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Abstract

Multivariate measures of association are considered which, in the bivariate case, coincide with the
population version of Spearman’s rho. For these measures, nonparametric estimators are introduced
via the empirical copula. Their asymptotic normality is established under rather weak assumptions
concerning the copula. The asymptotic variances are explicitly calculated for some copulas of simple
structure. For general copulas, a nonparametric bootstrap is established.
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1 Introduction

Spearman’s rho is a widely used measure for the strength of association between two random
variables X and Y. It is invariant with respect to the marginal distributions of X and Y, and can be
expressed as a function of their copula. This property is also known as ‘scale-invariance’. There are
various ways to extend Spearman’s rho to a (multivariate) measure of association between d random
variables X1, . . . ,Xd. This is of interest in many fields of application, e.g. in the multivariate analysis
of financial asset returns where one wants to express the amount of dependence in a portfolio by a
single number.

The focus of this paper is on the nonparametric estimation of multivariate population versions of
Spearman’s rho via the empirical copula. Using empirical process theory it can be shown that
the estimators are asymptotically normally distributed under rather weak assumptions concerning
the copula of X1, . . . ,Xd. We obtain compact expressions for the asymptotic variances of these
estimators, which are determined by the copula and its partial derivatives. If the copula possesses
a simple structure, these obtained formulas are suitable for explicit computations. Otherwise, we
provide a bootstrap algorithm.

The structure of the paper is as follows. The next section introduces the notation and some
definitions used in the following. Section 3 reviews three multivariate extensions of the population
version of Spearman’s rho and derives some analytical properties. Section 4 introduces the related
nonparametric estimators which are based on the empirical copula and establishes their asymptotic
normality. Thereafter, formulas for their asymptotic variances are given and a bootstrap procedure
is presented. Finally, in Section 5 we explicitly calculate the asymptotic variance for various copulas.
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2 Notation and Definitions

Throughout the paper we write bold letters for vectors, e.g., x := (x1, . . . , xd) is a d-dimensional
vector. Inequalities x ≤ y are understood componentwise, i.e, xi ≤ yi for all i = 1, . . . , d. The
indicator function on a set A is denoted by 1A. The set [a, b]d, a < b, refers to the d-dimensional
cartesian product [a, b] × · · · × [a, b] ⊂ R

d. The space `∞(T ) comprises all uniformly bounded
real-valued functions on some set T. We equip the space with the uniform metric m(f1, f2) =
supt∈T |f1(t)−f2(t)|. Let X1,X2, . . . ,Xd be d ≥ 2 random variables with joint distribution function

F (x) = P (X1 ≤ x1, . . . ,Xd ≤ xd) , x = (x1, . . . , xd) ∈ R
d,

and marginal distribution functions Fi(x) = P (Xi ≤ x) for x ∈ R and i = 1, . . . , d. If not stated
otherwise, we will always assume that the Fi are continuous functions. Thus, according to Sklar’s
theorem (Sklar, 1959), there exists a unique copula C : [0, 1]

d → [0, 1] such that

F (x) = C (F1 (x1) , . . . , Fd (xd)) for all x ∈ R
d.

The copula C is the joint distribution function of the random variables Ui = Fi(Xi), i = 1, . . . , d.
Moreover, C(u) = F (F−1

1 (u1), . . . , F
−1
d (ud)) for all u ∈ [0, 1]d. The generalized inverse function

G−1 is defined via G−1(u) := inf{x ∈ R∪{∞} | G(x) ≥ u} for all u ∈ (0, 1] and G−1(0) := sup{x ∈
R ∪ {−∞} | G(x) = 0}. A detailed treatment of copulas is given in Nelsen (1999) and Joe (1997).

A copula is said to be radially symmetric if, and only if,

C(u) = P (U ≤ u) = P (U > 1 − u) =: C̄(1 − u) for all u ∈ [0, 1]d.

It is well known that every copula C is bounded in the following sense:

W (u) := max {u1 + . . . + ud − (d − 1), 0}
≤ C (u) ≤ min {u1, . . . , ud} =: M (u) for all u ∈ [0, 1]d,

where M and W are called the upper and lower Fréchet-Hoeffding bounds, respectively. The upper
bound M is a copula itself and is also known as the comonotonic copula. It represents the copula
of X1, . . . ,Xd if F1 (X1) = · · · = Fd (Xd) with probability one, i.e., where there is (with probability
one) a strictly increasing functional relationship between Xi and Xj (i 6= j). By contrast, the lower
bound W is a copula only for dimension d = 2. Another important copula is the independence
copula

Π (u) :=

d
∏

i=1

ui, u ∈ [0, 1]
d
,

describing the dependence structure of stochastically independent random variables X1, . . . ,Xd.

