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Semiparametric modeling of age-speci�c

variations in income related health inequalities

Abstract

A Gini-type concentration index is combined with semiparametric esti-

mation techniques to derive a varying inequality index that works without

a priori sample strati�cation. The new approach is used to investigate the

question how income inequalities and the income-related gradients in the

distribution of health vary across age groups. With health data from the

2005 survey of the German microcensus it is demonstrated that signi�cant

inequalities to the detriment of the deprived evolve in early mid-life and

reach their maximum around the age for retirement. Some leveling is found

for the elderly.

Keywords: concentration index, health inequality, income inequality, life

course perspective, semiparametric estimation

1 Introduction

The existence of socioeconomic gradients in the distribution of health to the detri-

ment of the deprived is �rmly established among health economists (Balia and

Jones, 2008; Erreygers, 2009; Humphries and van Doorslaer, 2000; van Doorslaer

et al., 1997; van Doorslaer and Koolman, 2004; van Doorslaer et al., 2004; Jones

and López Nicolás, 2006; Wagstaff et al., 1991; Wagstaff and van Doorslaer,

2000; Wagstaff et al., 2003). Little is known, however, about the mechanisms

through which different socioeconomic factors affect health status and its distri-

bution over the life course (van Kippersluis et al., 2009, 2010). Adding the life
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course perspective supports, for instance, the notion that labor force participation

contributes substantially to the socioeconomic gradient in health in the U.S. (Case

and Deaton, 2005), Great Britain (Banks et al., 2007) and the Netherlands (van

Kippersluis et al., 2010).

To measure variations in health inequalities across age groups, van Kippersluis

et al. (2009) de�ne age cohorts and compute batteries of concentration indices

for eleven European countries. This paper derives a varying inequality index for

dichotomous health variables based on the concentration index that does not re-

quire a priori sample strati�cation. One may consider estimating a nonparametric

smoother through age-speci�c concentration indices as an alternative, however,

this approach would reduce the reliability of the results considerably. The number

of observations in arbitrarily prede�ned age groups may be rather small resulting

in high uncertainty particularly among the oldest age groups. Further, the esti-

mates for ages close to the upper (lower) cohort limits would only be subject to

the younger (older) individuals within the same cohort and hence likely be biased.

Smoothing over such results in a second step would then add its own uncertainty

and lead to fairly imprecise results. Based on the varying coef�cient model (Hastie

and Tibshirani, 1993; Li et al., 2002), we propose a semiparametric extension of

the convenient regression approach (Kakwani et al., 1997). Using kernel smooth-

ing techniques and a locally chosen bandwidth allows us to estimate the functional

relationship between the concentration index and age. We adjust our varying in-

dex adapting Wagstaff's (2005) correction formula for binary variables with local

estimates of the mean.
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2 Methods

2.1 The concentration index

The concentration index C stems from the concentration curve, where the cumu-

lative share of some health variable y is plotted against the cumulative share of the

population ranked by socioeconomic position. It measures twice the area between

the concentration curve and the line of equality and is bound in the (−1;1) inter-

val. C becomes positive (negative) if the variable of interest concentrates among

the rich (poor) and is zero if no income-related inequality is observed (Wagstaff

et al., 1991).

Using the covariance approach (Lerman and Yitzhaki, 1989), Kakwani et al.

(1997) present the regression formula for C,

2s2r
µy

y= b0+b1r+ e, (1)

where µy is the mean of y and r is the fractional rank with variance s2r . Equation

(1) can be estimated using linear regression models such that C = b1.

2.2 Varying coef�cient models

In the framework of varying coef�cient models, Li et al. (2002) propose a semi-

parametric smooth coef�cient model based on locally weighted least squares re-

gression. With X denoting the regressor matrix and y the dependent variable, the

elements of the coef�cient vector (b0, ...,bQ) are modeled as smooth functions of
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another regressor z, which varies in some Z ⊂ R:

y= b0(z)+
Q

å
q=1

bq(z)xq+ e. (2)

This model can be estimated using nonparametric smoothing techniques (see Li

et al., 2002; Hastie and Tibshirani, 1993) from

b(z) =
(
E(X ′X | z)

)−1
E(X ′y | z), (3)

where X = (1 x1 . . .xQ) and z ∈ Z. Li et al. (2002) have shown that, for an increas-

ing number of observations n, the estimator �b(z) obtained from (3) asymptotically

follows a normal distribution, i.e.
√
nhz

(
�b(z)−b(z)

)
∼N (0,W(z)); see appendix

for the estimation of the covariance matrix.

