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Abstract

In this paper we investigate a new class of central regions for probability
distributions on R

d, called weighted-mean regions. Their restrictions to an
empirical distribution are the weighted-mean trimmed regions investigated
by Dyckerhoff and Mosler (2011) for d-variate data. Furthermore a new
class of stochastic orderings of variability, the weighted-mean orderings, is
introduced.

Keywords: Central regions, Continuous trimming, Lift zonoid regions,
Expected convex hull, Variability order

1. Introduction

Let F be a probability distribution on the Borel sets of R
d, and X

a random vector that is distributed as F . A family of central regions is
a family (Rα(X))α∈I of nested convex compacts Rα(X) ⊂ R

d which are
distribution invariant (i.e. depend only on F ) and affine equivariant,

Rα(AX + b) = ARα(X) + b for regular A ∈ R
d×d and b ∈ R

d.

Here I is an interval in R, and the regions Rα(X) decrease with α ∈ I.
Central regions describe a distribution regarding its location and dispersion
(due to their affine equivariance), as well as its shape. They are also men-
tioned as trimmed regions and can be seen as level sets of a data depth. For
a general discussion, see e.g. Zuo and Serfling (2000), Dyckerhoff (2004).

Dyckerhoff and Mosler (2011) have introduced the notion of weighted-
mean (WM) trimming for multivariate data, i.e. for empirical distributions.
This general class of trimmings includes the zonoid trimming (Koshevoy and
Mosler, 1997), the ECH (expected convex hull) trimming (Cascos, 2007),
and other known trimmings as special cases. The WM trimmed regions
of an empirical distribution are convex polytopes around the mean that
have many attractive properties, including subadditivity and continuity in
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the data as well as in the trimming parameter. In the sequel we present
a population version of the WM trimmed regions and derive their similar
properties. These WM regions are defined for any probability distribution
on R

d that has a finite first moment. Their restriction to an empirical
distribution comes out as the weighted-mean trimmed regions for d-variate
data. In fact, a law of large numbers holds: The WM trimmed regions of
an independent sample converge, almost surely, to the trimmed regions of
the underlying probability distribution; see Dyckerhoff and Mosler (2011).

2. Weighted-mean regions of a probability

As central regions are convex compacts in R
d, we will define them through

their support functions. Recall that a closed convex set K ⊂ R
d is uniquely

characterized by its support function hK : Rd → R∪{∞}, hK(p) = sup {p′x |
x ∈ K }. Further, the support function is finite for all p ∈ R

d if and only ifK
is compact, i.e., closed and bounded. A function h : Rd → R is the support
function of a convex compact iff it is positive homogeneous (h(λp) = λh(p)
for λ > 0) and subadditive (h(p + q) ≤ h(p) + h(q)). See, e.g., Rockafellar
(1970).

Consider the class Fwg of weight-generating functions f : [0, 1] → [0, 1]
that satisfy
(i) f(0) = 0, f(1) = 1,
(ii) f is increasing, convex, and continuous,
(iii) f ′ is bounded.
Note that every f ∈ Fwg is differentiable except at (at most) countable many
points. As the derivative is increasing, we extend f ′ to a function on [0, 1]
that is right continuous and bounded, in other words, to the distribution
function of a finite measure.

Proposition 1 (Support function). Let I ⊂ R be an interval and {rα}α∈I a
family of functions from Fwg. Then, for any random vector X in R

d having
probability distribution F and finite first moment, the function h,

h(p) =

∫ 1

0
Qp′X(t) drα(t) , p ∈ R

d , (1)

is the support function of a convex compact. Here Qp′X signifies the quantile
function of p′X, i.e., Qp′X(t) = inf{x ∈ R |P (p′X ≤ x) ≥ t}.

Proof: We have to show that h is positive homogeneous, subadditive and
finite for every p. The positive homogeneity follows immediately from the
fact that Q(λp)′X = Qλ(p′X) = λQp′X for λ > 0.
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For a (univariate) random variable X, functionals of the form Hr : X 7→
∫ 1
0 QX(t) dr(t), where r ∈ Fwg, have been studied in risk theory. It is well
known that these functionals are subadditive, i.e.,

Hr(X + Y ) ≤ Hr(X) +Hr(Y ) .