3 Multivariate Extensions of Spearman’s rho

The following three multivariate population versions of Spearman’s rho are considered (d ≥ 2) :

ρ1 = h(d) ·
{

2d

∫

[0,1]d
C(u) du − 1

}

with h(d) =
d + 1

2d − (d + 1)
,

ρ2 = h(d) ·
{

2d

∫

[0,1]d
Π(u) dC(u) − 1

}

and

ρ3 = h(2) ·
{

22
∑

k<l

(

d

2

)−1 ∫

[0,1]2
Ckl(u, v) dudv − 1

}

,

where Ckl(u, v) refers to the bivariate marginal copula of C which corresponds to the k-th and
l-th margin. The estimation of ρ1 has been originally considered in Ruymgaart and van Zuijlen
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(1978) and was later discussed by Wolff (1980), Joe (1990), and Nelsen (1996). A related class of
multivariate measures of tail dependence is developed in Schmid and Schmidt (2006). The version
ρ2 appears first in Joe (1990) and later in Nelsen (1996). Further, ρ3 is known as the population
version of the average pair-wise Spearman’s rho given, for example, in Kendall (1970), Chapter 6.

The motivation of ρ3 as the weighted average of all pair-wise Spearman’s rhos is obvious. By
contrast, the motivation of ρ1 and ρ2 becomes clearer by the following. Spearman’s rho of a two-
dimensional random vector X with copula C can be written as

ρ =
Cov (U1, U2)

√

V ar (U1)
√

V ar (U2)
=

1
∫

0

1
∫

0

uv dC (u, v) −
(

1
2

)2

√

1
12

√

1
12

= 12

1
∫

0

1
∫

0

C(u, v) dudv − 3,

where (U1, U2) have joint distribution function C. This expression is equal to

ρ =

∫

[0,1]2
C(u, v) dudv −

∫

[0,1]2
Π(u, v) dudv

∫

[0,1]2
M(u, v) dudv −

∫

[0,1]2
Π(u, v) dudv

=

∫

[0,1]2
uv dC(u, v) −

∫

[0,1]2
uv dΠ(u, v)

∫

[0,1]2
uv dM(u, v) −

∫

[0,1]2
uv dΠ(u, v)

because of
∫

[0,1]2
M(u, v) dudv = 1/3 and

∫

[0,1]2
Π(u, v) dudv = 1/4. Thus, ρ can be interpreted as

the normalized average distance between the copula C and the independent copula Π(u, v) = uv.
The following d-dimensional extension of ρ to ρ1 (and analogously to ρ2) is now straightforward

∫

[0,1]d
C(u) du−

∫

[0,1]d
Π(u) du

∫

[0,1]d
M(u) du−

∫

[0,1]d
Π(u) du

=
d + 1

2d − (d + 1)

{

2d

∫

[0,1]d

C(u) du − 1
}

= ρ1.

For d = 2, Spearman’s ρ coincides with ρ1 = ρ2 = ρ3, though, for d > 2 the values of ρi, i = 1, 2, 3,
are different in general. There exists, however, an interesting relationship between ρ1 and ρ2.
Consider a random vector X = (X1, . . . ,Xd) and an index set I ⊂ {1, . . . , d} with cardinality
2 ≤ |I| ≤ d. We denote by ρ1,I the |I|-dimensional version of ρ1 corresponding to those variables
Xi where i ∈ I. The following relationship holds:

ρ2,{1,...,d} =

d
∑

k=2

(−1)k h(d)

h(k)

2d

2k

∑

I ⊂ {1, . . . , d}
|I| = k

ρ1,I .

This can be derived via partial integration combined with the inclusion-exclusion principle. There
is an immediate consequence of this relationship if C is radially symmetric. In this case ρ1,{1,...,d}

and ρ2,{1,...,d} coincide. Moreover, if d is odd, then both measures of association can be expressed
by the lower dimensional ρ1,I :

ρ1,{1,...,d} = ρ2,{1,...,d} =

d−1
∑

k=2

(−1)k h(d)

h(k)

2d−1

2k

∑

I ⊂ {1, . . . , d}
|I| = k

ρ1,I .

