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Abstract

Determining the representativeness of a point within a data cloud has recently

become a desirable task in multivariate analysis. The concept of statistical depth

function, which reflects centrality of an arbitrary point, appears to be useful, and

has been studied intensively in the last decades. Here the issue of computing

the classical Tukey data depth is considered. The paper suggests an algorithm

based on iterative application of linear programming. The algorithm exploits the

idea of the cone segmentation of the multivariate space and allows for efficient

implementation in applications due to the special search structure. A simulation

study provides a comparison with the existing analog and gives an additional

insight into the constituents of the algorithm.
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1 Introduction

Determining the representativeness of a point within a bunch of data or a probability
measure has recently become a desirable task in multivariate analysis. Nowadays it finds
applications in different domains of economics, biology, geography, medicine, cosmology
and many others. In his celebrated work, Tukey (1975) introduced an idea to order
multivariate data, which has later been developed by Donoho & Gasko (1992) and is
known as the Tukey (=halfspace, location) depth. Generally, the statistical data depth is
a function determining how centrally a point is located in a data cloud. The upper-level
sets it generates — trimmed regions — are set-valued statistics. They trim data w.r.t.
the degree of centrality. For more information on the data depth the reader is referred to
Zuo & Serfling (2000), Dyckerhoff (2004), Mosler (2013) and mentioned there references.

The Tukey data depth is one of the most important depth notions and is historically
the first one. Regard a random vector X distributed as P , in particular empirically on
{x1, ...,xn}, in R

d. The Tukey depth of a point z ∈ R
d w.r.t. X , further D(z|X), is

defined as the smallest probability mass of a closed halfspace containing z:

D(z|P ) = inf{P (H) |H closed half-space, z ∈ H}. (1)
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The Tukey depth possesses many desirable properties: it is affine invariant, tends to
zero at infinity, is monotone on rays from any deepest point, quasiconcave and upper
semicontinuous. By that it satisfies all the postulates imposed on a depth function (Zuo
& Serfling, 2000, Dyckerhoff, 2004, Mosler, 2013). If P is absolutely continuous, the
Tukey depth is a continuous function of z achieving maximum value of 1

2
, for angularly

symmetric distributions at the center of symmetry. If P has no Lebesgue density, the
Tukey depth is a discrete function of z and can have a non-unique maximum. By defini-
tion, its empirical version vanishes beyond the convex hull of the data. The Tukey depth
determines uniquely empirical distribution (Koshevoy, 2002), taking a finite number of
values in the interval from 0 (for the points lying outside the convex hull of the data)
to 1

2
, increasing by a multiple of 1

n
. Naturally, it has attractive breakdown properties

and converges for a sample from P almost surely to the depth w.r.t. P (Donoho &
Gasko, 1992). The Tukey depth has a direct connection to such concepts as regression
depth of Rousseeuw & Hubert (1999) and the separating hyperplane with the small-
est empirical risk in binary supervised classification; it can be extended to functional
settings (López-Pintado & Romo, 2011, Claeskens et al., 2014).

For a data cloud D(z|X) can be expressed as the smallest portion of X to be cut
off by a hyperplane through z so that the remaining points lie in an open halfspace not
containing z:

D(z|X) =
1

n
min

r∈Sd−1

#{i|x′

ir ≥ z′r,xi ∈ X}. (2)

The Tukey depth is defined by the combinatorial structure of the data. For exam-
ple, shifting X to get z in the origin and projecting X onto Sd−1 after that does not
influence the value of the depth. This coincides with the densest hemisphere problem,
see Johnson & Preparata (1978). Exact calculation of the Tukey depth is a computa-
tionally challenging task of non-polynomial complexity. For this reason, great part of
the literature on the Tukey depth concerns its computational aspects. The reader is
referred to Liu & Zuo (2014a) for the exact algorithm and a reference to some preceding
works. Dyckerhoff (2004) introduced the weak projection property, which is satisfied
inter alia by the Tukey depth. This allows to approximate the depth as the minimum
over univarite depths in the projections onto one-dimensional spaces. For the latest
research in this area see Chen et al. (2013) and contained there references.

