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Abstract

A general notion of trimmed regions for empirical distributions in
d-space is introduced. The regions are called weighted-mean trimmed
regions. They are continuous in the data as well as in the trimming pa-
rameter. Further, these trimmed regions have many other attractive
properties. In particular they are subadditive and monotone which
makes it possible to construct multivariate measures of risk based on
these regions. Special cases include the zonoid trimming and the ECH
(expected convex hull) trimming. These regions can be exactly calcu-
lated for any dimension. Finally, the notion of weighted-mean trimmed
regions extends to probability distributions in d-space, and a law of
large numbers applies.

Keywords: Central regions, continuous trimming, data depth, lift zonoid
regions, expected convex hull, law of large numbers.

1 Introduction

The trimming of multivariate data or, more general, probability distribu-
tions in Rd has become an important tool in nonparametric multivariate
analysis. Depending on a given distribution, a family of nested sets, called
trimmed or central regions, is constructed each of which reflects the location,
dispersion, and shape of the distribution.

The notion of trimmed regions is closely connected with that of data depth:
Roughly speaking, each trimmed region can be considered as an upper level
set of a function, the depth function, that measures sort of distance of a given



point in Rd from a central point of the distribution, where the function takes
its maximum.

Many special notions of data depth and trimmed regions have been proposed
in the literature, among them the Mahalanobis depth, the halfspace depth,
the simplicial depth, and the zonoid depth; for recent surveys, see Serfling
(2006), Cascos (2009). Applications include multivariate data analysis (Liu
et al., 1999), classification (Mosler and Hoberg, 2006), tests for multivariate
location and scale (Dyckerhoff, 2002), and risk measurement (Cascos and
Molchanov, 2007). For a general definition of data depth, see, e.g., Zuo and
Serfling (2000a), Dyckerhoff (2004).

A general definition of trimmed regions is the following (see e.g. Zuo and
Serfling (2000b), Mosler (2002), Dyckerhoff (2004)).

Definition 1 (Trimmed regions). Given an interval I in R, a family of
trimmed regions provides, for each set of data {x1, . . . , xn} ∈ Rd and α ∈ I,
a set Dα(x1, . . . , xn) ⊂ Rd such that:

T1 (Convex body) Dα(x1, . . . , xn) is convex, closed, and bounded.

T2 (Nested) The mapping α 7→ Dα(x1, . . . , xn) is decreasing, i.e. α < β
implies Dβ(x1, . . . , xn) ⊂ Dα(x1, . . . , xn).

T3 (Affine equivariant) The mapping (x1, . . . , xn) 7→ Dα(x1, . . . , xn) is
affine equivariant.

From here on, I will always denote an interval that constitutes the domain
of the trimming parameter α. In most applications I will be equal to (0, 1],
however other choices are possible.

In some notions of trimmed regions convexity is weakened to starshapedness,
and affine equivariance to translation-scale equivariance.

For practical use in data analysis, continuity is needed with respect to the
data and as well with respect to the parameter:

T4 (Continuous in the data) The mapping (x1, . . . , xn) 7→ Dα(x1, . . . , xn)
is continuous in terms of Hausdorff convergence.

T5 (Continuous in the parameter) The mapping α 7→ Dα(x1, . . . , xn) is
continuous in terms of Hausdorff convergence.
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Continuity, of course, appears to be a natural postulate, as small deviations
in the data should only slightly change the trimmed regions. The same ap-
plies for small changes of the depth parameter α. However, not all popular
depth notions are continuous. While, e.g., trimmed regions based on Maha-
lanobis or zonoid depth are continuous, those based on simplicial depth are
not.

In applications to risk measurement two other properties of trimmed regions
are important:

T6 (Subadditive in the data)

Dα(x1 + y1, . . . , xn + yn) ⊂ Dα(x1, . . . , xn)⊕Dα(y1, . . . , yn) .

T7 (Monotone in the data) If xi ≤ yi holds for all i (in the componentwise
ordering of Rd) then

Dα(y1, . . . , yn) ⊂ Dα(x1, . . . , xn)⊕ Rd
+ and

Dα(x1, . . . , xn) ⊂ Dα(y1, . . . , yn)⊕ Rd
− ,

where ⊕ signifies the Minkowski sum of sets.

They allow for the construction of set-valued measures that are coherent
multivariate risk measures (Cascos and Molchanov, 2007). While halfspace
regions are neither subadditive nor monotone, e.g. zonoid regions are both.
The univariate α-trimmed zonoid region is a closed interval whose lower
extreme is the negative of a popular univariate risk measure, the α-expected
shortfall. Multivariate zonoid regions can be transformed into multivariate
risk measures, as well.

This paper provides a general notion of trimmed regions for empirical dis-
tributions in d-space which have all the above-mentioned properties T1 to
T7. Due to their construction via weighted means of data permutations
we will call them weighted-mean trimmed regions. These regions are con-
tinuous in the data and in the trimming parameter, as well as subadditive
and monotone. Special cases include the zonoid trimming and the ECH
(expected convex hull) trimming and other meaningful notions of trimming.
The regions can be exactly calculated for any dimension.

Overview of the paper: The definition of weighted-mean trimmed regions
is developed in Section 2. Next, in Section 3, the continuity, monotonicity,
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and subadditivity of the regions are established as well as the intersection
and projection properties. In Section 4 special cases of the new notion are
investigated. They contain the zonoid regions, two continuous versions of
the ECH regions, and the geometrically trimmed regions. Section 5 ex-
tends the notion of weighted-mean trimmings to trimmings of probability
distributions on Rd. A law of large numbers is proved: Under mild restric-
tions the trimmed regions of an independent sample converge, almost surely
and in Hausdorff metric, to the trimmed regions of the underlying prob-
ability distribution. Section 6 concludes with remarks on robustness and
computability of the new regions.

Some notation: By Sd−1 we denote the (d − 1)-dimensional unit sphere in
Rd, i.e., the set {x ∈ Rd | ‖x‖ = 1}. Every element in Sd−1 is interpreted
as a direction in Rd. For the set of the first n integers we use the notation
N = {1, . . . , n}. As usual, the integer part of a real number x is denoted by
bxc.