For a proof of this result see, e.g., Wang and Dhaene (1998). In this article
the functional Hr is written in the form Hr(X) =

∫ 1
0 QX(1− t) dr∗(t) where

r∗(t) = 1− r(1− t) is increasing and concave.
Therefore, for d-variate random vectors X and Y and u, v ∈ R

d, it holds

h(u+ v) =

∫ 1

0
Q(u+v)′X(t) drα(t) =

∫ 1

0
Qu′X+v′X(t) drα(t)

≤

∫ 1

0
[Qu′X(t) +Qv′X(t)] drα(t) = h(u) + h(v)

which was to be proved.
For finiteness of h(p) notice that E

[

‖X‖
]

< ∞ implies E[ |p′X| ] =
∫ 1
0 |Qp′X(t)| dt < ∞ for every p ∈ R

d. Since r′α is bounded, it holds that
|r′α(t)| < M for some M > 0. It follows that

∣

∣

∣

∣

∫ 1

0
Qp′X(t) drα(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0
Qp′X(t)r′α(t) dt

∣

∣

∣

∣

≤

∫ 1

0
|Qp′X(t)| · |r′α(t)| dt ≤ M

∫ 1

0
|Qp′X(t)| dt < ∞ .

Therefore, h(p) is finite for every p ∈ R
d.

Based on the preceding proposition we define:

Definition 1. The unique convex bodies whose support functions are given
by (1) are called the weighted-mean regions, in short WM regions, of X and
denoted by Dα(X), α ∈ I.

Observe that the support function h and hence the region Dα(X) de-
pends only on the distribution F of X. To show that the weighted-mean
regions form indeed a family of central regions, we still have to establish
their affine equivariance and nestedness.

Proposition 2 (Affine equivariance). For every matrix A ∈ R
m×d and every

b ∈ R
m it holds

Dα(AX + b) = ADα(X) + b .
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Proof:

hDα(AX+b)(p) =

∫ 1

0
Qp′(AX+b)(t) drα(t) =

∫ 1

0

[

Q(A′p)′X(t) + p′b
]

drα(t)

= hDα(X)(A
′p) + p′b = hADα(X)+b(p)

Note that Proposition 2 states much more than affine equivariance, as
A can be any matrix.

Proposition 3 (Nestedness). Let the family of functions {rα}α∈I satisfy
(iv) α 7→ rα(t) is increasing for every t.
Then, the WM regions are nested,

α < β =⇒ Dβ(X) ⊂ Dα(X) .

Proof: From α < β it follows rα(t) ≤ rβ(t) for every t ∈ [0, 1]. Thus, the
probability distribution generated by rα dominates that generated by rβ in
the sense of first degree stochastic dominance. Since quantile functions are
increasing it follows that

hDα(X)(p) =

∫ 1

0
Qp′X(t) drα(t) ≥

∫ 1

0
Qp′X(t) drβ(t) = hDβ(X)(p) ,

and therefore Dβ(X) ⊂ Dα(X).
When we speak of weighted-mean regions we will henceforth assume that

condition (iv) of Proposition 3 is satisfied.
Interesting is the special case when d = 1. Then it holds hDα(X)(1) =

∫ 1
0 QX(t)drα(t) and hDα(X)(−1) =

∫ 1
0 Q−X(t)drα(t), hence

Dα(X) =

[

−

∫ 1

0
Q−X(t)drα(t) ,

∫ 1

0
QX(t)drα(t)

]

. (2)

For general d ≥ 1 and the choice

rα(t) =

{

0 , if t < 1− α ,
t−(1−α)

α if t ≥ 1− α .
(3)

one gets the so-called zonoid regions, that have been extensively studied in
the literature, see, e.g., Koshevoy and Mosler (1997), Mosler (2002). The
univariate zonoid region is a closed interval whose lower bound is the nega-
tive of a popular univariate risk measure, the α-expected shortfall.
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Another special case of weighted-mean regions is given by the continu-
ous ECH∗ regions (shortly CECH∗ regions) that were introduced in Cascos
(2007) and Dyckerhoff and Mosler (2011). These regions are defined by the
weight-generating functions

rα(t) = t1/α , α ∈ (0, 1] .