In the current paper an algorithm based on linear programming is introduced. Here,
the idea of the conic segmentation of Rd, introduced by Mosler et al. (2009) for con-
structing zonoid trimmed region, is exploited. It has been applied by Liu & Zuo (2014a)
to computing the Tukey depth as follows. The entire space is divided into polyhedral
cones, each having — in the projection onto any direction in its interior — the same
subset of X above (below) the projection of z, and thus delivering the same univariate
Tukey depth. For each of the cones this depth value is calculated, and the Tukey depth
is then the minimum over all these depths. For any cone, Liu & Zuo (2014a) employ
the convex hull algorithm (Barber et al., 1996) (further QHULL) to detect neighboring
ones. Then, starting from an arbitrary cone, all cones are regarded by means of the
breadth-first search algorithm.

In the proposed procedure, linear programming is used for finding cone’s neighbors,
and each cone is coded by a binary sequence. First, this gives possibility to examine
candidates for the neighbors separately, and not at once as it is done when applying
the QHULL algorithm. Second, the number of the candidates to be checked can be
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substantially reduced. Third, when employing the binary coding, one does not need
to find out where a cone is located in R

d, which further saves computational expenses.
Also, the calculations are performed in the spaces of dimension d − 1 by a simplex
algorithm. Finally, linear programming allows for caching by remembering (last) found
basis.

The rest of the paper is organized as follows. Section 2 provides the theoretical
results to the proposed algorithm, which is given in Section 3. Some experimental
results regarding computation time are stated in Section 4, including a brief comparison
of linear programming and the QHULL algorithm in light of the calculation of the Tukey
depth. Section 5 concludes.

2 Theoretical background

Given a data sample X = {x1, ...,xn} ∈ R
d, d < n, and a point z ∈ R

d, the Tukey
depth of z w.r.t. X shall be calculated. We assume w.l.o.g. that z = 0 and that
{z} ∪ X are in general position, i.e., every subset of k + 1 points ∈ ({z} ∪X) spans a
subspace of dimension min{k, d}. Violation of these assumptions can be compensated
by a location shift and a slight perturbation of the data. The Tukey depth is discrete,
so such a perturbation can be potentially harmful, as only a small shift of one point
can change the depth value of z in a non-continuous way. Before performing such a
perturbation, we suggest to first check whether z ∈ conv(X) (if not, D(z|X) = 0), and
only then calculate the depth of z using perturbed data. When n is not very small and
the zero-depth case is specially treated, possible perturbation damage is negligible.

Consider a direction, i.e. a point on the unit sphere r ∈ Sd−1. It yields an ordered
sequence, a permutation π

r
on N = {1, ..., n} such that x′

πr(1)
r ≤ x′

πr(2)
r ≤ ... ≤ x′

πr(n)
r.

If the data are in general position a vector r can be found such that all inequalities hold
strictly x′

πr(1)
r < x′

πr(2)
r < ... < x′

πr(n)
r, and x′

πr(i)
r 6= 0, i = 1, ..., n. Then such r splits

X into two disjoint subsets (by its normal hyperplane H
r
through 0 yielding two open

halfspaces H+
r

and H−
r

in R
d), X+

r
= {x ∈ X|x′r > 0} and X−

r
= {x ∈ X|x′r < 0}

containing the points with strictly positive, respectively negative, projections on r. Let
us call the closure of the set of all λr, λ ≥ 0, maintaining the same X+

r
and X−

r
, a

direction cone C (yielding X+
C = {x ∈ X|x′r > 0 ∀ r ∈ int(C)} and X−

C = {x ∈
X|x′r < 0 ∀ r ∈ int(C)} respectively). This is because its form constitutes an infinite
polyhedral cone with the apex in the origin. The entire Rd is then filled by the set of all
direction cones, say C(X), while each cone C ∈ C(X) defines some portion of the sample,
that can be cut off by the hyperplane normal to any r ∈ int(C). Denote this portion
DC(0|X) = 1

n
min{♯X+

C , ♯X
−

C } (♯ stands for the set’s cardinality), then the Tukey depth
is D(0|X) = minC∈C(X) DC(0|X). Below C(X) will be mentioned as cone segmentation;
see Figure 1 left for a cone segmentation on the unit cube for ten standard normal
deviates. One of the direction cones can be seen in the unit cube’s corner directed to
the reader.