2 A general notion of trimmed regions

Assume that we are given n data points x1, . . . , xn in Rd. Our aim is to
define a general notion of trimmed regions that satisfies the properties T1
to T7. These regions will be constructed via their support functions (cf.
e.g. Rockafellar, 1970). Recall that a closed convex set K ⊂ Rd is uniquely
determined by its support function hK : Rd → R ∪ {∞},

hK(p) = sup
{

p′x |x ∈ K
}

, p ∈ Rd .

Further, the support function is finite for all p ∈ Rd if and only if K is a
convex body, i.e., closed, convex and bounded. For any direction p in Rd,
let πp denote a permutation that orders the values p′xi in ascending order,

p′xπp(1) ≤ p′xπp(2) ≤ · · · ≤ p′xπp(n) .

The permutation πp,x depends on the given data x1, . . . , xn. For ease of
notation, we shall omit the subscript x whenever this is possible and write πp
instead. The permutation is unique if and only if the values p′xi, i = 1, . . . , n,
are pairwise distinct. The set of directions p for which πp is not unique will
be denoted by

H(x1, . . . , xn) =
{

p ∈ Sd−1 | there are i 6= j such that p′xi = p′xj

}

.
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In order to define a trimmed region via its support function we consider a
function h(p) that is a weighted average of values p′xi,

h(p) =
n
∑

j=1

wj,αp
′xπp(j) , p ∈ Rd . (1)

Here, wj,α, j = 1, . . . , n, α ∈ I, is a family of weights with

wj,α ≥ 0 for all j, α,
n
∑

j=1

wj,α = 1 for all α.

In the sequel, further restrictions will be imposed on the weights in order to
make (1) the support function of a convex body that, in particular, satisfies
the above properties T1 to T7.

Proposition 1 (Support function). The function h in (1) is the support
function of a convex body if the weights wj,α increase in j.

Proof: It is well-known that a function h : Rd → Rd is the support function
of a convex body if and only if it is sublinear, i.e., if the following two
conditions hold:

(i) positive homogeneous: h(λu) = λh(u) for all λ > 0, u ∈ Rd ,

(ii) subadditive: h(u+ v) ≤ h(u) + h(v) for all u, v ∈ Rd .

It is obvious that h is positive homogeneous. As by assumption wj,α is
increasing in j, it holds

n
∑

j=1

wj,αp
′xπp(j) ≥

n
∑

j=1

wj,αp
′xπ(j) for every permutation π. (2)

Thus,

h(u+ v) =
n
∑

j=1

wj,α(u+ v)′xπu+v(j)

=
n
∑

j=1

wj,αu
′xπu+v(j) +

n
∑

j=1

wj,αv
′xπu+v(j)

≤
n
∑

j=1

wj,αu
′xπu(j) +

n
∑

j=1

wj,αv
′xπv(j)

= h(u) + h(v) ,
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i.e., h is subadditive.

Remark: Note that also a converse of Proposition 1 can be shown: If the
weights wj,α are not increasing in j, then there exist x1, . . . , xn such that
the function (1) fails to be subadditive.

Now, we are prepared to introduce the central notion of this article, the
weighted-mean trimmed regions.

Definition 2 (Weighted mean trimmed regions). Assume that the weights
wj,α satisfy the following conditions (i) to (iii).

(i)
∑n

j=1wj,α = 1, wj,α ≥ 0 for j = 1, . . . , n, α ∈ I.

(ii) wj,α increases in j.

(iii) If α < β then

k
∑

j=1

wj,α ≤
k

∑

j=1

wj,β , k = 1, . . . , n . (3)

The unique convex body, whose support function is given by

hDα(x1,...,xn)(p) =

n
∑

j=1

wj,αp
′xπp(j) .

is denoted by Dα(x1, . . . , xn) (or in short Dα). The sets Dα(x1, . . . , xn),
α ∈ I, are called the weighted-mean trimmed regions, in short the WMT
regions, of x1, . . . , xn.

To illustrate these regions, consider the case d = 1. In this case the weighted
mean trimmed regions are given by

Dα(x1, . . . , xn) =





n
∑

j=1

wn+1−j,αx(j),
n
∑

j=1

wj,αx(j)



 ,

where x(j) denotes the j-th smallest value of the data points x1, . . . , xn.
Thus, the regions are intervals whose endpoints are given by weighted aver-
ages of quantiles. This is closely related to the so-called halfspace trimming
(see Tukey, 1975), where, in the univariate case, the trimmed regions are
intervals whose endpoints are quantiles of the distribution. However, as the
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WMT weights have to be increasing in j, the halfspace trimmed regions
cannot be represented as WMT regions.

Condition (ii) is needed to ensure that the function h, defined by (1), is
indeed the support function of a convex body.

Condition (iii) guarantees that the weighted-mean trimmed regions are
nested. This will be shown in Proposition 3 below. Note that condition
(iii) is equivalent to saying that the vector of weights is increasing with α
in the sense of majorization, see, e.g., Marshall and Olkin (1979).

The next proposition provides representations of Dα and of its set of extreme
points.

Proposition 2 (Extreme points of WMT regions). It holds that

Dα(x1, . . . , xn) = conv







n
∑

j=1

wj,αxσ(j)

∣

∣

∣
σ permutation of {1, . . . , n}







. (4)

The set of extreme points of Dα is given by

Ext
(

Dα(x1, . . . , xn)
)

=







n
∑

j=1

wj,αxπp(j)

∣

∣

∣
p ∈ Sd−1 \H(x1, . . . , xn)







. (5)

Proof: Denote the right-hand side of (4) by C. The support function of C
is

hC(p) = max
σ

p′
n
∑

j=1

wj,αxσ(j) = max
σ

n
∑

j=1

wj,αp
′xσ(j)

=

n
∑

j=1

wj,αp
′xπp(j) = hDα(x1,...,xn)(p)

due to the inequality (2). From this follows equation (4).

To prove (5), observe that x0 is an extreme point if and only if there exists
a direction p ∈ Sd−1 such that the equation

p′x = hDα(p) , x ∈ Dα , (6)

has the unique solution x0; see e.g., Dyckerhoff (2000). Obviously, for p ∈
Sd−1 \H the unique solution of (6) is given by

∑n
j=1wj,αxπp(j). Hence, (5)

follows.
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The first part of the preceding proposition shows that the trimmed regions
can be represented as the convex hull of n! points. Of course this is compu-
tationally intractable even for moderate values of n. However, the second
part of the proposition shows that for computing the extreme points only
those permutations have to be considered that are induced by a direction p.
In fact, there are efficient algorithms to compute the trimmed regions, see
Dyckerhoff (2000) and Cascos (2007) for the bivariate case and Mosler et al.
(2009) and Bazovkin and Mosler (2010) for the general case.