2.3 A semiparametric inequality index

Combining the weighted regression approach from equation (1) with the varying

coef�cient model (2), our proposal for a semiparametric convenient regression

formula is

2
s2r (z)

µy(z)
y= b0(z)+b1(z)r(z)+ e, (4)

withC(z) = b1(z), z∈ Z. Note that the concentration index is a bivariate extension

of the Gini index; if y is the social status variable, equation (4) works as a semi-

parametric Gini index. The local mean µy(z) can be estimated nonparametrically.

The weighted fractional rank r(z) has to be written as a function of z because the

condition that its mean and variance have to be .5 and 1/12, respectively, must hold

(Lerman and Yitzhaki, 1989). This can only be ful�lled if the weighted fractional
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rank is computed using only those individuals included in the local regression and

incorporating the kernel weights khz
(ui):

ri(z) =
i

å
j=1

w j (z) khz

(
u j
)
−
wi (z) khz

(ui)

2
. (5)

The vector of sample weights w(z)must be rescaled such thatån
i=1

wi (z) khz
(ui)=

1 for each z ∈ Z. Note that the mean µr(z) = .5 and variance s2r (z) = 1/12 of r(z)

are then sample independent and do not vary with z.

For binary variables, the bounds ofC depend inversely on the variable's mean,

|C| ≤ 1−µy (see Wagstaff, 2005, 2011; Erreygers, 2009). For an intuitive expla-

nation, �rst assume a constant equal to 1. With no difference between individuals,

concentration among rich or poor is impossible;C equals zero. Now consider, say,

10 percent ones and 90 percent zeros. Ordering the variable by itself, one would

obtain a Gini index of .9; the largest possible concentration (see Wagstaff, 2011,

for a graphical illustration).

There is an ongoing discussion on possible correction methods for concentra-

tion indices of limited variables (Erreygers, 2009; Wagstaff, 2005, 2011) with a

dissent between the authors on how a corrected index should react to changes of

the mean. Considering the above example, Erreygers (2009) would argue that an

increase from 10 to 20 percent implies a decrease in inequality as now the sec-

ond richest (poorest) decile is also affected. The argument in Wagstaff (2005,

2011) is that, as still only the richest (poorest) are affected, the new situation

still corresponds with the maximum possible inequality. We consider reactions

to pure prevalence changes as undesirable when comparing inequalities between

age groups and sexes. We thus propose adapting the formula in Wagstaff (2005,
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2011) as a pointwise correction of the semiparametric concentration index using

the local mean µy(z) of y:

W (z) =
C(z)

1−µy(z)
. (6)

Note that our approach may also be adapted to other correction methods for rank-

dependent inequality indices such as mentioned e.g. by Erreygers (2009).

2.4 Estimation

Applying a consistent Nadaraya-Watson estimator, we account for sample weights

and use

�b(z) =

[
n

å
i=1

khz
(ui)wi(z) X

′
iXi

]−1[
n

å
i=1

khz
(ui)wi(z) X

′
i �yi

]
(7)

to obtain �b1(z) = �C(z), z ∈ Z. Note that �yi =
(
2s

2
r (z)/µy(z)

)
yi and Xi = (1 ri(z))

depend on z as the local mean and the local fractional rank from equation (5) are

involved (for simplicity, we write Xi in place of Xi(z) here). The kernel weights

are khz
(ui) =Khz

(ui)
[
ån

j=1
Khz

(
u j
)]−1

with ui = zi−z. We use the quartic kernel

K(ui) = (15/16)
(
1−u2i

)2
I|ui|<1 with

∥∥K2

2

∥∥ = ´ ¥−¥K2(u)du = 5/7, where IA is an

indicator function of restriction A. The bandwidth hz is included such that Khz
(·)=

(hz)
−1

K (·/hz). The quartic kernel assigns higher weights to observations closer to

z (smaller ui), lower weights for observations further away from z (larger ui) and

zero weights if an observation is outside the bandwidth. Although our estimator

is asymptotically unbiased (Li et al., 2002), nonparametric regression in �nite

samples always suffers from a tradeoff between bias and variability: decreasing

bandwidth parameters yield smaller biases but also increase uncertainty (Bilger,

2008). This problem is addressed here by choosing the bandwidth inversely to the
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data density as hz = 1.06 �sz n
−.2 �f−.3

z , where �fz is the estimated kernel density at a

particular value of z and �sz is the standard deviation of z obtained from the sample.

