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Abstract: The presentation compares two different methods of pattern recognition – the so-

called Alpha-Procedure (or α-procedure), that has been developed by V.I. Vasil’ev and  

T.I. Lange since the Seventies, and the Support Vector Machine, proposed by V. Vapnik in 

parallel in the same time period. 

The Alpha-Procedure can be considered as an inductive approach where the dimension of 

the pattern space is stepwise extended by adding the “best” features as new “axes”. The 

“best” features are the features with the maximum “discrimination power” that is defined on 

basis of the local optimum principle. 

The Support Vector Machine follows a deductive approach where the optimal division of 

the patterns (in sense of the so-called “generalized portrait”) is searched in the complete 

space of measured features. 

Together with the geometric-algorithmic comparison of the two approaches there will be 

also shown their connection to the computation of the multidimensional Data Depth. 
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1 The Task of Pattern Recognition 

Normally, we start with given (measured) data for different objects and their 

properties that are assigned to different classes by a “trainer”. This set of classified 

data we call “training set”. The table below shows an example. 

We search a separating hyperplane (fig. 1) or a separating hypersurface (fig. 2) 

using for that the initially measured and classified data (the training set) and we 

hope that this plane (or surface) will afterwards work automatically for other 

measured data and define without the trainer to which class V1 or V2 the object xl+k 

belongs. 

 
 



*) A property pj can be the weight, the height, the number of horns, the lengths of the wool 

e.t.c. Let’s assume that we have 2 classes: V1 - wolves and V2 – sheep 

**) The row i corresponds to the object No. i that can be considered as vector xi in the m-

dimensional space of properties. xij are the elements (coordinates) of the vector xi. 

 

 
Fig. 1: Separation by hyperplane  Fig. 2: Separation by hypersurface 

 

Rectifying space 

In the case shown in fig. 2 the separating surface can be converted into a separating 

plane but only in the so-called rectifying or extended space.  

For that purpose we use together with or instead of the properties pj combined 

properties which express the interaction of some original properties which can be 

described mathematically as ),( kjjk pp  . The table below shows an example. 

 

The separating plane is described by   0
1

 

M

i i pa  where M – is the number of 

properties within the new “extended” or “rectifying” space. 

This is the reason that in the Support Vector Machine (SVM) and in the  

α-Procedure only the term hyperplane is used. 

Both the α-procedure and SVM correspond to the nature of task described above. 

But they are based on different ideas and they often have different application 

areas and also different strengths and weaknesses.  

SVM is well suited for tasks where we have a very large number of objects in a 

range of 10
3
 and more. These objects may be the picture elements of scans which 

are used for the recognition and comparison of handwritings, e.g. for the 

recognition of forged signatures in criminology. The essential of this method is that 

only support vectors of the objects are considered but this is done in the complete 

property space. That means only the vectors of objects are taken into account 

which are on a critical trajectory.  



As consequence this method is very sensitive according the existence or absence of 

critical support points within the data. The algorithmic calculation comes to the 

Kuhn-Tucker optimization. 

The α-procedure is well suited for tasks where we have natural properties 

“defining” the objects of a class but these properties are often hidden, e.g. 

(important) physical components within the smelting in metallurgy or hidden signs 

telling about the prosperity of a bank in the financial world. Let us use another 

clear example for the explanation: The property pi describing the existence of horns 

(pi =1) or the absence of horns (pi =0) is such a “defining” property for the 

automated separation of wolves and sheep. The α-procedure finds these properties 

in an automated way and uses them for the separation of the object classes. 

For the α-procedure all objects (but not all of their properties) are equally 

important. This is the reason for a large number of operations. But it gives a stable 

separation using a very small number (2-4) of “useful” properties which we call 

features (but with another meaning as in SVM) after certain transformations. 

During the calculation process the investigator can easily observe the stepwise 

separation of the object clouds V1 and V2 together with the accumulation of features 

because they are always represented in a plane. This is the main idea of the α-

procedure. In addition, the focus on feature selection instead of support object 

selection depends less on coincidences and is therefore more robust.  

Both methods have one weakness which will be discussed in the outlook. 

 

2 SVM, Generalized Portrait and their geometric interpretation 

The “Generalized Portrait” is the basis of the Support Vector Machine (SVM). The 

term “Generalized Portrait” stands for the clarification which positioning 

parameters of one class V1 within the property space are important and measurable 

and can be used for the comparison of V1 with other classes, e.g. V2. 

Such parameters are: 

● Vector Ψ builds a “generalized portrait” which is characterized by the 

“average” direction of all object vectors of class V1 (see fig. 3). This vector Ψ 

describes the direction to class V1 and the distance of V1 from the origin of 

coordinates. 

)(1  c , with  - as unit vector with the same direction as Ψ.  . 

c1(φ) characterizes the distance of class V1. c1(φ)=0B is vertical to the “tangential” 

plane of class V1 which is the nearest to the origin of coordinates. 

The minimum vector Ψ is searched, that means Ψ is defined from the condition 

min,  , i.e.   max1 1  c . 

The search of the “generalized portrait” Ψ comes to the task of optimization: 
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In the case where the origin of the coordinates meets the “centre” of class V1 then 

the generalized portrait vector Ψ=0 (see fig. 4). 



● The SVM uses the idea of the “generalized portrait” for the definition of the 

mutual locations of two classes (patterns) in the space of properties pi (see fig. 5). 

For this purpose a separating hyperplane is searched under the condition 

        max21   cc  

with       ,2*
2

*
1 xcc  and *  as optimal unit vector. 

 
 

3 α-Procedure 

First, let us explain the idea. We consider a number of objects belonging to two 

different classes V1 and V2. All objects are characterized by a certain amount of 

properties with different (continuous) values.  