For any x1, . . . , xn and any α ∈ I, Dα(x1, . . . , xn) is bounded, closed and
convex and, thus, satisfies T1.

Trimmed regions must decrease in the parameter. The next proposition
shows that, due to condition (iii) in Definition 2, they are in fact nested.

Proposition 3 (Nestedness). The WMT regions Dα satisfy T2, i.e., α < β
implies Dβ(x1, . . . , xn) ⊂ Dα(x1, . . . , xn).

Proof: Let α < β. First, note that Dβ(x1, . . . , xn) ⊂ Dα(x1, . . . , xn) holds
for all x1, . . . , xn ∈ Rd if and only if the corresponding support functions are
ordered in the same way, i.e., if hDβ(x1,...,xn)(p) ≤ hDα(x1,...,xn)(p) for every p

and x1, . . . , xn ∈ Rd. The latter condition is equivalent to

n
∑

j=1

wj,βp
′xπp(j) ≤

n
∑

j=1

wj,αp
′xπp(j) for every p and x1, . . . , xn ∈ Rd . (7)

After (i) and (iii) in Definition 2 we have

k
∑

j=1

wj,α(p
′xπp(k) − p′xπp(k+1))

≥
k

∑

j=1

wj,β(p
′xπp(k) − p′xπp(k+1)) for k = 1, . . . , n− 1 (8)

and
n
∑

j=1

wj,αp
′xπp(n) =

n
∑

j=1

wj,βp
′xπp(n) , (9)

where both terms in the last equation equal p′xπp(n). Now, adding the right-
and left-hand sides of (8) and (9) we obtain (7).
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Proposition 4 (Affine equivariance). The WMT regions Dα satisfy T3,
i.e., for every matrix A ∈ Rm×d and every b ∈ Rd it holds

Dα(Ax1 + b, . . . , Axn + b) = ADα(x1, . . . , xn) + b .

Proof: Let yi = Axi + b. Then, p′yi = (A′p)′xi + p′b. Note that ADα + b is
a convex body that has support function

hADα+b(p) = hDα(A
′p) + b′p .

The permutation σp that orders the values p′yi, i = 1, . . . , n, in ascending
order is identical with the permutation πA′p that orders the values (A′p)′xi
in ascending order. Thus,

hDα(y1,...,yn)(p) =
n
∑

j=1

wj,α

[

(A′p)′xσp(j) + p′b
]

=
n
∑

j=1

wj,α

[

(A′p)′xπA′p(j)
+ p′b

]

=
n
∑

j=1

wj,α(A
′p)′xπA′p(j)

+





n
∑

j=1

wj,α



 p′b

= hDα(x1,...,xn)(A
′p) + b′p

= hADα(x1,...,xn)+b(p) ,

from which the proposition follows.

We summarize the results of the preceding propositions in a theorem.

Theorem 1. The WMT regions are central regions in the sense of Defini-
tion 1, i.e., they satisfy the properties T1, T2 and T3.

The arithmetic mean of the data is contained in each WMT region and,
hence, a deepest point. This important result is a consequence of Proposi-
tion 3:

Proposition 5 (Mean has maximal depth). For WMT regions it holds that

{x} ⊂ Dα(x1, . . . , xn) for each α ∈ I .
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Proof: Since the weights wj,α are increasing and sum up to unity, it follows
that

k
∑

j=1

wj,α ≤
k

n
=

k
∑

j=1

1

n
for k = 1, . . . , n.

Thus, it follows from the proof of Proposition 3 that for every direction
p ∈ Sd−1 we have

p′x = p′
1

n

n
∑

j=1

xπp(j) =
n
∑

j=1

1

n
p′xπp(j) ≤

n
∑

j=1

wj,α p
′xπp(j) = hDα(x1,...,xn)(p) .

Since this is equivalent to

{x} ⊂ Dα(x1, . . . , xn) ,

the proposition follows.

If the data are centrally symmetric1, the center coincides with the mean
and thus is included in all weighted-mean trimmed regions. In terms of
data depth this is again tantamount saying that the center of symmetry is
a deepest point.

Corollary 1 (Center has maximal depth). If the data are centrally sym-
metric about some c ∈ Rd, it holds that

c ∈ Dα(x1, . . . , xn) , for each α ∈ I.

3 Continuity, monotonicity, subadditivity

In this section we discuss three additional features that are common to the
notion of trimmed regions defined in Definition 2. We start with continuity
properties.

Proposition 6 (Continuity).
(i) The map (x1, . . . , xn) 7→ Dα(x1, . . . , xn) is continuous w.r.t. the Haus-

dorff metric, i.e., satisfies T4.

(ii) If the map α 7→ (w1,α, . . . , wn,α) is continuous, then the map α 7→
Dα(x1, . . . , xn) is continuous w.r.t. the Hausdorff metric, i.e., satisfies
T5.

1A set C ⊂ Rd is centrally symmetric with center c ∈ Rd, if for every point c+ d ∈ C

the point c− d is also in C
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Proof: Recall that the convergence of convex bodies in the Hausdorff metric
is equivalent to the pointwise convergence of their support functions. To
prove (ii) we have to show that for every sequence (αk)k∈N converging to α0

the sequence of support functions hDαk
converges pointwise to hDα0

. If the
weights are continuous in α, obviously

lim
k→∞

hDαk
(p) =

n
∑

j=1

(

lim
k→∞

wj,αk

)

xπp(j) =
n
∑

j=1

wj,α0
xπp(j) = hDαk

(p) .

Regarding (i), observe that the map

(x1, . . . , xn) 7→ hDα(x1,...,xn)(p) =
n
∑

j=1

wj,αxπp(j)

is continuous. The rest follows immediately.