The further task is then to go through all such cones and to find the one(s) delivering
the smallest 1

n
min{♯X+

C , ♯X
−

C }, i.e., the Tukey depth. Starting with Mosler et al. (2009),
the usual way to proceed is:

(1) choose an arbitrary direction cone,

(2) move from each direction cone to the neighbors,
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Figure 1: Cone segmentation on the unit cube (left) and a cone’s facet defined by a
point (right)

(3) by that cover the entire R
d using breath-first search algorithm,

(4) on each step check whether a direction cone has already been considered, i.e. saved
in a structure maintaining fast search (usually a binary search tree).

Ad (1), the task is trivial: a direction r ∈ Sd−1 maintaining the ordering with strict
inequalities x′

πr(1)
r < x′

πr(2)
r < ... < x′

πr(n)
r and no projection coinciding with z′r = 0

has to be generated. When drawing r randomly, the theoretical probability of this
event = 1. As in practice draw concerns only a finite number of digits, it can (though
extremely rarely) happen that one needs more than one drawing.

2.1 Identification of neighboring cones

Ad (2), identifying neighboring direction cones (2a) and transition to each of them if
new (2b) is to be done. Let us take a closer look at the direction cone. Two different
cones C1 and C2 differ in their corresponding set pairs (X+

C1
, X−

C1
) and (X+

C2
, X−

C2
). So,

if a point r ∈ Sd−1 moves from one direction cone to another, projections of one or
more points on r migrate passing the origin, i.e., change the sign. Let C1 and C2 be two
cones, such that a direct (i.e., not crossing other cones) rotational movement of r from
C1 to C2 (and vice-versa) is possible. That means that C1 and C2 have an intersection of
affine dimension between 1 and d− 1. If transition of r from C1 to C2 involves changing
the halfspace (from H+

r
to H−

r
or vice versa) by one point ∈ X only (correspondingly

changing the sign of its projection on r), then C1 and C2 intersect in affine dimension
d − 1. This intersection constitutes the cones’ common facet. We call such two cones
neighboring cones.

So, the transition of a single point xi ∈ X from X+
C1

to X−

C2
means traversing of

r from C1 to a neighboring cone C2 through a facet, and thus the facet is defined by
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Figure 2: A direction cone in R
3 defined by the points x1, x2 and x3, halfspaces formed

by x4 and x5 are not directly involved (left); arbitrary cutting hyperplane h visualizing
how the hyperplanes are involved (right).

this point xi, see Figure 1 right. Naturally, given a cone C, any facet of C lies in a
hyperplane, normal to the line, connecting a point ∈ X with z = 0, as it is shown in
Figure 1 right, but not each point ∈ X generates a facet of C, see Figure 2. A direction
cone C is defined by the intersection of closed halfspaces {y|y′(x−z) ≥ 0,x ∈ X+

C } and
{y|y′(x−z) ≤ 0,x ∈ X−

C }. Hyperplanes directly involved in the intersection (generated
by points x1,x2,x3 in Figure 2) contain the cone’s facets and those outside (generated
by points x4,x5 in Figure 2) do not. Thus, given a direction cone, a natural question is:
Which points ∈ X define its facets, and which do not? This is summarized in Theorem 1.

Theorem 1 Given X = {x1, ...,xn} ∈ R
d, assume that {0}∪X are in general position,

and let C be a direction cone. Also, for a point x ∈ X let XHx
be the orthogonal

projection of X onto the (d−1)-dimensional linear subspace H
x
normal to x, and X+

Hx,C

and X−

Hx,C
be the two subsets of XHx

\ {0} corresponding to X+
C and X−

C , respectively.
Then:

(i) H
x
contains a facet of C if and only if X+

Hx,C
and X−

Hx,C
are linearly strictly

separable through 0 ∈ R
d−1, i.e., can be separated by a (d-2)-hyperplane ⊂ H

x

containing the origin and no points from X+
Hx,C

∪X−

Hx,C
,

(ii) if r ∈ Sd−1 moves from C to a neighboring direction cone through a facet ⊂ H
x
,

the projection of x only on the line through r changes sign.