If d is even, we have

0 =
d−1
∑

k=2

(−1)k h(d)

h(k)

2d

2k

∑

I ⊂ {1, . . . , d}
|I| = k

ρ1,I .

Further, ρ1 and ρ3 are closely related to each other for the following copula C0, which is a convex
combination of copulas:

C0(u) =
∑

k<l

(

d

2

)−1

Ckl(uk, ul) ·
∏

j 6=l,k

uj , (1)
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where Ckl refers to the marginal copula which corresponds to the k-th and l-th margin of (any)
copula C. In this particular case, ρ3(C) = h(2){2d

∫

[0,1]d
C0(u) du − 1}, which coincides with

ρ1(C0) except for a normalizing factor. Note that ρ1(C0) ≤ h(d)/3. We remark that ρ3 has certain
disadvantages as a multidimensional measure of association, as it is determined by the bivariate
copulas only. Consider, for example, the 3-dimensional copula C(u, v, w) = uvw + λu(1 − u)v(1 −
v)w(1−w), |λ| ≤ 1, which is of FGM type discussed in Section 5. This copula possesses independent
bivariate margins and, therefore, ρ3 = 0. By contrast, ρ1 = λ · 6−3 6= 0 if λ 6= 0.

4 Nonparametric estimation via the empirical copula

Consider a random sample (Xj)j=1,...,n from a d-dimensional random vector X with joint distribu-
tion function F and copula C which are completely unknown. The marginal distribution functions
Fi are estimated by their empirical counterparts

F̂i,n(x) =
1

n

n
∑

j=1

1{Xij≤x}, for i = 1, . . . , d and x ∈ R.

Further, set Ûij,n := F̂i,n(Xij) for i = 1, . . . , d, j = 1, . . . , n, and Ûj,n = (Û1j,n, . . . , Ûdj,n). Note
that

Ûij,n =
1

n
(rank of Xij in Xi1, . . . ,Xin).

The estimation of ρi, i = 1, 2, 3, will therefore be based on ranks (and not on the original ob-
servations). In other words, we consider rank order statistics. The copula C is estimated by the
empirical copula which is defined as

Ĉn(u) =
1

n

n
∑

j=1

d
∏

i=1

1{Ûij,n≤ui}
for u = (u1, . . . , ud) ∈ [0, 1]d.

Empirical copulas were introduced and studied by Deheuvels (1979) under the name of ‘empirical
dependence functions’. The estimators of ρi, i = 1, 2, 3, are given by

ρ̂1,n = h(d) ·
{

2d

∫

[0,1]d
Ĉn(u) du − 1

}

= h(d) ·
{2d

n

n
∑

j=1

d
∏

i=1

(1−Ûij,n) − 1
}

ρ̂2,n = h(d) ·
{

2d

∫

[0,1]d
Π(u) dĈn(u) − 1

}

= h(d) ·
{2d

n

n
∑

j=1

d
∏

i=1

Ûij,n − 1
}

,

ρ̂3,n + 3 = 12
∑

k<l

(

d

2

)−1 ∫

[0,1]2
Ĉkl,n(u, v) dudv =

12

n

(

d

2

)−1
∑

k<l

n
∑

j=1

(1 − Ûkj,n)(1 − Ûlj,n)

with h(d) = (d + 1)/(2d − d − 1) and Ĉkl,n(u, v) being the bivariate marginal empirical copula

of Ĉn which corresponds to the k-th and l-th margin. The right formula of ρ̂2,n is developed in
Equation (8) later. The estimator ρ̂1,n for d = 2 differs slightly from the traditional sample version
of Spearman’s rho

ρ̂S,n = 1 − 6n

n2 − 1

n
∑

j=1

(Û1j,n − Û2j,n)2, (2)

which is used if no ties are present in the sample. It can be shown that ρ̂1,n ≤ ρ̂S,n for n ∈ N and
limn→∞

√
n{ρ̂1,n − ρ̂S,n} = 0 almost surely. Therefore, in the bivariate case, ρ̂1,n and ρ̂S,n have the

same asymptotic distribution. An equivalent result for ρ̂3,n and the traditional sample version of
ρ3, as given, e.g., in Kendall (1970), Chapter 6, holds. A method for approximating the asymptotic
variance of ρ̂S,n is developed in Borkowf (1999) and Borkowf (2002).
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The derivation of the limiting laws for
√

n(ρ̂i,n − ρi) involves the following theorem concerning

the asymptotic behavior of the copula process
√

n{Ĉn(u) − C(u)} which has been investigated in
various setting, e.g., by Rüschendorf (1976), Stute (1984), Gänßler and Stute (1987), Fermanian,
Radulović, and Wegkamp (2004), and Tsukahara (2005).

