Depth statistics have been used in numerous and diverse ¢tdskhich we can
mention a few only. Liu et al. (1999) provide an introductimnsome of them.
In descriptive multivariate analysis, depth functions aedtral regions visualize
the data regarding location, scale and shape. By bagpldtsamburst plots out-
liers can be identified and treated in an interactive wak-thass supervised clas-
sification, each - possibly high-dimensional - data pointeigresented if0, 1)
by its values of depth in thk given classes, and classification is dondari¥,
Functions of depth statistics include depth-weightedsdteal functionals, such as
Jra XW(D(X|P))dP/ [ra W(D(x|P))dP for location. In inference, tests for goodness
of fit and homogeneity regarding location, scale and symyreete based on depth
statistics; see, e.g. Dyckerhoff (2002); Ley and Painde€011). Applications in-
clude such diverse fields as statistical control (Liu andyBjri993), measurement
of risk (Cascos and Molchanov, 2007), and robust linear ramogning (Bazovkin
and Mosler, 2011). Functional data depth is applied to simi#dsks in description,
classification and testing; see e.g. Lopez-Pintado anddR@®09); Cuevas et al.
(2007).

This survey has covered the fundamentals of depth statifiicd-variate and
functional data. Several special depth function&thhave been presented, metric
and combinatorial ones, with a focus on the recent class of #épths. For func-
tional data, depths of infimum type have been discussed. @Bepsuch a survey
is necessarily incomplete and biased by the preferencé=author. Of the many
applications of depth in the literature only a few have beerched, and important
theoretical extensions like regression depth (RousseeuhHabert, 1999), depth
calculus (Mizera, 2002), location-scale depth (Mizera kiidler, 2004), and like-
lihood depth (Muller, 2005) have been completely omitted.

Most important for the selection of a depth statistic in &#ilons are the ques-
tions of computability and - depending on the data situatioobustness. Maha-
lanobis depth is solely based on estimates of the mean vaotbthe covariance
matrix. In its classical form with moment estimates Mahalais depth is efficiently
calculated but highly non-robust, while with estimateg like minimum volume el-
lipsoid it becomes more robust. However, since it is coristaellipsoids around the
center, Mahalanobis depth cannot reflect possible asyriesetft the data. Zonoid
depth can be efficiently calculated, also in larger dimemsibut has the drawback
that the deepest point is always the mean, which makes thie dep-robust. So, if
robustness is an issue, the zonoid depth has to be combitie@ wroper prepro-
cessing of the data to identify possible outliers. The liocatlepth is, by construc-
tion, very robust but expensive when exactly computed inegisions more than
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two. As an efficient approach the random Tukey depth yieldspgoer bound on the
location depth, where the number of directions has to be komehosen.

A depth statistics measures the centrality of a point in tite.dBesides ordering
the data it provides numerical values that, with some depttons, have an obvi-
ous meaning; so with the location depth and all WM depthshWiher depths, in
particular those based on distances, the outlyingnessiduritas a direct interpre-
tation.
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