In the univariate case, if α = 1/n, the lower bound of the CECH∗ region
can be represented as

minD1/n(X) = −hD1/n(X)(−1) = E [min{X1, . . . , Xn}] ,

where X1, . . . , Xn are independent copies of X. This again is a coherent
risk measure, the expected minimum, also called Alpha V@R by Cherny and
Madan (2006).

3. Properties of weighted-mean regions

In this section we will establish additional properties of the weighted-
mean regions, such as subadditivity, monotonicity, and continuity.

Proposition 4 (Subadditivity). The WM regions are subadditive,

Dα(X + Y ) ⊂ Dα(X)⊕Dα(Y )

Proof: Recall that support functions are additive w.r.t. the Minkowski ad-
dition ⊕ of sets, hK(p) + hL(p) = hK⊕L(p). Thus, we have to show that
hDα(X+Y ) ≤ hDα(X) + hDα(Y ).

As in the proof of Proposition 1 we obtain

hDα(X+Y )(p) =

∫ 1

0
Qp′(X+Y )(t) drα(t) =

∫ 1

0
Qp′X+p′Y (t) drα(t)

≤

∫ 1

0

[

Qp′X(t) +Qp′Y (t)
]

drα(t) = hDα(X)(p) + hDα(Y )(p) .

Let X, Y be d-variate random vectors. A set U ⊂ R
n is called upper if

x ∈ U , x ≤ y implies y ∈ U . The strong first degree stochastic order ≤1 on
the space of d-variate random vectors is defined by

X ≤1 Y ⇐⇒ P (X ∈ U) ≤ P (Y ∈ U) for all upper sets U ⊂ R
d.
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Proposition 5 (Monotonicity). Suppose X ≤1 Y , where ≤1 denotes strong
first degree multivariate stochastic dominance. Then,

Dα(Y ) ⊂ Dα(X)⊕ R
d
+ and Dα(X) ⊂ Dα(Y )⊕ R

d
− .

Proof: Since h
Rd
+
(p) = ∞ if p /∈ R

d
−, the first set inclusion is equivalent to

hDα(Y )(p) ≤ hDα(X)(p) for all p ∈ R
d
−, which has to be checked.

If X ≤1 Y then there exist random vectors X̃ and Ỹ such that X
d
= X̃

and Y
d
= Ỹ and X̃ ≤ Ỹ with probability one (see, e.g., Kamae et al., 1977).

Thus, Ỹ − X̃ ≥ 0 almost surely, and p′Ỹ − p′X̃ = p′(Ỹ − X̃) ≤ 0 for all
p ∈ R

d
− , hence, with probability one, p′Ỹ ≤ p′X̃ . We conclude

Qp′Y = Qp′Ỹ ≤ Qp′X̃ = Qp′X ,

hDα(Y )(p) =

∫ 1

0
Qp′Y (t) drα(t) ≤

∫ 1

0
Qp′X(t) drα(t) = hDα(X)(p) .

This proves Dα(Y ) ⊂ Dα(X) ⊕ R
d
+. The second statement is analogously

proven.

Proposition 6 (Continuity in α). Assume that X is a random vector
for which the expectation exists and is finite. Assume further that (rαn)
converges pointwise to rα whenever (αn) converges to α. Then the map
α 7→ Dα(X) is continuous w.r.t. the Hausdorff metric.

Proof: Since rαn is convex, pointwise convergence of (rαn) to rα implies
that (r′αn

) converges to r′α except possibly at countable many points in
[0, 1]. Since limn→∞ r′αn

(1) = r′α(1) < M < ∞ there exists N ∈ N such that
r′αn

(1) ≤ M < ∞ for all n ≥ N . Therefore,

|Qp′X(t)r′αn
(t)| ≤ M |Qp′X(t)| for all n ≥ N .