Using a given training set the α-procedure selects out of all existing properties only 

those properties which separate the objects faultlessly or, at least, with a minimum 

of faults. These “useful” properties will be transformed into new features by the 

procedure described below. 

At the beginning we define for each property the discrimination power 

  lpF ii  with i  - number of correctly classified objects and l – number of all 

objects. For the classification we use only the properties for which   0/1 npF i   

with n0 as dimension of the property space. Then we select the property with the 

best discrimination power as basis feature f0 and represent it together with its 

values for the objects as an axis as shown in fig 6. 

On the next stage we add a second property pk to the coordinate system and define 

the positions of the objects in the plane that is built by the axes f0 and pk. 



After that we create a new axis 1

~
f and turn it around the origin of the coordinate 

system by the angle α up to the moment when the projections of the objects onto 

this new axis give us the best separation of the objects (fig. 6). 

We remember that property together with its separation power and its optimal 

value α (this is from what the name of the procedure comes). 

We repeat this procedure for all remaining properties and select that one property 

that gives the best separation of the objects on its corresponding axis 
1

~
f . That we 

take now as next feature. 

 

Fig: 6: Mapping of objects onto the optimal rotated axis 1

~
f  

 

Fig: 7: Final separation of objects in the plane (
1

~
f ,f2) on axis 

2

~
f . 



On the third stage we add another property pj as a third axis and define the position 

of the objects in a new plane that is built by the axes 
1

~
f  and pj (fig. 7). We repeat 

the same procedure as on the second stage and define this way the third feature 
2

~
f . 

In our simple example in fig. 7 the third feature already leads to a faultless 

separation of the objects on its axis 
2

~
f .  

Now, let’s shortly describe the way of calculation. 

As we can see from the description of the idea, the procedure is always the same 

for each step except the first basic step defining  f0. 

Let’s assume that we have already selected k-1 properties as features. We will use 

the symbol lix ki ,...,1 ,~
)1(,  for the projections of the objects onto the feature 

1

~
kf and 

1k  for the cardinality of the set of correctly classified objects. 

Performing now the step k we compute the projection 

                   
)cos(~

)(, qiikix      (1) 

onto the new axis kf
~

 for all remaining properties fq and for all objects with 

22
)1(,

~
iqkii xx   and )~arctan( )1(,  kiiqi xx . xiq is the value of the property pq of 

the object i.  

Now we turn the axis kf
~

 by the variable angle   ,0q  and define the optimal 

angle *
q  providing the largest number q  of correctly classified objects for the 

optimal threshold *
qf . When this property pq satisfies the condition 
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then we will select the corresponding axis kf
~

 as the next feature. The direction of 

this feature is given with the angle *
q  and the projections of the objects onto this 

feature are defined by )cos(~ *
)(, qiikix   . 

The execution of the procedure results in a structure consisting of the number of 

the initial basic property, a set of n-1 pairs of property numbers and corresponding 

angles (describing the features), and also of the threshold value for the last feature. 

With it, the normal vector of the separating hyperplane consists of a sequence of 

values 
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where the position of the number in the sequence corresponds to the step of the 

procedure and the value of the bias corresponds to the threshold of the last feature. 

Due to the fact that in (3) the elements of the normal vector are arranged by the 

induction of the procedure they must be assigned backwards to their properties for 

practical classification. Non-selected properties will not be used at all.  

 



4. Two Trojan Horses in SVM and α-Procedure 

Both the SVM and the α-procedure do not solve the so called “gap problem” of the 

compromise between the precision of the separation on the training sequence and 

the stability of the algorithm on new data points or the compromise between fit and 

complexity (see fig. 8). In the case that the original table with training data leads to 

an incomplete separation of the classes V1 and V2 we can use the rectifying or 

extended table of properties as described above. Then, the separating hyperplane 

that we will get in the extended space corresponds to a hypersurface in the original 

space. 

The second Trojan horse is the “outlier problem” where the empirical functional Qe 

deviates significantly from the mean square functional Qm (see fig. 9) This problem 

was solved by Vapnik with the help of a generalization of the Glivenko-Cantelli 

Theorem of Uniform Convergence where Vapnik used the C-metric instead of the 

Lp2-metric. The use of the C-metric limits the effect of the outlier sample up to a 

certain width of the corridor. 

But unfortunately the use of support vectors reduces the robustness because the 

SVM is very sensitive against chances of these vectors. 

 

Fig.8: The Gap Problem          Fig. 9: The Outlier Problem  

 

5. Outlook 

One famous idea of Tukey was the introduction of the non-parametric term data 

depth in 1974 which has relieved us from the binding to a concrete distribution 

function.  

After Tukey (see Zuo and Serfling [8]) different methods for computing the data 

depths were proposed. But all corresponding tasks were restricted to a dimension 

of m=2. 

The problem of extending the dimensioning to m > 2 was solved by Mosler and 

Lange [9] and new opportunities for pattern recognition have been opened. 

Using the term data depth we can reword the Machalanobis distance and the 

Novikov distance (see Fig. 10). 



The relative Machalanobis distance QM is the lower estimation of the quality of the 

decision rule when the lengh of the data sample is fixed. 

The relative Novikov distance QN is the upper border of the quality of the decision 

rule. 

 

 
Fig. 10: New interpretation of the Machalanobis and Novikov distances 

We see that Q1N corresponds to distance 21 cc  . For that reason the term data 

depth of classes can be applied to the definition of the separating hyperplane as 

shown in fig 5. 

This opens the opportunity for using the reworded definitions of the Machalanobis 

and Novikov distances for the separation of classes. 
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