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Abstract

The mixed Weibull distribution provides a flexible model to
analyse random durations in a possibly heterogeneous popula-
tion. To test for homogeneity against unobserved heterogene-
ity in a Weibull mixture model, a dispersion score test and a
goodness-of-fit test are investigated. The empirical power of
these tests is assessed and compared on a broad range of al-
ternatives. It comes out that the dispersion score test, as it is
based on a Weibull-to-exponential transformation, often breaks
down. A simple new procedure is introduced for Weibull mix-
tures in scale, which combines the dispersion score test and
the goodness-of-fit test. The new test is compared with several
known procedures and shown to have a good overall power.
To detect mixtures in shape and scale, a goodness-of-fit test is
recommended.
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1 Introduction

The mized Weibull distribution is a probability mixture of Weibull
distributions which differ in scale and/or shape. It can be seen as a
probability model of a heterogeneous population: A given population
divides into parts each of which is subject to another reason of failure
and described by a pure distribution. When the population consists
of k parts and part j has a Weibull distribution W (3;,~;) with scale
parameter 3; > 0 and shape parameter v; > 0, the survival function
of the Weibull k-mixture is

k ¢ Vi
S(t) =) pjexp |- 7 , (1)
j=1 J

with 0 < p; < 1,5 =1,...,k, > ;pj = 1. Here p; corresponds to
the relative size of part j. A random duration 7" that has survival
function (1) is named a Weibull k-mixture; this is shortly written as
T ~ MW (k,3,7,p1,---,Pk—1).- A pure Weibull distribution (k = 1)
is denoted by W (83,~).

Observe that the class of Weibull k-mixtures is closed against ex-
ponentiation and multiplication with positive numbers: If T ~
MW(k767’Y7p17 s 7pk71)7 then b1 ~ MW(ka bﬂ? 6_177])17 s 7pk*1)7
for any b, ¢ > 0.

In many applications, mixture models are used in a natural way to
model population heterogeneity; see Lindsay (1995), Titterington et
al. (1985), and others. The assumption that the underlying distribu-
tion is a mixture of certain lifetime distributions is widely invoked
in the analysis of lifetime or, more general, duration data. This
model arises from incomplete observation of an underlying condi-
tional model.

The mixed model can also be seen as a parametric proportional haz-
ards model with unobserved heterogeneity (Lancaster, 1990) when no
observed covariates are present.

In the case of two competing risks, we get a special case of the 2-
mixture model. Let a member of the population fail if the minimum
of two continuous lifelengths is attained which have (possibly depen-
dent) survival functions S7 and Sy. Then its survival function is given
by (1) with k = 2, p1 = per,

por = [ (Sultaltz) — 1) dSa(ta). 2)
0



Also the popular model of a competing risk mizture (e.g. Tarum,
1999) with independent survivals S1 and So, S = p*S1S2+ (1 —p*)Se,
can be written as a 2-mixture with p1 = perm,

Perm = D] - /000(51('52) —1) dSs(t2) .

The mixture of two Weibull distributions provides a rather flexible
model to be fitted to data and is also able to depict non-monotonous
hazard rates. It is known under the heading BiWeibull. Due to its
simplicity and flexibility, the BiWeibull has been widely used in engi-
neering and other application fields (Abernethy, 1996; Tarum, 1999).
Figure 1 illustrates the diversity of hazard functions of Weibull 2- and
3-mixtures in scale and/or shape. A 2-mixture in scale has decreas-
ing hazard rate when its common shape parameter does not exceed
1, which is illustrated by Figure la. When the shape parameter is
greater than 1, non-monotonous hazard rates arise as shown in Figure

1b.

To determine the parameters of a BiWeibull model, Falls (1970) em-
ploys moments estimators, and Cheng & Fu (1982) least squares es-
timators. Kaylan & Harris (1981) determine ML estimators for finite
Weibull mixtures; see also Chapter 4 in Sinha (1986). Albert & Bax-
ter (1995) provide a modification of the EM algorithm to calculate
ML estimates of finite Weibull mixtures. Marin et al. (2003) pro-
pose an MCMC approach for the case when the number of mixture
components is not known.