Fan and Gijbels (1992) have shown that adaptive local smoothers generally yield

good results and, in addition, avoid the well-known boundary effect.

Kakwani et al. (1997), O'Donnell et al. (2008) and Wildman (2003) argue that

it is not suf�cient to estimate the standard error of b1(z) from equation (1) and

propose approximating the standard error of C, sC, using the d-method. Further,

using the covariance matrix from simple OLS regression may not be wholly accu-

rate as the error term may be autocorrelated and heteroscedastic (Kakwani et al.,

1997). Wildman (2003) proposes using the order of the rank variable in place

of time to compute heteroscedasticity and autocorrelation consistent Newey-West

covariance matrices. We apply the d-method to equation (6) and compute locally

estimated heteroscedasticity and autocorrelation consistent covariance matrices to

obtain the local standard error sW (z) ofW (z) (see appendix for details).

3 Data and variables

We use the scienti�c use �le (SUF) of the German microcensus (Mikrozensus)

for the empirical illustration. The SUF comprises a randomly drawn subsample

of approximately 70% (477,239 observations) of the German microcensus and

is available from the Research Data Centers of the Federal Statistical Of�ce and

the Statistical Of�ces of the Federal States (see Lechert and Schimpl-Neimanns,

2007, for a technical report). Removing 92,458 individuals from the sample ow-

ing to missing information leaves us 384,781 observations (198,877 female and

185,904 male) for the empirical analysis. The inverse probability weights ac-
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counting for the regional, age and sex speci�c composition of the sample were

adjusted accordingly.

We use a subjective measure of health and restrict the analysis to having been

ill in the preceding four weeks or not, thus generating a binary variable. This mea-

sure may include (common) acute diseases such as colds or light �ues, however,

we postulate here that these affect all socioeconomic groups. Assuming that only

those who actually felt affected would consider themselves as ill, this measure of

health has the advantage that it only includes diseases if they were relevant to the

respective individual.

Net equivalent household income (based on the modi�ed OECD equivalent

scale and not restricted to a particular source of income) is used to assess an indi-

vidual's relative socioeconomic position (see e.g. van Doorslaer et al., 2004; van

Kippersluis et al., 2009). One may consider this as unsuitable for some coun-

tries particularly after retirement; however, Germany is an exemption because its

welfare policies can be seen as rather status preserving (Brockmann et al., 2009).

Approximately 90 percent of the German population are covered by the public

pension system where bene�ts after retirement depend on compulsory contribu-

tions subtracted from the gross income (for a description of the German public

pension system, see Boersch-Supan and Wilke, 2004). Considerable changes of

the relative socioeconomic position within one's age group after retirement seem

therefore unlikely.
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Figure 1: Empirical density of age (left) and smoothed age speci�c prevalence of

sickness within the preceding four weeks (right) for males (solid line) and females

(dashed line)

4 Results

The left graph in �gure 1 describes the kernel density estimate �fz of the nonpara-

metric smoothing regressor z (age), corresponding with the population pyramid

for Germany. The graphs for the male and female sample imply that the largest

bandwidth parameter was used for subjects older than 80 in both samples. The

right graph in �gure 1 presents the smoothed age speci�c prevalence of illness

within the preceding four weeks.

The upper and lower left graphs in �gure 2 present the age-speci�c means of

the net equivalent household incomes for males and females. Considering that

income is assigned equally to each household member, the graph suggests that

households with children have, on average, the lowest income. The bump around

age 40 in both graphs stems from the higher average number of dependent chil-

dren which increases the equivalence weights in the corresponding households.

The age-speci�c income inequalities vary around their homogeneous counterparts

(female: 0.282, male: 0.2915).
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Figure 2: Age-speci�c mean (left) and Gini indices (right) with 95% con�dence

intervals (dotted lines) of net equivalent household income for males (top) and

females (bottom).

The overall-sample results suggest a considerable concentration of illness among

the poor. The homogeneous concentration indices are −0.0606 (sC = 0.0026)

for the female and −0.0653 (sC = 0.0028) for the male sample. The homoge-

neous Wagstaff indices are −0.0696 (sW = 0.0074) for females and −0.0738

(sW = 0.0079) for males.