One can consider the trimmed region of the data x1, . . . , xn as the trimmed
region of a probability distribution that gives probability 1/n to each data
point. If one adopts this point of view, it is interesting to ask, whether the
weighted-mean trimmed regions are also continuous with respect to weak
convergence of probability measures, that is qualitative robust in the sense
of Hampel (1971). In fact, as it will be discussed in Section 5, the popula-
tion version of WMT is continuous w.r.t. weak convergence of probability
measures, provided the sequence is uniformly integrable. Unfortunately,
without the assumption of uniform integrability, this result does not hold.
The weighted mean trimmed regions have zero breakdown point since the
mean of the data is always a deepest point. Since the mean is not robust,
the weighted mean trimmed regions cannot be robust either. In those ap-
plications where robustness is an issue one has to preprocess the data with
some outlier detection method.

The following two properties play an important role in constructing multi-
variate risk measures via central regions, see Cascos and Molchanov (2007).

Proposition 7 (Subadditivity). The trimmed regions Dα are subadditive in
the data, i.e., satisfy T6.

Proof: Let zi = xi + yi. Recall that support functions are additive w.r.t.
the Minkowski addition of sets, hK(p) + hL(p) = hK⊕L(p) . The support
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function of Dα(x1 + y1, . . . , xn + yn) is given by

hDα(xi+yi)(p) =
n
∑

j=1

wj,αp
′zπp,z(j)

=
n
∑

j=1

wj,αp
′xπp,z(j) +

n
∑

j=1

wj,αp
′yπp,z(j)

≤
n
∑

j=1

wj,αp
′xπp,x(j) +

n
∑

j=1

wj,αp
′yπp,y(j)

= hDα(xi)(p) + hDα(yi)(p)

= hDα(xi)⊕Dα(yi)(p) .

Thus,

Dα(x1 + y1, . . . , xn + yn) ⊂ Dα(x1, . . . , xn)⊕Dα(y1, . . . , yn) .

Proposition 8 (Monotonicity). The trimmed regions Dα are monotone in
the data, i.e., satisfy T7.

Proof: Assume xi ≤ yi for i = 1, . . . , n. First, we have to show that

(i) Dα(y1, . . . , yn) ⊂ Dα(x1, . . . , xn)⊕ Rd
+.

Since hDα(x1,...,xn)⊕Rd
+
(p) = hDα(x1,...,xn)(p) + hRd

+
(p), condition (i) is equiv-

alent to

hDα(y1,...,yn)(p) ≤ hDα(x1,...,xn)(p) + hRd
+
(p) for all p ∈ Rd.

Since

hRd
+
(p) =

{

0 if p ∈ Rd
−,

∞ otherwise,

condition (i) is equivalent to

hDα(y1,...,yn)(p) ≤ hDα(x1,...,xn)(p) for all p ∈ Rd
− ,
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which has to be checked. From xi ≤ yi obtain p
′yi ≤ p′xi for all p ∈ Rd

− and
all i. Thus, for all p ∈ Rd

−,

hDα(y1,...,yn)(p) =
n
∑

j=1

wj,αp
′yπp,y(j)

≤
n
∑

j=1

wj,αp
′xπp,y(j)

≤
n
∑

j=1

wj,αp
′xπp,x(j)

= hDα(x1,...,xn)(p) ,

where the second inequality follows from (2). The proof of the second con-
dition T7(ii) is similar.

Proposition 4 shows that the WMT regions are affine equivariant. Moreover,
as the proposition holds also for singular matrices, it implies that the regions
Dα are equivariant w.r.t. projections,

p′Dα(x1, . . . , xn) = Dα(p
′x1, . . . , p

′xn) , for every p ∈ Rd .

This property has been named the strong projection property in Dyckerhoff
(2004), where a number of important implications, concerning orderings
between multivariate distributions, is demonstrated.

In order to coincide exactly with the level sets of a data depth, Dα = {y ∈
Rd | depth(y) ≥ α}, the regions have to satisfy the so called intersection
property (Dyckerhoff, 2004),

Dα(x1, . . . , xn) =
⋂

β:β<α

Dβ(x1, . . . , xn) .

Proposition 9 (Intersection property). If the map α 7→ (w1,α, . . . , wn,α) is
continuous from the left, then the WMT regions Dα satisfy the intersection
property.

Proof: From the left-continuity it follows that

lim
β↗α

hDβ
(p) = hDα(p) ,

13



which is equivalent to Hausdorff convergence of the sets Dβ to Dα. It follows
from Proposition 3 that the sets Dβ are decreasing in β. Since the Hausdorff
limit of a decreasing sequence of sets is its intersection, it follows

Dα(x1, . . . , xn) = H-lim
β↗α

Dβ(x1, . . . , xn) =
⋂

β:β<α

Dβ(x1, . . . , xn) .

4 Special families of regions

This section presents several special cases of WMT regions. Some of them
are known from the literature. They are compared with each other and with
the regions obtained by halfspace and simplicial trimmings. Let x1, . . . , xn
be given data in Rd.

Zonoid regions

Koshevoy and Mosler (1997) introduced the zonoid trimmed regions ZDα(x1,
. . . , xn) for 0 < α ≤ 1 by

ZDα(x1, . . . , xn) =

{

n
∑

i=1

λixi | 0 ≤ λi ≤
1

nα
,

n
∑

i=1

λi = 1

}

.

Thus, the support function of the zonoid trimmed regions is given by

hZDα(p) = max

{

n
∑

i=1

λip
′xi | 0 ≤ λi ≤

1

nα
,

n
∑

i=1

λi = 1

}

.

Obviously, the sum is maximized by putting as much weight as possible on
large values of p′xi. Therefore, the support function is

hZDα(p) =
n
∑

j=1

wj,αp
′xπp(j) ,

where the weights wj,α are given by

wj,α =















1
nα if j > n− bnαc,

nα−bnαc
nα if j = n− bnαc,

0 if j < n− bnαc.
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These weights obviously satisfy the conditions (i) to (iii) of Definition 2.
Proposition 2 now gives a nice representation of the zonoid regions when
α = k/n for some k = 1, . . . , n:

ZDk/n(x1, . . . , xn) = conv

{

1

k

∑

i∈J

xi

∣

∣

∣
J ⊂ N, |J | = k

}

The above equation says that the zonoid region of level α = k/n is simply
the convex hull of all means of k data points. The support function in this
case is given by

hZDk/n
(p) =

n
∑

j=n−k+1

1

k
p′xπp(j) .