An important question is, whether for given data a Weibull mixture
model should be preferred over a non-mixed Weibull specification.
Kao (1959) and Jiang & Murthy (1995) propose graphical proce-
dures to decide the appropriateness of a two-components Weibull
mixture. In this paper we will investigate statistical tests for a non-
mixed Weibull specification against a Weibull mixture model. These
specification tests can be seen as tests for homogeneity against unob-
served heterogeneity in the population.

When the shape parameter v is known, the Weibull model can be
put down to the exponential model. If T' ~ W (f3,~), then T7 ~
Exp(1/57), that is, 77 has an exponential distribution with hazard
rate 1/37.

Mosler & Seidel (2001) have compared several diagnostic tests for
homogeneity in exponential mixtures, among them a dispersion score
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Figure 1: Hazard rates of several Weibull mixtures

test, a goodness-of-fit test and a combination of both tests. Their
results hold as well for scale mixtures from a known baseline dis-
tribution. In the sequel we will extend their approach to a model
where the baseline distribution is not fully known, namely, a Weibull
distribution with unknown parameters.

We consider mixtures of Weibull distributions that have a common
but unknown shape parameter 7. We employ several tests on expo-



nentiality from Mosler & Seidel (2001) and investigate their behavior
when 7 is estimated from the data instead of being known. The first
test incorporates a Weibull-to-exponential transformation and is de-
signed to detect overdispersion in the transformed data. A simulation
study shows that the power of the dispersion score test appears to be
reasonably good in certain situations and very bad in others. This
appears to be due to the Weibull-to-exponential transformation used
in in the test. The reason is that the values of T are very sensitive to
variations of the exponent v. Consequently, if T1,...,7T), is an i.i.d.
sample from W ([3,~) and 7 is some estimate for v, the transformed
sample Tf’ ,...,T7 may come out far from being exponential, and
statistical inference based on exponentiality be possibly misleading.
This is in line with Keats et al. (2000), who demonstrate that the
resulting confidence intervals and tests for 5 can be very poor.

As an alternative procedure we consider a goodness-of-fit procedure,
which is a special Anderson-Darling test, and compare the empirical
power of the two tests on various mixture alternatives. In order to
combine the strengths of the two tests we introduce a new test pro-
cedure ‘Reject the null hypothesis if at least one of two tests rejects.’
and demonstrate that the combined test has a good overall power.

Further, to test for homogeneity against general Weibull mixtures,
that is, mixtures in scale and in shape, we use the same goodness-of-
fit test and investigate its power.

Overview: In Section 2 the Weibull model and the estimation of its
parameters are presented. The dispersion score test for homogene-
ity is given and its power investigated; the same is done with the
Anderson-Darling test. Then the combined test procedure is intro-
duced and its power compared with the dispersion score test and
two recently proposed tests, the penalized likelihood ratio test (Chen
et al., 2001) and the D-test (Charnigo & Sun, 2004). In Section 3
general Weibull mixtures are tested. Section 4 concludes.

2 Mixtures in scale

In this section we investigate mixtures of Weibull distributions that
have different scale but a common shape parameter. Given a random



sample 17, ...,T,, where each T; has the same survival function

e (3)) o

Bj,v > 0,p; €]0,1],5 =1,...,k, >;pj = 1, we want to test for
Hy:k=1 against Hy : k> 1. (4)

The null hypothesis says that there exists some Gy > 0 such that

so-en(-(3)).

The common shape parameter v is generally not known. The test
problem can be seen as a problem of detecting overdispersion in a
one-parameter exponential family that has a nuisance parameter ~.
Conditional on ~, the variance of a distribution in the family is de-
termined by its mean. Further, given ~y, any mixture of distributions
from the family is a dilation from the pure distribution that has the
same mean as the mixture (Shaked, 1980); consequently, the mixture
has larger variance than the pure distribution.