Proof:

(i) “=⇒”: If x ∈ X defines a facet of C, then H
x
contains this facet, and thus there

should exist some direction v ∈ Sd−1∩H
x
such that X+

C and X−

C projected onto v

maintain their signs, except for the single point x being projected into 0 ∈ R
d−1.

So, these projections of X+
C \ {x} and X−

C (or X+
C and X−

C \ {x}) are separated in
H

x
by the hyperplane normal to v through 0.

“⇐=”: Strict linear separability of X+
Hx,C

and X−

Hx,C
through 0 means that there

exists some v ∈ Sd−1 ∩ H
x
, such that x′v > 0 ∀ x ∈ X+

Hx,C
and x′v < 0 ∀
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x ∈ X−

Hx,C
. Then a slight infinitesimal rotation of v towards (and inside of) the

cone does not cause the projections to change signs, and thus maintains X+
C and

X−

C .

(ii) Let x define a common facet of C and C ′. As x is projected into 0 ∈ R
d−1 for all

r ∈ Sd−1 ∩H
x
, then obviously when (slightly) deviating v to different sides of H

x
,

the signs of x′v will be opposite. All points ∈ {λx, λ ∈ R} change sign in their
projection on v, but as {0} ∪X are in general position, x is the only one.

2.2 Optimization of the breadth-first search algorithm

In Section 2.1 we have addressed (2a) and (2b) by Theorem 1. From the first part, one
can easily find out which points define the cone’s facets. Then, following the second
part, moving the direction r to a neighboring cone by traversing their common facet
constitutes in changing sign of the projection on r of the point which defines this facet.

Ad (3), we use the results from above to describe the breadth-first search algorithm:
generate an initial direction cone (ad (1)) and move to the neighboring cones (ad (2)),
calculating the depth in each of them, till the entire Rd is covered. Note, that covering a
cone segmentation of Rd by a breadth-first search is general for some depth-calculating
algorithms (Liu & Zuo (2014a,b)) and algorithms constructing trimmed regions (Mosler
et al. (2009), Paindaveine & Šiman (2012a,b), Bazovkin & Mosler (2012)) when d ≥ 3.
Below the algorithm is summarized to be referenced it in further explanations. The
algorithms of Paindaveine & Šiman (2012a,b), Liu & Zuo (2014a,b) differ from this one
in that they store cones’ facets and not cones while employing the convex hull algorithm.

The breadth-first search algorithm on a cone segmentation of Rd proceeds in following
steps:

(a) Draw an initial cone and store it in a queue.

(b) Pop one cone from the head of the queue, process it, remember it, and for each of
its neighboring cones do:

(c) If the cone has not been processed till now push it into the tail of the queue.

(d) If the queue is not empty, go to Step (b).

Further, let us introduce the notion of the cone’s generation, a number given to each
cone (in Step c) when it is pushed into the queue. The initially drawn cone (in Step a) is
given the initial number, say 1. (The generation can be thought of as the ‘depth’ of the
current searching path of the algorithm.) Obviously, when covering a cone segmentation
of Rd with the breadth-first search algorithm, for processing cones of the i-generation,
only cones of the (i − 1)-, i- and (i + 1)-generation have to be remembered. While on
starting (low) generations the number of the cones from one generation to another grows
rapidly, on close to ‘equatorial’ generations (these basically constitute the segmentation)
the increase is much less. Also, though the store-search structure for the cones is usually
a binary tree, the computational time for search can be saved either, especially when
the search is frequently performed.

Ad (4): When calculating the Tukey depth under the general position assumption of
{z}∪X , one can step much further in this direction, and save less than tree generations.
First, to simplify further presentation, let us code the cones. As mentioned above, the
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interior of each cone C maintains the disjoint division of X into X+
C and X−

C according
to the signs in X ’s projection onto any r ∈ int(C), and thus is uniquely defined by this
division. So, binary identifiers for the cones can be used: a cone is coded by a binary
sequence (“0” and “1” say) of length n, where each bit represents a point ∈ X w.r.t.
some initial ordering of the points ∈ X that is kept constant during the entire procedure.
Points belonging to X+

C are coded by “1”, those belonging to X−

C by “0”.
After coding the initial cone (C0 say) this way, other cones can be coded either the

same way, or by another binary sequence identifying whether a point has changed the
sign w.r.t. C0 (“1”) or not (“0”). Then any cone’s code can be obtained as the code of
C0 with those bits inverted that have been switched on in this sequence. This leads to
Lemma 1.