Theorem 1 Let F be a continuous d-dimensional distribution function with copula C. Under the

additional assumption that the i-th partial derivatives DiC(u) exist and are continuous for i =
1, . . . , d, we have √

n{Ĉn(u) − C(u)} w→ GC(u).

Weak convergence takes place in `∞([0, 1]d) and

GC(u) = BC(u) −
d

∑

i=1

DiC(u)BC(u(i)).

The vector u(i) denotes the vector where all coordinates, except the i-th coordinate of u, are replaced

by 1. The process BC is a tight centered Gaussian process on [0, 1]d with covariance function

E{BC(u)BC(v)} = C(u ∧ v) − C(u)C(v),

i.e., BC is a d-dimensional Brownian Bridge.

Theorem 1 is closely related to the next theorem which we need in order to establish the limiting
law of

√
n(ρ̂2,n − ρ2).

Theorem 2 Let F be a continuous d-dimensional distribution function with copula C. Suppose U
is distributed with copula C and define C̄(u) = P (U > u). Consider the estimator

ˆ̄Cn(u) =
1

n

n
∑

j=1

d
∏

i=1

1{Ûij,n>ui}
for u = (u1, . . . , ud) ∈ [0, 1]d.

Under the assumptions and using the notation of Theorem 1 we have

√
n{ ˆ̄Cn(u) − C̄(u)} w→ GC̄(u). (3)

Weak convergence takes place in `∞([0, 1]d) and GC̄(u) = BC̄(u) +
∑d

i=1 DiC̄(u)BC̄(u(i)) with u(i)

denoting the vector where all coordinates, except the i-th coordinate of u, are replaced by 0. The pro-

cess BC̄ is a tight centered Gaussian process on [0, 1]d with covariance function E{BC̄(u)BC̄(v)} =
C̄(u ∨ v) − C̄(u)C̄(v).

Proof. Consider the estimator

ˆ̄C?
n(u) =

1

n

n
∑

j=1

d
∏

i=1

1{Uij>ui} for u ∈ [0, 1]d with Uij = Fi(Xij)

and Fi, i = 1, . . . , d, denoting the marginal distribution functions of F. The corresponding empiri-
cal process converges weakly in `∞([0, 1]d) to a d-dimensional Brownian bridge BC̄ with covariance
structure E{BC̄(u)BC̄(v)} = C̄(u ∨ v) − C̄(u)C̄(v). The verification is standard; for example,
marginal convergence is proven via a multivariate version of the Lindeberg-Feller theorem for tri-
angular arrays, see Araujo and Giné (1980), p.41.

This empirical process and the empirical process in (3) are related to each other as follows:

√
n{ ˆ̄Cn(u) − C̄(u)} + O(1/

√
n) =

√
n
[ ˆ̄Fn{F̂−1

1,n(u1), . . . , F̂
−1
d,n(ud)} − C̄(u)

]

= (∗),
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where we write

ˆ̄Fn(x) =
1

n

n
∑

j=1

d
∏

i=1

1{Xij>xi}.

With F̄ (x) = P (X > x) we have

(∗) =
√

n{ ˆ̄C?
n(u) − C̄(u)} +

√
n
[

F̄{F̂−1
1,n(u1), . . . , F̂

−1
d,n(ud)} − C̄(u)

]

+
d−1
∑

i=1

[

Hn{F−1
1 (u1), . . . , F

−1
i−1(ui−1), F̂

−1
i,n (ui), . . . , F̂

−1
d,n(ud)

}

(4)

−Hn{F−1
1 (u1), . . . , F

−1
i (ui), F̂

−1
i+1,n(ui+1), . . . , F̂

−1
d,n(ud)

}

]