Since M |Qp′X(t)| is integrable, it follows from the dominated convergence
theorem that

lim
n→∞

∫ 1

0
Qp′X(t) drαn(t) = lim

n→∞

∫ 1

0
Qp′X(t)r′αn

(t) dt

=

∫ 1

0
Qp′X(t)r′α(t) dt =

∫ 1

0
Qp′X(t) drα(t) .

Therefore the support function converges pointwise on the sphere Sd−1,
which is equivalent to convergence of the associated convex bodies in the
Hausdorff sense.
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Proposition 7 (Continuity in the distribution). Assume that (Xn) is a
sequence of random vectors with finite first moments that converges in dis-
tribution to X. If the sequence (Xn) is uniformly integrable, then Dα(Xn)
converges to Dα(X) in the Hausdorff metric.

Proof: We have to show pointwise convergence of the support functions.
Note that the sequence (Xn) converges in distribution to X if and only

if the sequence of linear combinations (p′Xn) converges in distribution to
p′X for every p ∈ Sd−1. Further, (Xn) is uniformly integrable if and only if
the sequence of one-dimensional projections (p′Xn) is uniformly integrable
for every p ∈ Sd−1.

According to Skorohod’s representation theorem there are random vari-
ables Z,Z1, Z2, . . . defined on a common probability space such that Zn (Z)
has the same distribution as p′Xn (p′X) and Zn(ω)

n→∞
−−−→ Z(ω) for every

ω ∈ Ω. Note that the sequence (Zn) is uniformly integrable as well.
Since (p′Xn) converges in distribution to p′X, it follows that Fp′Xn con-

verges to Fp′X at all continuity points of Fp′X . It can be shown that the
same holds for the quantile functions, i.e., Qp′Xn converges to Qp′X at all
continuity points of Qp′X . Since Qp′X is monotone, it has at most countable
many discontinuities.

In the next step we show that the sequence of quantile functions QZn

is uniformly integrable. First, it follows from the uniform integrability of
the sequence (Zn) that limn→∞E[|Zn|] = E[|Z|]. It is well-known that
E[|Zn|] =

∫ 1
0 |QZn(t)| dt . Thus,

lim
n→∞

∫ 1

0
|QZn(t)| dt =

∫ 1

0
|QZ(t)| dt .

Since QZn converges to QZ almost everywhere, this implies uniform integra-
bility of the sequence QZn . Now it follows from uniform integrability of the
QZn that

lim
n→∞

∫ 1

0
|QZn(t)−QZ(t)| dt = 0 .

For the last step, note that r′α is bounded so that, for all t, |r′α(t)| < M with
some M > 0. Now,

∣

∣hDα(Xn)(p)− hDα(X)(p)
∣

∣ =

∣

∣

∣

∣

∫ 1

0
Qp′Xn(t) drα(t)−

∫ 1

0
Qp′X(t) drα(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0
(QZn(t)−QZ(t)) r

′

α(t) dt

∣

∣

∣

∣
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≤

∫ 1

0

∣

∣

∣
QZn(t)−QZ(t)

∣

∣

∣
·
∣

∣r′α(t)
∣

∣ dt

≤ M

∫ 1

0

∣

∣

∣
QZn(t)−QZ(t)

∣

∣

∣
dt

Since the right hand side goes to zero when n goes to infinity, we conclude
that the support functions converge pointwise, which was to be shown.

4. Weighted-mean orderings

Stochastic orderings of d-variate distributions have many applications;
see Shaked and Shanthikumar (2007). A large and flexible class of orderings
can be based on weighted-mean regions.

Definition 2 (Weighted-mean ordering). Let r = {rα}α∈I be a family sat-
isfying (i) to (iv). We define an ordering of d-variate random vectors (and
their probability distributions) by X �r Y if

Dα(X) ⊂ Dα(Y ) for all α ∈ I .