Lemma 1 Let us start the breadth-first search algorithm with an arbitrary initial cone
C0, and in Step b, when checking for neighboring cones, always regard only cones defined
by points which have not changed their sign in the projection onto r ∈ int(C0) yet. Then
in processing cones of the i-th generation, only cones of the i-th generation have to be
remembered to check for neighboring cones and of the (i + 1)-th generation to check
whether a new cone has already been seen.

Proof: If the cones defined by already processed points, i.e. those having changed
their sign in the projection, are not considered, then only cones of the (i+ 1)-th gener-
ation can be taken into account when deciding whether a cone has already been seen.
No cones of the (i− 1)-th or i-th generation can be found because points defining them
are not checked at all. Then one can go through all the cones of the i-th generation,
and add those newly found from the (i+ 1)-th generation to the queue.

Theorem 1 (ii) and Lemma 1 lead to Lemma 2. Note that ⌊u⌋ stands for the largest
integer ≤ u.

Lemma 2 When starting the breadth-first search algorithm with an arbitrary initial
cone C0, and in Step b regard only neighboring cones defined by points which have not
changed their sign in the projection onto r ∈ int(C0) yet, only ⌊n+2

2
⌋ generations have

to be considered.

Proof: From Theorem 1 (ii), each point may define a cone’s facet, changing its
sign in projections on all directions of the neighboring cone. If, following Lemma 1,
on each new step only not yet considered points are taken into account, then in each
new generation exactly one point more has its sign on projection changed (compared to
C0). The maximum generation (if C0 is denoted as 1st generation) is then (n + 1)-th
generation.

Each cone has its mirror-copy cone, where projections of X on all directions have
exactly opposite signs; these cones need not be considered, of course. Then, if n is odd,
exactly n+1

2
generations have to be considered, if n is even, ⌊n+1

2
⌋ +1 generations have

to be considered, as the mirror-copy cones of the ‘equatorial’ (having number ⌊n+1
2
⌋+1)

generation also belong to the equatorial generation. Thus, at most ⌊n+2
2
⌋ generations

have to be regarded.
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3 Algorithm

Basically, Algorithm 1 is the application of the breadth-first-search algorithm for search-
ing over the direction cones covering the entire R

d. We will need some notation. As
described above, let br be a binary sequence of length n where each bit br(i) corresponds
to a point xi ∈ {x1,x2, ...,xn} = X with br(i) = I(x′

ir > 0) for any r that maintains
strict ordering of x ∈ X in the projection on it. Also, let b0i be a zero-filled binary se-
quence with the i-th bit set to “1”, ⊕ denote the binary ‘exclusive disjunction’=“XOR”
operation, ! be the bit inversion operator, and

∑

br be the number of “1”s in br (Ham-
ming distance between br and b0).

Algorithm 1 Input: X = {x1, ...,xn} ∈ R
d, d < n, {0} ∪X in general position.

1. Initialization: Calculate XHxi
= {x

Hxi

1 ,x
Hxi

2 , ...,x
Hxi
n }, i = 1, ..., n, set D = n.

Draw r0 ∈ Sd−1 yielding a permutation π
r0

on N = {1, 2, ..., n} maintaining strict
order x′

πr0
(1)r0 < x′

πr0
(2)r0 < ... < x′

πr0
(n)r0 and let br0 be the corresponding binary

code. Initialize B = {b1, b2, ..., bn} with bi = br0 ∀ i = 1, ..., n. Initialize a queue
Btopical containing br0 only and an empty searchable storage Bfuture (e.g., binary
tree).

2. For i = 1 : n do:

(a) For j = 1 : n do:

i. If br0(j) = 0 then x
Hxi

j = −1 · x
Hxi

j .

3. For i = 1 : ⌊n+2
2
⌋ do:

(a) Pop b = head of Btopical, D = min{D,
∑

b, n−
∑

b}.