As the weights are continuous in α, the regions are continuous in α, too.
Hence they satisfy all postulates T1 to T7. Besides, they have many prop-
erties that are useful in applications, among them:

• Full information about the data; i.e., given the family of zonoid regions,
the underlying distribution of data is uniquely determined.

• Multivariate expected shortfall; i.e., the zonoid region can be trans-
formed into a notion of multivariate expected shortfall that is an ex-
tension of the univariate expected shortfall (Cascos and Molchanov,
2007).

For a comprehensive treatment of properties of zonoid regions, see Mosler
(2002).

To calculate zonoid regions from given data, there exist efficient exact algo-
rithms, in dimension d = 2 by Dyckerhoff (2000) and in dimension d ≥ 3 by
Mosler et al. (2009). For the latter algorithm an R-package is available.

Example 1. In order to illustrate the various trimmed regions let us con-
sider the daily returns on Intel Corp. and Adobe Systems Inc. shares in
May and June 2008 (n = 42). The data are taken from the historical stock
market database at the Center for Research in Security Prices (CRSP) at the
University of Chicago. Figure 1 exhibits the data and their zonoid trimmed
regions in R2 (for α = 0.01, 0.1, 0.2, . . . 0.8, 0.9).
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Continuous expected convex hull (CECH) regions

Cascos (2007) defined the expected convex hull trimmed regions, in short
ECH regions, as follows:

ECHk(x1, . . . , xn) =
1
(

n
k

)

∑

J⊂N
|J |=k

conv{xi | i ∈ J} . (10)

The regions are parameterized by an integer parameter k that ranges from
1 to n. A comparison of the defining formula with that for zonoid regions
shows that an ECH region is obtained by first calculating the convex hull of
each subset of k data points, and second the mean of all these convex hulls,
while a zonoid region is determined the other way round: First the means
of all subsets of k data points are calculated, and second the convex hull of
all these means. An algorithm to calculate the ECH regions in dimension
d = 2, similar to that in Dyckerhoff (2000), has been given by Cascos (2007).

According to (10), the ECH regions are defined for integer values of k only.
Further, the ECH-regions increase with k. Thus, although the regions are
nested, they are nested in the reverse way, so that T2 is not satisfied. How-
ever, validity of T2 can be achieved by a simple reparameterization.

We will extend the definition of ECH regions, so that they are defined not
only for integer values of the trimming parameter but for a whole interval
of real numbers, namely for all α ∈ (0, 1]. These regions will satisfy all
properties T1,. . . ,T7. The main difference to the ECH regions is that our
regions satisfy T5, i.e., they are continuous in the trimming parameter.

The support function of an ECH region is given by (Cascos, 2007)

hECHk
(p) =

n
∑

j=k

(

j−1
k−1

)

(

n
k

) p′xπp(j) =
n
∑

j=k

(

j
k

)

−
(

j−1
k

)

(

n
k

) p′xπp(j) , k = 1, . . . , n .

With
(

a

b

)

=

{

Γ(a+1)
Γ(b+1)Γ(a−b+1) , if a ≥ 0, 0 ≤ b < a+ 1 ,

0 otherwise ,

we define the weights

wj,α =

(

j
β

)

−
(

j−1
β

)

(

n
β

)
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where β = α−1. These weights satisfy the conditions of Definition 2. In-
serting them into (1) yields a modification of the expected convex hull
trimmed regions which we call continuous expected convex hull trimmed re-
gions, shortly CECH regions. Note that these weights depend continuously
on the parameter α = β−1, therefore the regions are continuous in α as well.
For α = 1/k they coincide with the ECH regions in the sense that

CECH1/k(x1, . . . , xn) = ECHk(x1, . . . , xn) .

The data from Example 1 are again used to illustrate the CECH regions;
see Figure 2.
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Figure 1: Zonoid regions;
α = 0.01, 0.1, 0.2, . . . 0.8, 0.9 .
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Figure 2: CECH regions;
α = 0.01, 0.1, 0.2, . . . 0.8, 0.9 .

Continuous ECH∗ regions

Cascos (2007) proposes a further type of trimmed regions which we shall
call ECH∗ regions.

ECH∗
k(x1, . . . , xn) =

1

nk

∑

i1,...ik∈N

conv{xi1 , . . . , xi1} .

The support function of these regions is given by

hECH∗

k
(p) =

n
∑

j=1

jk − (j − 1)k

nk
p′xπp(j) , k = 1, 2, . . .
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Like the ECH regions these regions are defined only for integer values of
k and do not satisfy T2. The same modification as for the ECH regions
yields the continuous ECH∗ regions, in short CECH∗ regions, with support
function

hCECH∗

α
(p) =

n
∑

j=1

j1/α − (j − 1)1/α

n1/α
p′xπp(j) .

Obviously, the weights

wj,α =
j1/α − (j − 1)1/α

n1/α

satisfy all the above properties.

To illustrate the CECH∗ regions we use the same data; see Figure 3.

Geometrically trimmed regions

The weights

wj,α =

{

1−α
1−αn αn−j if 0 < α < 1 ,

0 if α = 1 ,

yield another class of trimmed regions, which shall be named geometrically
trimmed regions. They are illustrated in Figure 4.
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Figure 3: CECH∗ regions;
α = 0.01, 0.1, 0.2, . . . 0.8, 0.9 .
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Figure 4: Geometrically trimmed re-
gions; α = 0.01, 0.1, 0.2, . . . 0.8, 0.9 .
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Extreme points compared

If one compares the trimmed regions shown in the four foregoing examples,
then one has the impression that the zonoid regions are less “smooth” than
the other three regions. This results from the fact that the zonoid regions
will in general have less extreme points than the other regions. According
to Proposition 2 the set of extreme points is given by the set

Ext
(

Dα(x1, . . . , xn)
)

=







n
∑

j=1

wj,αxπp(j)

∣

∣

∣
p ∈ Sd−1 \H(x1, . . . , xn)







.

Consider, e.g., the zonoid regions for α = k/n. Here the weights are

wj,k/n =

{

1
k , if n− k + 1 ≤ j ≤ n,
0 , if 1 ≤ j ≤ n− k.

Observe that only two different weights are used in this weighting scheme.
Thus, two directions p and q that yield different permutations do in general
not generate different extreme points. Only if there is an index l, such that
πp(l) ≤ n− k and πq(l) > n− k we will get different extreme points.