Obviously, this relation is transitive and reflexive.
The weighted-mean orderings can be seen as variability orderings be-

tween random vectors as is apparent from the following results.

Proposition 8. For every random vector X with finite first moment holds

E[X] �r X .

Proof: Note that the identity id : t 7→ t is in Fwg. Further, for every
function rα ∈ Fwg holds rα ≤ id where the inequality is to be understood
pointwise. Now, as in the proof of Proposition 3, it follows that

hDα(X)(p) =

∫ 1

0
Qp′X(t) drα(t) ≥

∫ 1

0
Qp′X(t) dt = E[p′X] = p′E[X] .

Therefore, Dα(E[X]) = {E[X]} ⊂ Dα(X) and the assertion follows.

Proposition 9. For every random vector X with finite first moment and
every λ ≥ 1 holds

X − E[X] �r λ(X −E[X]) .

8



Proof: From the affine equivariance of the WM regions it follows that

Dα

(

λ(X −E[X])
)

= λ (Dα(X)− E[X]) .

The set Dα(X) − E[X] is convex and, since E[X] ∈ Dα(X), contains the
origin. Therefore, for every λ ≥ 1,

(Dα(X)− E[X]) ⊂ λ (Dα(X)− E[X])

which completes the proof.
The weighted-mean ordering is preserved under arbitrary affine trans-

formations.

Proposition 10. Let X and Y be random vectors with finite first moments.
Then, for every matrix A ∈ R

m×d and every b ∈ R
m it holds

X �r Y =⇒ AX + b �r AY + b .

Proof: The proposition follows immediately from Proposition 2.
As a corollary we note that the weighted-mean ordering is preserved

under marginalization. Let XJ denote the marginal of X regarding the
coordinate set J ⊂ {1, . . . , d}.

Corollary 1. Let X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) be random vectors
with finite first moments. Then,

X �r Y =⇒ XJ �r YJ , J ⊂ {1, . . . , d}, J 6= ∅ .

Proof: The proposition follows immediately from the preceding proposition
by choosing A as the projection matrix on the coordinate set J .

Consider the special case of the zonoid regions, where rα is given by
(3). The weighted-mean order based on the zonoid regions is known as the
zonoid order; see Mosler (2002). The zonoid order plays a special role as is
shown in the following proposition.

Proposition 11. The zonoid order �Z implies any weighted-mean ordering,
i.e.,

X �Z Y =⇒ X �r Y for any such family r.

Proof: It holds (Mosler, 2002) that X �Z Y iff p′X ≤cx p′Y for all p ∈ R
d.

By Theorem 4.A.4 in Shaked and Shanthikumar (2007) this implies

hDα(X)(p) =

∫ 1

0
Qp′X(t) drα(t) ≤

∫ 1

0
Qp′Y (t) drα(t) = hDα(Y )(p) ,
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which means Dα(X) ⊂ Dα(Y ) for all α.
As we will see below in Example 1 the converse of Proposition 11 is

in general wrong, i.e., there exist weighted-mean orderings that are not
equivalent to the zonoid order.

One of the most important multivariate variability orders is the convex
order (see Shaked and Shanthikumar, 2007, chap. 7). The following propo-
sition clarifies the relation between the convex order and the weighted-mean
orderings.

Proposition 12. The convex order ≤cx implies any weighted-mean order-
ing, i.e.,

X ≤cx Y =⇒ X �r Y for any such family r.

In the case d > 1 the weighted-mean orderings are strictly weaker than the
convex order, i.e., for any weighted-mean ordering

X �r Y 6=⇒ X ≤cx Y .

Proof: In Mosler (2002) it was shown that the zonoid order is implied by
the convex order, but is different from the convex order when d > 1. The
assertion then follows from Proposition 11.

Proposition 13. Let {rα}α∈I satisfy supα∈I rα = id, where id denotes the
identity. Then,

X �r Y =⇒ E[X] = E[Y ] .