(b) If i = ⌊n+2
2
⌋, then go to Step 3d.

(c) For j = 1 : n do:

If (b⊕ br0)(j) = 0 then

i. For k = 1 : n do:

If (bj ⊕ b)(k) = 1 then x
Hxj

k = −1 · x
Hxj

k , bj(k) =!bj(k).

ii. If (i) 0 ∈ conv(XHxj
\ {0}) and (ii) (b⊕ b0j ) /∈ Bfuture

then add (b⊕ b0j ) to Bfuture.

(d) If Btopical 6= ∅, then go to Step 3a, else Btopical = Bfuture, Bfuture = ∅.

4. Return: D/n.

Nontrivial is the check of condition (i) in Step 3(c)ii, i.e. whether 0 ∈ conv(XHxj
\

{0}) (xj is projected into 0 in H
xj
; it is excluded). In other words, given a cone C

unambiguously defined by the corresponding bj , the linear separability (through the
origin) of X+

Hxj
,C and X−

Hxj
,C has to be checked, i.e. whether ∃ r ∈ Sd−1∩H

xj
such that

r′x > 0 ∀ x ∈ X+
Hxj

,C and r′x < 0 ∀ x ∈ X−

Hxj
,C . This can be done by means of linear

programming as follows.
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Let Y be the (n − 1) × (d − 1) matrix, which rows are the points ∈ (XHxj
\ {0})

for an iteration of Step 3(c)ii of the algorithm. The task from above narrows down to
finding a feasible solution Λ0 satisfying the constraints:

Y′Λ = 0d−1,

Λ′1n−1 = 1,

Λ ≥ 0n−1,

with Λ = (λ1, ..., λn−1)
′ and 0k (1k) being a vector-column of k zeros (ones). This is

what is done in the first phase of the simplex algorithm.
In Step 1 the XHxi

, i = 1, ..., n — projections of X onto zero hyperplanes normal to
data points ∈ X — are cached, an on each following step of the Algorithm for each i
these projections signs of several points have to be changed only, which computationally
is a cheap operation. Please note, that the simplex algorithm is executed in these
hyperplanes, i.e. in dimension d− 1. This mechanism allows for further caching as well.
If on Step 3(c)ii for some j 0 ∈ conv(XHxj

\ {0}), a basis consisting of d points will be

found. If, on the next iteration of the Algorithm, on Step 3(c)i for the same j the points
changing sign do not belong to the previously found basis, clearly 0 ∈ conv(XHxj

\ {0})
again, an no new execution of the simplex algorithm is needed. A more complicated
caching scheme can be used here, though. One can see in Step 3, that the outer cycle of
the Algorithm is completely deterministic and is always executed ⌊n+2

2
⌋ iterations only,

independent of the exact positioning of the data.

4 Experiments

In this section we give a short experimental reference on the computational efficiency
of the developed algorithm. First, in Section 4.1 we compare the computational load of
the algorithm with the existing analog from Liu & Zuo (2014a). Second, in Section 4.2
the convex-hull-constructing algorithm is contrasted with linear programming for the
task of computation of the Tukey depth.

4.1 Execution time

Table 1 indicates the execution times of the proposed algorithm (line ‘LP’) and this
of Liu & Zuo (2014a) (line ‘QHULL’) when calculating the Tukey depth of the origin
w.r.t. a sample of cardinality n from X ∼ N(0d, Id), with 0d being a vector of length
d consisting of 0s and Id being the diagonal matrix of 1s of dimension d. The grid
of n and d values coincides with this used by Liu & Zuo (2014a). Unlike Liu & Zuo
(2014a) we do not compute the depth of the further points, because all the direction
cones have to be checked anyway, and, under the assumption of general position, their
number depends on d and n only (in fact it equals 2

∑d−1
i=0

(

n−1
i

)

). The experiments from
Liu & Zuo (2014a) and a few runs of our algorithm show that these time differences
are rather small. The time of each algorithm has been averaged over ≤ 10 execution,
and one experiment for each pair (n, d) and for each algorithm never last longer than 24
hours. Thus, e.g., for n = 80 and d = 6 only two executions of the proposed algorithm
have been done. The ‘—’ sign indicates that an algorithm was not able to compute the
depth at least one time during a day. Both algorithms have been implemented in C++.
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For the execution times of the Matlab implementation of the algorithm of Liu & Zuo
(2014a) the reader is referred to their paper. In all the experiments a single kernel of
processor Core i7-2600 (3.4 GHz) have been used, accessing 16 GB physical memory.