On the other hand, for the geometrically trimmed regions or the CECH∗

regions we have n different weights for each α. Thus, two directions p and
q that yield different permutations will in general also generate different
extreme points.

Halfspace depth trimming and simplicial depth trimming

To contrast the weighted-mean trimmings with other well-known notions of
trimmed regions, we consider the trimmed regions based on the halfspace
depth (see Tukey, 1975) and on the simplicial depth (see Liu, 1990) for the
same data as above. The trimmed regions for the halfspace depth are given
in Figure 5 and for the simplicial depth in Figure 6. The most obvious
difference is the lack of convexity of the simplicial depth trimmed regions.

5 Trimming of probability distributions and law

of large numbers

So far we have investigated weighted-mean trimmings of data, in other
words, of empirical distributions in Rd. In this section we will introduce
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Figure 5: Halfspace depth trimmed re-
gions; α = 0.02, 0.06, . . . 0.38, 0.42 .
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Figure 6: Simplicial depth trimmed re-
gions; α = 0.01, 0.04, . . . 0.21, 0.25 .

related trimmings of d-variate probability distributions, and show that un-
der mild conditions a strong law of large numbers applies.

Consider a weighted-mean trimming having weights wj,n,α, and let rn,α be
an increasing function that generates these weights as follows,

rn,α(0) = 0 , wn,j,α = rn,α

(

j

n

)

− rn,α

(

j − 1

n

)

, j = 1, . . . , n.

Then, obviously, rn,α(1) = 1, and, in order to satisfy the restrictions of
Definition 2, rn,α(t) must be increasing in α for all t and convex for all α.
Then, rn,α is absolutely continuous, so that rn,α has a derivative almost
everywhere which we shall denote by r′n,α.

Now, let X be a d-variate random vector with a finite first moment. As-
sume that there is a function rα having bounded derivative r′α and that the
rn,α converge pointwise to rα. Then, as is shown in Dyckerhoff and Mosler
(2010), we may define a population version of the weighted mean trimming
by defining Dα(X) as the unique convex body that has the support function

hDα(X)(p) =

∫ 1

0
Qp′X(t) drα(t) .

Note that the assumptions on rn,α carry over to rα. Under these assumptions

the map p 7→
∫ 1
0 Qp′X(t) drα(t) is indeed a support function that defines

central regions in the sense of Definition 1; see Dyckerhoff and Mosler (2010).
For example, the subadditivity of hDα(X) follows from the monotonicity of
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the weighting function r′α, the finiteness of hDα(X) from the boundedness
of r′α. Further, nestedness is a consequence of the fact that α 7→ rα(t) is
increasing in α for all t.

The population version of WMT trimming is continuous in α as well as
in the distribution. More precisely, if the weight generating functions rα
are continuous in α (in the sense that rαn converges pointwise to rα if αn

converges to α), then α 7→ Dα(X) is continuous w.r.t. the Hausdorff metric.
Further, Dα(Xn) converges to Dα(X) whenever Xn is a sequence of random
vectors with finite first moments that is uniformly integrable and converges
in distribution to X. Without the assumption of uniform integrability the
result does in general not hold. Again, the proofs of these results are given
in Dyckerhoff and Mosler (2010).

The following theorem states that, under mild conditions on the weight gen-
erating functions, for any α the weighted-mean trimmed regions Dα(X1, . . . ,
Xn) of a sample X1, . . . , Xn from X converge with probability one to the
weighted mean trimmed region Dα(X) of X.

Theorem 2 (Strong law of large numbers). Let X be a d-variate random
vector with finite first moment and let X1, X2, . . . be independent and iden-
tically distributed as X. If there is a function rα such that

lim
n→∞

rn,α(t) = rα(t) for every t ∈ (0, 1)

and the derivatives r′n,α are uniformly bounded in n, i.e., if

sup
n∈N

‖r′n,α‖∞ <∞ ,

then the strong law of large numbers holds:

Dα(X1, . . . , Xn)
Hausdorff
−−−−−−→ Dα(X) P − a.s.

Proof: The support function

hDα(X1,...,Xn)(p) =
n
∑

i=1

wj,n,αp
′Xπp(j)

can be considered as an L-statistic, i.e., a linear function of the order statis-
tics of p′X1, . . . , p

′Xn. Under the two conditions above it follows from the
strong law for L-statistics (van Zwet, 1980) that

lim
n→∞

n
∑

i=1

wj,n,αp
′Xπp(j) =

∫ 1

0
Qp′X(t) drα(t) P − a.s.
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To prove that the central regions Dα(X1, . . . , Xn) converge in the Hausdorff
metric to Dα(X), we have to show that their support functions converge to
hDα(X) uniformly on the unit sphere.

From the above we know that for each single p ∈ Qd we have

P
(

lim
n→∞

hDα(X1,...,Xn)(p) = hDα(X)(p)
)

= 1 .

Since the countable union of null sets is again a null set it also holds that

P
(

lim
n→∞

hDα(X1,...,Xn)(p) = hDα(X)(p) for all p ∈ Qd
)

= 1 .

Thus, with probability one the support functions hDα(X1,...,Xn) converge

pointwise on Qd to the desired limit. Theorem 10.8 in Rockafellar (1970)
says that pointwise convergence of convex functions on a dense subset im-
plies uniform convergence on each closed bounded subset. Since support
functions are convex it follows that

hDα(X1,...,Xn)

∣

∣

∣

Sd−1

uniform
−−−−−→ hDα(X)

∣

∣

∣

Sd−1
P − a.s.

We conclude

Dα(X1, . . . , Xn)
Hausdorff
−−−−−−→ Dα(X) P − a.s.

as it was to be shown.

Example 2. For the zonoid trimmed regions we have the weight generating
functions

rn,α(t) =

{

t−(1−α)
α if 1− α ≤ t ≤ 1,

0 otherwise.

Note that rn,α does not depend on n and that

r′n,α(t) =

{

1/α if 1− α ≤ t ≤ 1,

0 otherwise.

Thus, supn∈N ‖r′n,α‖∞ = 1/α, and the assumptions of Theorem 2 are satis-
fied.

Example 3. The CECH∗ regions are generated by

rn,α(t) = t1/α .
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As in the case of the zonoid regions, these functions are independent of n.
We obtain

r′n,α(t) =
1

α
t
1

α
−1 ,

and ‖r′n,α‖∞ = 1/α. Thus, the assumptions of Theorem 2 are satisfied.