Proof: Under the condition given above, there is a sequence (αn) such that
(rαn) converges pointwise to the identity. From Proposition 6 it follows
that the sequences (Dαn(X)) and (Dαn(Y )) both converge in the Hausdorff
metric to the singletons {E[X]} and {E[Y ]}. Since Dα(X) ⊂ Dα(Y ) for all
α, this implies E[X] = E[Y ].

We conclude this section with an example that shows that the converse of
Proposition 11 is in general wrong. In particular we show that the ordering
�CECH∗ , which is defined by the continuous ECH∗ regions, does not imply
the zonoid order.

Example 1. Let X be a random variable that takes on the values x1 =
−1.05, x2 = −0.05, x3 = 0.05 and x4 = 1.05 with equal probability, and
let Y be a random variable that takes on the values y1 = −1, y2 = −0.15,
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y3 = 0.15 and y4 = 1 with equal probability. For the zonoid regions we get

hZD1/4(X)(1) =
1

1/4

∫ 1

3/4
QX(t) dt = 4 ·

1

4
· 1.05 = 1.05 ,

hZD1/2(X)(1) =
1

1/2

∫ 1

1/2
QX(t) dt = 2 ·

(

1

4
· 0.05 +

1

4
· 1.05

)

= 0.55 ,

and

hZD1/4(Y )(1) =
1

1/4

∫ 1

3/4
QY (t) dt = 4 ·

1

4
· 1 = 1 ,

hZD1/2(Y )(1) =
1

1/2

∫ 1

1/2
QY (t) dt = 2 ·

(

1

4
· 0.15 +

1

4
· 1

)

= 0.575 .

Therefore, neither X �Z Y nor Y �Z X holds.
Now consider the continuous ECH∗ regions. For the sake of simplicity

we set β = 1/α and write rα(t) = tβ. Then we get

hCECH∗

α(X)(1) = −1.05 ·

[

(

1

4

)β

−

(

0

4

)β
]

− 0.05 ·

[

(

2

4

)β

−

(

1

4

)β
]

+ 0.05 ·

[

(

3

4

)β

−

(

2

4

)β
]

+ 1.05 ·

[

(

4

4

)β

−

(

3

4

)β
]

=
1

4β

[

1.05 · 4β − 3β − 0.1 · 2β − 1
]

Analogously, we get

hCECH∗

α(Y )(1) =
1

4β

[

4β − 0.85 · 3β − 0.3 · 2β − 0.85
]

.

The difference is given by

hCECH∗

α(X)(1)− hCECH∗

α(Y )(1) =
1

4β

[

0.05 · 4β − 0.15 · 3β + 0.2 · 2β − 0.15
]

.

Now consider the function f : [1,∞) → R,

f(x) = 0.05 · 4x − 0.15 · 3x + 0.2 · 2x − 0.15 .

We have to show that f(x) ≥ 0 for all x ∈ [1,∞). For x = 1 obtain f(1) = 0.
The derivative is given by

f ′(x) = 0.05 · ln 4 · 4x − 0.15 · ln 3 · 3x + 0.2 · ln 2 · 2x .
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Obviously, f ′(x) > 0 iff

g(x) := 0.05 · ln 4 ·

(

4

3

)x

+ 0.2 · ln 2 ·

(

2

3

)x

> 0.15 · ln 3 .

It can be seen by routine calculations that g is convex on [1,∞) and has a
unique global minimum at

x∗ = 1 + ln

(

ln 3/2

ln 4/3

)

/

ln 2 ≈ 1.49510245 .

The value at x∗ is

g(x∗) ≈ 0.18217704 > 0.16479184 ≈ 0.15 · ln 3 .

Thus, f ′(x) > 0 on [1,∞) and therefore f(x) ≥ 0 on [1,∞). This shows that
hCECH∗

α(X)(1) ≥ hCECH∗

α(Y )(1) for all α ∈ (0, 1] and therefore X �CECH∗ Y ,
which proves that the orderings �Z and �CECH∗ are in fact different.
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