One can conclude that in most of the considered cases the proposed algorithm is
faster, especially in higher dimensions. On the other hand for d = 3 starting with
n = 320 points it is slower than the competitor, and for d = 4 the difference in the
execution times becomes smaller when n increases. This can be explained by application
of the convex hull algorithm, which is faster in identifying the convex hull than linear
programming. That is, for given d, if n is sufficiently large, the algorithm of Liu & Zuo
(2014a) outperforms the proposed one. But given d, how large should this n be? Fort
this d, is the depth w.r.t. a sample of such size n computable in a reasonable time at
all? To give some insights we conduct a comparison of the linear programming and of
the convex hull algorithm for identifying the convex hull of a data cloud in Section 4.2.

4.2 Linear programming vs. QHULL

To take a closer look at the behavior of the basic constituents of the both algorithms
discussed above, we compare the execution times of identifying the points forming the
convex hull of a data cloud by linear programming and by the convex hull algorithm.
When obtaining these via linear programming each point is checked whether it lies in the
convex of the rest; for the convex hull implementation downloaded from www.qhull.org

is employed. For the both algorithms C++ implementations have been used. The data
cloud is generated fromN(0d, Id), and all the experimental settings are as before. (As the
number of the vertices of the convex hull of the data cloud from the normal distribution
is rather moderate, the convex hull algorithm is slightly favored.)

Table 2 presents the corresponding execution times for 3 ≤ d ≤ 10 and n =
40, 80, ..., 20480 for linear programming (line ‘LP’) and for the convex hull algorithm
(line ‘QHULL’). The sign ‘—’ denotes the situation when the whole available physical
memory has been consumed. Clearly, for given d, the convex hull algorithm outperforms
linear programming if n ≥ nthr.

d . From Table 2, nthr.
d < 40 for d < 6, 640 < nthr.

6 < 1280,
2560 < nthr.

7 < 5120 and 20480 < nthr.
d for d > 7. As each of these should be executed

for each direction cone, nthr.
d for the entire depth-computing algorithm can be very large,

what explains why the proposed one shows satisfactory times. One should notice that,
for fixed n, time increase with d is much lower when the linear programming is used.
Also, as discussed above, linear algorithm is not executed n times for each direction cone
(due to the special cone-coding scheme), as it was done in the current experiment, and
it is executed in dimension d − 1. In addition, we employ cashing of the basis for the
simplex algorithm, which further reduces the number of the executions. All this proves
the reasonability of the proposed algorithm.

5 Conclusions and outlook

The paper presents an algorithm computing the Tukey depth by finding a global min-
imum over a finite range of variants. The task of computing the Tukey depth is NP-
complete while all separations of X into two subsets by hyperplanes through z are
regarded. The algorithm follows the traditions of the cone segmentation of a finite-
dimensional space and regards candidate hyperplanes for the Tukey depth according to

10



Table 1: Execution times (in seconds) of the proposed algorithm (line ‘LP’) and of this from Liu & Zuo (2014a) (line ‘QHULL’) when
computing Tukey depth of the origin w.r.t. a d-variate standard normal data cloud of n points.

d Algorithm n = 40 80 160 320 640 1280 2560

3 LP 0.028 0.228 1.888 17.371 174.744 1789.335 18436.420
QHULL 0.072 0.367 2.186 15.179 103.763 830.077 17372.290

4 LP 0.403 7.022 119.010 2035.505 35924.400 — —
QHULL 3.133 77.007 1880.025 57512.800 — — —

5 LP 4.752 174.848 5974.114 — — — —
QHULL 424.366 55674.000 — — — — —

6 LP 48.170 3877.931 — — — — —
QHULL 39176.570 — — — — — —

7 LP 368.112 67897.800 — — — — —
QHULL — — — — — — —

8 LP 2441.332 — — — — — —
QHULL — — — — — — —

9 LP 12703.730 — — — — — —
QHULL — — — — — — —

10 LP 58767.700 — — — — — —
QHULL — — — — — — —
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Table 2: Execution times (in seconds) of linear programming (line ‘LP’) and of the convex hull algorithm (line ‘QHULL’) when
identifying the convex hull of a d-variate standard normal data cloud of n points.