Example 4. For the CECH regions we have

rn,α(t) =

(

tn
1/α

)

(

n
1/α

) =
Γ(tn+ 1)Γ(n− β + 1)

Γ(n+ 1)Γ(tn− β + 1)
,

with β = 1/α. It can be shown that rn,α is indeed a weight generating
function for each n, i.e., it is increasing and convex in t, increasing in α,
and almost everywhere differentiable. The details of the proof can be found
in Proposition 10 in the Appendix.

It is well-known that

lim
x→∞

Γ(x+ a)

Γ(x+ b)
xb−a = 1 ,

see, e.g. Abramowitz and Stegun (1965). Therefore,

lim
n→∞

t−βrn,α(t) = lim
n→∞

[

Γ(n+ 1− β)

Γ(n+ 1)
nβ ·

Γ(tn+ 1)

Γ(tn+ 1− β)
(tn)−β

]

= 1 .

Thus, the population versions of the CECH and the CECH∗ regions coincide.

Further, the first derivative of rn,α is given by

r′n,α(t) = nrn,α(t) [ψ(tn+ 1)− ψ(tn− β + 1)] ,

where ψ is the digamma function, see Abramowitz and Stegun (1965). Since
rn,α is convex

‖r′n,α‖∞ = r′n,α(1) = n [ψ(n+ 1)− ψ(n− β + 1)] .

From the mean value theorem and the fact that ψ′ is decreasing on (0,∞)
we conclude

‖r′n,α‖∞ = nβψ′(ξ) ≤ nβψ′(n+ 1− β) ,

where ξ ∈ [n + 1 − β, n + 1]. It can be shown that for x > 1 the trigamma
function ψ′(x) is bounded above by 1/(x− 1). Thus,

‖r′n,α‖∞ ≤ nβψ′(n+ 1− β) ≤ β
n

n− β

n→∞
−−−→ β =

1

α
.

From this now follows supn∈N ‖r′n,α‖∞ < ∞ and the assumptions of Theo-
rem 2 are satisfied.
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Cascos and Molchanov (2007) also considered a continuous version of the
univariate population ECH regions. The same weighting function as in Ex-
amples 3 and 4, r′n,α(t) = α−1tα

−1−1, is proposed by them.

Example 5. The geometrically trimmed regions are generated by

rn,α(t) =
αn(1−t) − αn

1− αn
,

the derivative being

r′n,α(t) = n ·
αn(1−t)(− lnα)

1− αn
.

Therefore

sup
n∈N

∥

∥r′n,α(t)
∥

∥

∞
= sup

n∈N

[

n ·
− lnα

1− αn

]

= ∞ .

By this, the assumptions of Theorem 2 are violated. In fact,

lim
n→∞

rn,α(t) =

{

0 , if 0 ≤ t < 1,

1 , if t = 1.

Thus, all weight generating functions converge to the same limit, indepen-
dent of the trimming parameter α. Of course, this suggests that there is no
law of large numbers for the geometrical trimming.

6 Conclusions

A general notion of trimming multivariate data has been introduced, the
weighted-mean trimming, which, in contrast to other existing trimmings like
halfspace and simplicial trimming, yields central regions that are continuous,
subadditive, and monotone in the data. Further, under mild restrictions the
trimmed regions satisfy a strong law of large numbers. Also, the weighted-
mean trimming satisfies the intersection property, by which the trimmed
regions coincide with the upper level sets of a statistical depth function, and
the strong projection property, which allows calculating the depth as the
infimum of univariate depths regarding data projections in all directions.

Like the existing data depths, the new notion of data depth has many pos-
sible applications in describing multivariate data with respect to their loca-
tion, dispersion and shape, and in testing hypotheses about this. It may be
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also used in risk analysis, clustering data, and similar tasks. Particularly its
continuity and subadditivity properties make the new notion a good choice
in many of these applications. However, like the Mahalanobis and the zonoid
regions, the weighted-mean regions cannot be employed for the detection and
elimination of outliers: As each weighted-mean region contains the mean of
the data, these regions are not robust ; their asymptotic breakdown point is
zero.

A crucial issue in applying any notion of trimming and data depth to mul-
tivariate data is its computability. Simple is the calculation of Mahalanobis
trimmed regions, which are ellipses around the mean and, by this, cannot re-
flect any asymmetry of the data. For most other notions of trimmed regions
in the literature exact algorithms are available only in dimension d = 2,
while at best approximate procedures have been proposed for higher dimen-
sions. An exception are the zonoid trimmed regions; for them an exact
algorithm has been constructed (Mosler et al. (2009), also as an R-package)
by which they can be efficiently calculated in any dimension. For an exten-
sion of this algorithm to the case of general weighted-mean trimmed regions
see Bazovkin and Mosler (2010).
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Appendix

The following proposition shows that the generating function of the CECH
regions is indeed a weight generating function.

Proposition 10. For n ∈ N and α ∈ ( 1
n+1 , 1] let

rn,α(t) =







(tnβ )
(nβ)

if β−1
n < t ≤ 1,

0 otherwise,

where β = 1/α.

Then, the following assertions hold:

(1) rn,α(0) = 0, rn,α(1) = 1.

(2) rn,α is continuous in t.
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(3) rn,α is differentiable for t 6= β−1
n .

(4) rn,α is increasing in t.

(5) rn,α is convex in t.

(6) rn,α is increasing in α.

(7) limn→∞ rn,α(t) = t1/α for all t ∈ [0, 1].

(8) supn∈N ‖r′n,α‖∞ <∞

Proof: If 1
n+1 < α ≤ 1 then 0 ≤ β−1

n < 1 and (1) follows.

For t > (β − 1)/n the function rn,α can be written as

rn,α(t) =
Γ(tn+ 1)Γ(n− β + 1)

Γ(n+ 1)Γ(tn− β + 1)
.

From t > (β−1)/n it follows that tn−β+1 > 0. Thus, all arguments of the
gamma function are positive. Since Γ(x) is positive and continuous for x > 0
it follows that rn,α is continuous for t 6= (β − 1)/n. Since limx↘0 Γ(x) = ∞
we have limt↘(β−1)/n rn,α(t) = 0. Therefore, rn,α is also continuous at t =
(β − 1)/n and (2) is proved.