The varying Wagstaff indices in �gure 3 vary around the homogeneous esti-

mates. Illness is signi�cantly concentrated among males in lower income house-

holds in the age groups between 19 and 26 as well as between 33 and 77. The in-

dex for females shifts from a concentration among the better-off towards a concen-
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Figure 3: Age-speci�c inequality (smooth solid lines) with 95% con�dence inter-

vals (dotted lines) for males (top) and females (bottom); Wagstaff index computed

for �ve year interval age groups (solid step function)

tration among the worse-off in late childhood. Signi�cant concentration among

females in lower income households is found for age groups 17-25 and 39-74.

Considerable sex-speci�c differences in the curve shapes are only found for the

20 to 40 years old. While there is some �attening for the male sample, inequality

is comparably low among females in this age group.

The results from the index computed for �ve year age groups are similar to

those from the varying index where data are dense. However, the �ve year interval

index exhibits several leaps and a considerably higher variability. Comparison of

the two graphs demonstrates the above mentioned bias close to the group limits.
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We also computed the inequality index and the �ve year interval Wagstaff indices

for 5%, 10%, 25% and 50% subsamples with similar results. The con�dence

bands of the varying inequality index widen and the variability of the Wagstaff

indices computed for �ve year intervals increases with decreasing n. The graphical

comparisons suggest that the index performs well for samples with more than

30,000 observations (the results are available from the authors on request).

5 Discussion

In this article, we combine the notion of concentration indices (Erreygers, 2009;

Kakwani et al., 1997; van Kippersluis et al., 2009; Wagstaff et al., 1991; Wagstaff,

2005) with semiparametric regression techniques (Hastie and Tibshirani, 1993; Li

et al., 2002) to a semiparametric inequality index with some convenient properties.

Using the varying bandwidth inverse to the local density, the index adapts itself

to the data without a priori strati�cation into age or income groups. This method

allows an age-speci�c computation of the inequality index with a suf�ciently large

number of observations guaranteed even where observations are scarce. The local

correction based on Wagstaff's (2005) formula allows comparisons of the extent

of inequalities throughout the support of the smoothing regressor.

Using German microcensus data, we demonstrate the advantage of the semi-

parametric index illustrating that direction and extent of health inequalities vary

considerably across age groups in Germany. According to Dupre (2007), leveling

in old age may generally be an arti�cial effect owing to mortality selection as both

decline of health and increase of mortality rates are faster among the worse-off.

However, Beckett (2000) has shown that this needs not necessarily be true for self-
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reported health. Note that mortality rates in 2005 did not exceed 2 percent before

the age of 68 (74) and 5 percent before the age of 77 (81) in the male (female)

sample (see Human Mortality Database, 2011). The results for those older than

80 should be treated with caution, though, as mortality may play a considerable

role in these age groups.
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A Variance estimation

Kakwani et al. (1997), O'Donnell et al. (2008) and Wildman (2003) have shown

that one may estimate b∗
0
(z) and b∗

1
(z) from y = b∗

0
(z)+b∗

1
(z)r(z)+ e∗ and con-

sider the concentration index as a nonlinear combination of the two coef�cients.

The variance can be approximated using the d method (Rao, 1965) on C(z) ≈

2s2r (z)
[
b∗
0
(z)+µr(z)b

∗
1
(z)
]−1

b∗
1
(z) for the semiparametric concentration index,

the variance of the varying Wagstaff indexW (z) can be estimated analogously.

According to Li et al. (2002), the covariance matrixW(z) in the semiparametric

varying coef�cient model is

W(z) =
[
fz E

(
X ′X | z

)]−1
F(z)

[
fz E

(
X ′X | z

)]−1
(8)
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with F(z) = fz E
(
X ′X s2

e
(z) | X ,z

)∥∥K2

2

∥∥, s2
e
(z) = E(e2i |X ,z) and z ∈ Z. To esti-

mate a heteroscedasticity and autocorrelation consistent covariance matrix �Whac(z)

accounting for the possibility of heteroscedastic and autocorrelated error terms e∗,

F(z)must be adapted accordingly. Following the proposal by White (1980), F(z)

is computed as

�Fhac(z) = fz

(
Y0(z)+

m

å
j=1

w j,mY j(z)

)∥∥K2

2

∥∥ . (9)

with

Y j(z) =
n

å
i= j+1

khz
(ui)wi(z) eiei− j

(
xix

′
i− j+ xi− jx

′
i

)
, (10)

Y0 = ån
i=1

khz
(ui)wi(z)e

2
i x

′
ixi and z ∈ Z. Bartlett weights w j,m = 1− j/(m+1) are

applied to assure a positive semi-de�nite covariance matrix (Newey and West,

1987), E(X ′X |z) and the kernel density are computed as above.
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