d Algorithm n = 40 80 160 320 640 1280 2560 5120 10240 20480

3 LP 0.000 0.001 0.003 0.010 0.040 0.164 0.648 2.574 10.448 41.724
QHULL 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.003 0.005

4 LP 0.000 0.001 0.003 0.012 0.044 0.175 0.722 2.997 11.823 46.577
QHULL 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.005 0.007 0.013

5 LP 0.000 0.000 0.004 0.015 0.063 0.222 0.875 3.666 14.285 57.347
QHULL 0.001 0.002 0.003 0.005 0.010 0.014 0.021 0.030 0.045 0.066

6 LP 0.000 0.001 0.005 0.019 0.075 0.288 1.163 4.569 18.085 71.154
QHULL 0.003 0.010 0.023 0.046 0.087 0.162 0.274 0.439 0.675 0.985

7 LP 0.001 0.002 0.006 0.023 0.100 0.378 1.466 5.772 22.676 90.108
QHULL 0.013 0.053 0.150 0.403 0.844 1.659 3.044 4.385 7.513 11.532

8 LP 0.000 0.002 0.006 0.027 0.113 0.431 1.750 6.844 26.608 104.440
QHULL 0.044 0.344 1.347 3.478 8.457 16.867 35.086 56.434 102.224 188.282

9 LP 0.001 0.002 0.009 0.032 0.138 0.531 2.472 8.875 38.024 136.243
QHULL 0.088 1.228 6.678 26.489 68.860 175.306 358.894 740.124 1507.160 —

10 LP 0.002 0.002 0.010 0.040 0.159 0.663 2.808 11.029 43.587 172.089
QHULL 0.306 5.044 33.808 164.224 544.704 1454.072 — — — —
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a first-breadth order of direction cones. It employs the initial idea of Liu & Zuo (2014a)
by identifying a facet using linear programming, and by exploiting the fact that each
point ∈ X changes the halfspace only once during the entire execution of the breadth-
first search algorithm. Linear programming is executed in R

d−1 and the found basis can
be cached for each of these n (d−1)-dimensional projections. Also, binary coding of the
cones does not require their spacial positioning. This yields a substantial acceleration.
The algorithm saves physical memory by storing only two layers of the direction cones
in RAM, too.

The algorithm presented here can be modified to solve related tasks, such as com-
puting regression depth (Rousseeuw & Hubert, 1999) or finding a linear classification
rule separating two training classes with a minimal number of errors (=empirical risk).
Ghosh & Chaudhuri (2005) investigate the connection between the Tukey (also regres-
sion) depth and binary supervised classification. In a different way, the algorithm can
be used for finding a hyperplane through a fixed point minimizing empirical risk. When
adding an artificial coordinate equaling zero for all observations (i.e. yielding (x′

i, 0)
′,

i = 1, ..., n) and letting the hyperplane go through (0′
d, 1)

′ say, its (d − 1)-dimensional
trace achieves the risk minimizing separation. After removing erroneous points, an op-
timal margin classifier (Boser et al., 1992) can be applied to find the optimal separation
hyperplane. By a (say, polynomial) extension of the space nonlinear classification rules
may be involved.

The ideas considered in this paper can be applied to a wider range of tasks. Thus,
the way of covering the space by a breadth-first search algorithm can be applied to
many tasks involving a cone segmentation. Application of the linear programming, used
here, can be a good alternative to the QHULL algorithm (used by Paindaveine & Šiman
(2012a,b), Liu & Zuo (2014a,b)), while it allows to check whether a single point is a
vertex of the convex hull of a data cloud. For instance, in the current algorithm, close to
the equatorial generations, after filtering already seen points and unreachable neighbors
(of the same generation), the number of points to be checked is almost halved.
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