Given an i.i.d. sample Ti,...,T,, ~ W(8,v), maximum likelihood
estimators (MLE) of 3 and  are obtained from the equations

ﬁ—lnTVW 1 11nTHT InT;
W) SR paEe Z“

Since the MLE of « is heavily biased in small samples, Yang & Xie
(2003) propose a slight bias reducing modification:

1:;2( e LT, ZInT> (5)

v

n = Z

Note that the modified MLE is asymptotically equivalent to the usual
MLE, since it differs only by a factor n — 2 instead of n in the deter-
mining equation (5). We shall use this modified MLE in the sequel.

2.1 Dispersion score test

To test for (4), we first assume that v is known. The following disper-
sion score test is a variant of Neyman’s C(«) test (Neyman & Scott,



1966). It is scale invariant, locally most powerful in any direction,
and makes an optimal use of the local information on the parameters.
Let

n

n L 1o o 1
DT == T2, where T7 = — > T (6)
=1 2n i=1 n i1

1
n—1

Cp =

From Mosler & Seidel (2001) follows that, for distributions = with
nonnegative support and finite fourth moment and [5° udn(u) > 0,
(), is an unbiased estimator of the variance var(m) of the mixing
distribution m and asymptotically normal. It follows further that
under Hy

_ ﬁf)w n+1

T on on—1

holds. However, the null distribution of C), depends on f[y. As
E(T"|3y) = B, the unknown 3] can be estimated by T7. Hence,
the standardized statistic

var(Ch,)

is invariant to multiplication of all T; by a positive number b, that is,
to a change of scale in model (3). Especially, under Hy, the distribu-
tion of O,, does not depend on fy.

Now let v be unknown and estimated by the modified MLE 4. To
test for Hy we use the statistics CA’n and én, which amount to C),, and
O,, with v replaced by 4. Note that, as C,, is a consistent estimate
of var(r), also C,, converges in probability to var(r). Thus, the null
hypothesis of no mixture should be rejected if én appears to be too
large.

Quantiles of the standardized test statistic 6n under Hy have been
obtained by Monte-Carlo simulation. We calculated them for dif-
ferent values of the test size «, the sample size n, and the shape
parameter . As expected, these quantiles do not depend on ~, but
only on a and n. For selected a and n, the quantiles of 5n under Hy
are presented in Table 1 of the Appendix. This makes a meaningful
dispersion score test for homogeneity in the Weibull mixture model:
Reject Hy if (3n is larger than the proper quantile in Table 1.

An extensive power study was performed, which investigates the be-
haviour of the dispersion score (DS) test on various Weibull scale



mixture alternatives. Depending on the alternative, the empirical
power proves to be very different. Consider 2-mixture alternatives
and let v = % > 1. The power of the DS test depends on v only;
it is reasonably good if p is close to 1. This case is named an upper
contamination. Figure 2 exhibits, amongs others, the power depend-
ing on v in case p = 0.9, when sample size is n = 100 or n = 1000
and test size is @ = 0.01 or a = 0.05. But, for smaller p the DS
test develops much less power, which is illustrated in Figure 3 for
p = 0.7. In case p = 0.1, which we call a lower contamination, the
power is very poor; it becomes zero even for large values of the scale
ratio v = % and large sample sizes n. Figure 4 illustrates this result.
Other a and n yield similar pictures.

To understand why the power of the DS test breaks down on lower
contamination alternatives, we take a closer look on the procedure.
W.l.o.g. assume that v = 1. Conditional on the estimated %, it holds
that

Ty ~ W (ﬁ‘hi) ,
Y

. 1 _— . . . .
var (T714) - SE(T%14) = A4 (0(2%) ~TH TA+9) . (8)
where I' denotes the Gamma function. If ¥ < v = 1 and 4 is not

too far from 1, it follows that I'(29) < I'(1 +4) < 1 and therefore
['(2%) < T'(¥) T'(1 +4), hence

var (T715) - %E (1%75) <o.