,

where Hn =
√

n( ˆ̄Fn − F̄ ). We mentioned that
√

n{ ˆ̄C?
n(u) − C̄(u)} w→ BC̄ in `∞([0, 1]d). Further,

√
n[F̄{F̂−1

1,n(u1), . . . , F̂
−1
d,n(ud)} − C̄(u)]

w→ −
d

∑

i=1

DiC̄(u)BC(u(i))

due to the Bahadur representation (Bahadur, 1966) of the empirical process for uniformly dis-
tributed random variables and an application of the functional Delta method (Van der Vaart and
Wellner, 1996, p.374). Weak convergence takes place in `∞([0, 1]d), cf. Fermanian, Radulović, and
Wegkamp (2004). The last sum of Formula (4) converges to zero in probability due to the weak

convergence of
√

n( ˆ̄Fn − F̄ ) in `∞([−∞,∞]d). An application of the continuous mapping theorem
yields the asserted weak convergence (utilize almost surely convergent versions of Hn.) Finally, the
fact BC(u(i)) = −BC̄(u(i)) a.s. for all u(i), u(i) ∈ [0, 1]d, i = 1, . . . , d, completes the proof. ¤

Theorem 3 Let ρ̂i,n, i = 1, 2, 3, be the estimators as defined above. Under the assumptions and

using the notation of Theorem 1 and Theorem 2,

√
n(ρ̂i,n − ρi)

d−→ Zi ∼ N (0, σ2
i ).

The variances are

σ2
1 = 22dh(d)2

∫

[0,1]d

∫

[0,1]d

E
{

GC(u)GC(v)
}

dudv, (5)

σ2
2 = 22dh(d)2

∫

[0,1]d

∫

[0,1]d

E
{

GC̄(u)GC̄(v)
}

dudv, (6)

σ2
3 = 144

∑

k < l
s < t

(

d

2

)−2 ∫

[0,1]d

∫

[0,1]d

E
{

GC

(

u(k,l)
)

GC

(

v(s,t)
)

}

dudv (7)

with u(k,l) := (1, ..., 1, uk, 1, ..., 1, ul, 1, ..., 1).

For related results on bivariate linear rank order statistics of similar type we refer to Rüschendorf
(1976), Gänßler and Stute (1987), and Genest and Rémillard (2004). Alternative derivations of the
asymptotic behavior of rank order statistics such as ρ̂1,n are given in Stepanova (2003).

Proof. The distributional convergence of
√

n(ρ̂1,n − ρ1) follows with Theorem 1 and the continuous
mapping theorem (see Van der Vaart and Wellner (1996), Theorem 1.3.6), since the integral operator
is a continuous linear map on `∞([0, 1]d) into R and GC is a tight Gaussian process. The formula
for the variance σ2

1 follows then by an application of Fubini’s theorem.
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For ρ̂2,n we first establish a useful relationship. Let Uω be distributed according to the (empirical)

copula Ĉn(·)(ω) for fixed ω. Note that the last expression is indeed a multivariate distribution
function. Further, consider i.i.d. random variables Z1, . . . , Zd which are uniformly distributed on
the interval [0, 1]. Then for any fixed ω

∫

[0,1]d
Π(u) dĈn(u)(ω) =

∫

[0,1]d
P (Z < u) dĈn(u)(ω) =

∫

[0,1]d
P (Uω > u) du =

∫

[0,1]d

ˆ̄Cn(u)(ω) du.

Hence, we may rewrite the estimator ρ̂2,n as follows

ρ̂2,n/h(d) + 1 = 2d

∫

[0,1]d
Π(u) dĈn(u) = 2d

∫

[0,1]d

ˆ̄Cn(u) du =
2d

n

n
∑

j=1

d
∏

i=1

Ûij,n. (8)

Weak convergence of
√

n(ρ̂2,n − ρ2) and the form of σ2
2 follows now by Theorem 2, along the same

argumentation as above.

For the weak convergence of
√

n(ρ̂3,n − ρ3), observe that

√
n(ρ̂3,n − ρ3) = 12

∑

k<l

(

d

2

)−1 ∫

[0,1]d

√
n{Ĉn(u(k,l)) − C(u(k,l))} du

is a continuous linear map on `∞([0, 1]d) of the empirical copula process
√

n{Ĉn(u) − C(u)} and,

thus, converges to 12
∑

k<l

(

d
2

)−1 ∫

[0,1]d
GC(u(k,l)) du according to Theorem 1. ¤

Remark. The process GC(u(k,l)) in Formula (7) takes the following form (using the notation of
Theorem 1):

GC(u(k,l)) = BC(u(k,l)) − DkC(u(k,l))BC(u(k)) − DlC(u(k,l))BC(u(l))

because BC(1) = 0 almost surely. Moreover, Formula (7) can be rewritten as

σ2
3 = 144

[

∑

k<l

(

d

2

)−2 ∫

[0,1]2

∫

[0,1]2

E
{

GC(u(k,l))GC(v(k,l))
}

d(uk, ul)d(vk, vl)

+
∑

k<l,r<s
{k,l}6={r,s}

(

d

2

)−2 ∫

[0,1]2

∫

[0,1]2

E
{

GC(u(k,l))GC(v(r,s))
}

d(uk, ul)d(ur, us)
]

.