The derivatives of the gamma functions are given by

Γ′(z) = Γ(z)ψ(z) and Γ′′(z) = Γ(z)
[

ψ2(z) + ψ′(z)
]

,

where ψ and ψ′ are the digamma and trigamma functions, respectively, see
Abramowitz and Stegun (1965). Thus, the first two derivatives of rn,α are
given by

drn,α(t)

dt
= nrn,α(t) [ψ(tn+ 1)− ψ(tn− β + 1)] ,

d2rn,α(t)

dt2
= n2rn,α(t)

[

(ψ(tn+ 1)− ψ(tn− β + 1))2

+
(

ψ′(tn+ 1)− ψ′(tn− β + 1)
)]

.

Therefore, (3) holds. Since ψ is increasing for x > 0, we see that r′n,α(t) ≥ 0
for t > (β − 1)/n, which proves (4).

Differentiating w.r.t. α yields

drn,α(t)

dα
=

1

α2
rn,α(t) [ψ(tn+ 1)− ψ(tn− β + 1)] ,
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which is also positive for α > (tn+ 1)−1. This proves (6).

It is well-known that

lim
x→∞

Γ(x+ a)

Γ(x+ b)
xb−a = 1 ,

see, e.g. Abramowitz and Stegun (1965). Therefore,

lim
n→∞

t−βrn,α(t) = lim
n→∞

[

Γ(n+ 1− β + 1)

Γ(n+ 1)
nβ ·

Γ(tn+ 1)

Γ(tn+ 1− β)
(tn)−β

]

= 1 ,

which implies (7).

To prove (5) we need the following two lemmas.

Lemma 1. For a ∈ (0,∞) let fa : (0,∞) → R be defined by

fa(x) =
1− e−ax

1− e−x
.

Then, the following assertions hold:

1. fa is decreasing iff a ≥ 1. fa is increasing iff a ≤ 1.

2. limx→0 fa(x) = a and limx→∞ fa(x) = 1

3. 1 ≤ fa(x) ≤ a if a > 1, and a ≤ fa(x) ≤ 1 if a < 1.

Proof: The assertions follow by routine calculation.

Lemma 2. For a ∈ (0,∞) let the function ga : (0,∞) → R be defined by
ga(x) = Γ(x+ a)/Γ(x). Then, ga is convex iff a ≥ 1 and concave iff a ≤ 1.

Proof: The second derivative of ga is given by

g′′a(x) =
Γ(x+ a)

Γ(x)

[

(ψ(x+ a)− ψ(x))2 +
(

ψ′(x+ a)− ψ′(x)
)]

.

Since Γ(x+ a)/Γ(x) > 0 we just have to consider the factor in brackets.

For ψ and ψ′ the following integral representations hold (see Abramowitz
and Stegun, 1965)

ψ(x) =

∫ ∞

0

(

e−t

t
−

e−xt

1− e−t

)

dt and ψ′(x) =

∫ ∞

0

te−xt

1− e−t
dt .

29



Therefore

ψ(x+ a)− ψ(x) =

∫ ∞

0

e−xt − e−(x+a)t

1− e−t
dt =

∫ ∞

0

1− e−at

1− e−t
e−xt dt

and

ψ′(x+ a)− ψ′(x) =

∫ ∞

0

te−(x+a)t − te−xt

1− e−t
dt = −

∫ ∞

0

1− e−at

1− e−t
te−xt dt .

Now,

[ψ(x+ a)− ψ(x)]2 +
[

ψ′(x+ a)− ψ′(x)
]

=

(
∫ ∞

0

1− e−at

1− e−t
e−xt dt

)2

−

∫ ∞

0

1− e−at

1− e−t
te−xt dt

The term in parentheses is the Laplace transform of the function fa defined
above. Since the product of Laplace transforms is the Laplace transform of
the convolution we see that

[ψ(x+ a)− ψ(x)]2 +
[

ψ′(x+ a)− ψ′(x)
]

=

∫ ∞

0

∫ t

0
fa(u)fa(t− u) du e−xt dt−

∫ ∞

0
fa(t) te

−xt dt

=

∫ ∞

0

[

1

t

∫ t

0
fa(u)fa(t− u) du− fa(t)

]

te−xt dt .

From Lemma 1 it follows that, for a > 1,

fa(u)fa(t− u) ≥ fa(t) ≥ 1 .

Therefore,

1

t

∫ t

0
fa(u)fa(t− u) du− fa(t) ≥

1

t

∫ t

0
fa(t) du− fa(t) = fa(t)− fa(t) = 0 ,

and thus
[ψ(x+ a)− ψ(x)]2 +

[

ψ′(x+ a)− ψ′(x)
]

≥ 0

Conversely, if a < 1 we get fa(u)fa(t− u) ≤ fa(t) ≤ 1 and thus

[ψ(x+ a)− ψ(x)]2 +
[

ψ′(x+ a)− ψ′(x)
]

≤ 0 ,

which finishes the proof of the lemma.
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Now we are able to prove (5). Since α ≤ 1 we have β ≥ 1. Further,

d2rn,α(t)

dt2
= n2

Γ(n− β + 1)

Γ(n+ 1)
g′′β(tn+ 1− β) .

Now, (5) follows from Lemma 2.

Since rn,α is convex

‖r′n,α‖∞ = r′n,α(1) = nrn,α(1) [ψ(n+ 1)− ψ(n− β + 1)]

= n [ψ(n+ 1)− ψ(n− β + 1)] .

From the mean value theorem and the fact that ψ′ is decreasing on (0,∞)
now follows

‖r′n,α‖∞ = nβψ′(ξ) ≤ nβψ′(n+ 1− β) ,

where ξ ∈ [n + 1 − β, n + 1]. The series representation of the trigamma
function (see Abramowitz and Stegun, 1965) gives the following upper bound
for x > 1

ψ′(x) =
∞
∑

k=0

1

(x+ k)2
≤

∞
∑

k=0

[

1

x+ k − 1
−

1

x+ k

]

=
1

x− 1
.

Thus,

‖r′n,α‖∞ ≤ nβψ′(n+ 1− β) ≤ β
n

n− β
.

From

lim
n→∞

β
n

n− β
= β =

1

α

now follows (8), which completes the proof.
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