Proposition 4 Let C be a radially symmetric copula. Under the additional assumptions and us-

ing the notation of Theorem 1 and Theorem 2, the processes GC(u) and GC̄(1 − u) are equally

distributed. Moreover, the asymptotic variances σ2
1 and σ2

2 in Formulas (5) and (6) coincide.

Proof. Regarding the first assertion, note that DiC̄(t)|t=1−u = −DiC̄(1 − u) = −DiC(u) and the
covariance structure of BC(u) equals

C(u ∧ v) − C(u)C(v) = C̄{(1 − u) ∨ (1 − v)} − C̄(1 − u)C̄(1 − v)

which corresponds to the covariance function of BC̄(1 − u). The second assertion follows by an
appropriate substitution of the integrals in Formulas (5) and (6). ¤

Obviously, the integral expressions in Theorem 3 cannot be explicitly evaluated for the majority of
known copulas, even in the case d = 2. However, the following theorem shows that the nonparametric
bootstrap works. In this context, let (XB

j )j=1,...,n denote the bootstrap sample which is obtained
by sampling from (Xj)j=1,...,n with replacement. An empirical analysis of this bootstrap procedure
is presented in Schmid and Schmidt (2006) and its applicability in the context of measuring price
comovements in financial markets is discussed in Penzer et al. (2006).
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Theorem 5 (The bootstrap) Let ρ̂i,n, i = 1, 2, 3, be the estimators as defined in the begin-

ning of the present section and ρ̂B
i,n denote the corresponding estimators for the bootstrap sample

(XB
j )j=1,...,n. Then, under the assumptions of Theorems 1 and 2, the sequences

√
n{ρ̂B

i,n− ρ̂i,n}, i =
1, 2, 3, respectively, converge weakly to the same Gaussian limit as

√
n{ρ̂i,n − ρi}, i = 1, 2, 3, with

probability one.

Proof. Denote the empirical copula of (XB
j )j=1,...,n by ĈB

n . For dimension d = 2, Fermanian,

Radulović, and Wegkamp (2004) show that the process
√

n{ĈB
n − Ĉn} converges weakly to the

same Gaussian process as
√

n{Ĉn − C} with probability one. Weak convergence takes place in
`∞([0, 1]2). The multidimensional generalization of this result is proven along the same lines as
Theorem 2. The conclusion follows now by the continuous mapping theorem, see Van der Vaart
and Wellner (1996), Theorem 1.3.6. ¤

5 Examples

The independence copula. Consider a random vector X = (X1, ...,Xn) where X1, ...,Xn are
stochastically independent (but not necessarily identically distributed). The related copula is the
independence copula Π.

Proposition 6 Let C be the independence copula Π(u) =
∏d

i=1 ui. Then, the asymptotic variances

in Theorem 3 are given by

σ2
1 = σ2

2 = − (d + 1)2{3 + d − 3(4/3)d}
3(1 + d − 2d)2

and σ2
3 =

(

d

2

)−1

(9)

Proof. Note that C ≡ Π is radially symmetric and, hence, σ2
1 = σ2

2 according to Proposition 4.
Obviously, DiC(u) =

∏

k 6=i uk. Further, for i 6= j and u(i) := (1, ..., 1, ui, 1, ..., 1) we have

∫

[0,1]d

∫

[0,1]d

E
{

DiC(u)BC(u(i)) · DjC(v)BC(v(j))
}

dudv = 0.

Moreover,
∫

[0,1]d

∫

[0,1]d
E {BC(u)BC(v)} dudv = 3−d − 2−2d and for i = 1, ..., d we derive

∫

[0,1]d

∫

[0,1]d

E
{

BC(u) · DiC(v)BC(v(i))
}

dudv

=

∫

[0,1]d

∫

[0,1]d

E
{

DiC(u)BC(u(i)) · DiC(v)BC(v(i))
}

dudv =
22−2d

3
− 2−2d.

Collecting terms, we obtain
∫

[0,1]d

∫

[0,1]d
E{GC(u)GC(v)} dudv = 3−d−2−2d−d(22−2d3−1−2−2d).

Finally, the respective normalization yields the left-hand formula in Equation (9). For σ2
3 observe

that
∫

[0,1]d

∫

[0,1]d

E
{

GC(u(k,l))GC(v(k,l))
}

dudv =
1

144

and for k, l, r, s ∈ {1, ..., d} such that k < l and r < s and {k, l} ∩ {r, s} = ∅ we have

∫

[0,1]d

∫

[0,1]d

E
{

GC(u(k,l))GC(v(r,s))
}

dudv = 0.
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The latter expression is also 0 if we consider the case where {k, l}∩ {r, s} have exactly one element
in common. Insertion of the above findings into Equation (5) results in the right-hand formula of
Equation (9). ¤

A variance stabilizing transformation for the FGM copula. The family of Farlie-Gumbel-
Morgenstern copulas (in short: FGM copulas) is defined by

C(u, v) = uv + λuv(1 − u)(1 − v) for all |λ| ≤ 1.

Because of their simple analytical form, FGM copulas have been widely used in statistics, for
example, in order to obtain efficiency results on nonparametric tests for stochastic independence.
A list of applications and references is given in Nelsen (1999), p.68. Recall that for d = 2 all the
asymptotic variances σ2

i , as given in Theorem 3, coincide. Hence, the subscripts i may be dropped.
Direct calculation shows that

σ2 = 1 − 11

45
λ2.

Further, Spearman’s rho takes the form ρ = λ/3 which implies that |ρ| ≤ 1/3 and σ2 can be
expressed as a function of ρ, i.e, σ2 = 1 − ρ2 · 11/5. A variance stabilizing transformation h, which
satisfies √

n (h(ρ̂i,n) − h(ρ))
d−→ N(0, 1), i = 1, 2, 3

is then derived via the Delta method. In particular, we obtain

h(ρ) =

√

5

11
arcsin

(

√

11

5
ρ
)

for |ρ| ≤ 5/11.

This transformation may appropriately be extended to the domain [−1, 1] such that h(ρ̂) is well
defined. For |ρ| ≤ 1/3, transformation h is close to Fisher’s z-transformation ln{(1 + ρ)/(1− ρ)}/2.

The Kotz-Johnson copula. The following copula is called Kotz-Johnson copula (or Kotz and
Johnson’s iterated FGM copula), see Nelsen (1999), p.72.:

C(u, v) = uv + λuv(1 − u)(1 − v)(1 + θuv) for all − 1 ≤ λ, θ ≤ 1.

It forms a generalization of the FGM copula. Spearman’s rho for this copula is ρ = λ/3 + λθ/12
and a direct calculation yields

σ2 = 1 +
1

25
λθ − 11

45
λ2 − 11

90
λ2θ − 53

5040
λ2θ2 +

1

450
λ3θ +

1

1800
λ3θ2.

A generic family of copulas. The next family of copulas, introduced in Rodŕıguez-Lallena and
Úbeda-Flores (2004), can also be seen as a generalization of FGM copulas:

C(u, v) = uv + λf(u)g(v),

where f and g are nonzero and absolutely continuous functions on [0, 1] such that f(0) = f(1) =
g(0) = g(1) = 0. The range of the parameter λ, which obviously depends on the choice of f and g,
is specified in the last reference. Spearman’s ρ takes the form

ρ = 12 · λ
∫ 1

0

f(u)du

∫ 1

0

g(v)dv.

The asymptotic variance σ2 involves the following functionals:

T1(f) =

∫ 1

0

f(u) du, T2(f) =

∫ 1

0

f2(u) du, and T3(f) =

∫ 1

0

F (u) du =

∫ 1

0

∫ u

0

f(x) dxdu

and Ti(g), i = 1, 2, 3, which are analogously defined. For this family of copulas, we obtain

σ2 = 1 + λ · 144
{

2T3(f) − T1(f)
}{

2T3(g) − T1(g)
}

+λ2 · 144
{

2T2(f)T 2
1 (g) + 2T2(g)T 2

1 (f) − 7T 2
1 (f)T 2

1 (g)
}

.
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