It is seen from our simulations that on lower contamination mixtures
the parameter v is nearly always underestimated, ¥ < =, when v is
greater than and not too close to 1. As, conditional on 4, C, is an
estimate of the left hand side of (8), it follows, particularly often for
large n, that C“n < 0 and, consequently, én < 0. Therefore, on a lower
contamination the null hypothesis Hy will hardly ever be rejected if
v and n are large enough.

2.2 Goodness-of-fit test

As an alternative procedure for testing homogeneity we use a
goodness-of-fit test, in particular, an Anderson-Darling (AD) test for
Weibull distributed observations, which is described in D’Agostino &
Stephens (1986, pp 149f). The test may be summarized as follows.



Let T1,...,T, denote a sample of i.i.d. variables. The null hypoth-
esis Hp is that the 7; follow a (non-mixed) Weibull distribution
with unknown scale and shape parameter. Then the transforma-
tion Y = —InT yields an i.i.d. sample Y7,...,Y, that has a double-
exponential distribution. The two parameters are estimated through
maximum likelihood and the estimated distribution function F of
Y is obtained. To test for Hjy, we calculate the order statistics
Zyy = (I?’(Y(z))) and use the AD statistic

1 , .
A% = —n— - ; ((22 —1)InZg + (2n+1—2i)In (1 — Z@)) .
Hy is rejected if A2 is too large. Table 2 presents some simulated
critical values.

Now let T have survival function (9) and consider a scale-exponential
transformation 7T; — TZ = (bT")¢ with b,c > 0. Then }Nﬁ = — lnTi =
—cln b+ cYj is a location-scale transformation of Y;. The distribution
of our AD statistic does not depend on the true values of estimated
location and scale parameters of Y, that is, neither on —cln b nor on
c. Therefore, its distribution is invariant against scalar-exponential
transformations of form Tj — T; = (bT)°.

The power of this test has been evaluated on a large number of
Weibull mixtures in scale. Some typical comparative results on 2-
mixture alternatives can be seen in Figures 2-4. W.l.o.g.,, 71 = v =
1. The power functions of the AD test and the DS test are plotted,
depending on the scale ratio v = % and for different values of p,
« and n. If pis close to 1, the AD test is clearly outperformed by
the DS test. But for smaller p the AD test retains reasonable power,
while the DS test breaks down. The larger n and «, the larger is
the difference in power. However note that in a small neighbourhood
of the null hypothesis (for v near to 1) the DS test always develops
slightly more power than the AD test. This seems to be due to the

local optimality of the C'(«)-procedure.

2.3 Combined test

A further look at the simulated samples and the test decisions arising
from them shows that there are many samples for which the AD test
rejects the null hypothesis while the DS test does not, and there are
many other samples for which the reverse happens.



Therefore it seems to be worthwhile combining the two tests as fol-
lows:
Reject Hy if O, >ty or A?L >ty

where t1 and to are critical values which are properly chosen to meet
a given test size a. Here we have determined ¢ and to so that the AD
test and the DS test each individually obtain the same size a* < «
and the combination of them obtains size «. (This has been done
by systematic variation of a*). This combined test is denoted as the
AD-DS test. Table 3 presents the critical values 1 and to of the test
for various n and «.

The empirical power of the AD-DS test has been calculated and com-
pared with the power of the AD and DS tests. It comes out that the
combined test works reasonably well on all considered alternatives
and that its power comes close to the maximum power of the two
tests on which it is based. Figures 2—4 illustrate this useful and
somewhat surprising result.

We also combined AD and DS tests having unequal sizes a7, a3 of the
two component tests, e.g. with o] = 203 or a3 = 2a7. The resulting
power curves are similar, but shifted towards the power curve of the
test that is given the larger size.

2.4 Likelihood ratio tests and D-tests

The tests considered so far are tests for homogeneity against a general
class of mixture alternatives (Weibull k-mixtures with any k). The
DS test is sensitive to k-mixtures in scale and the AD test is a general
purpose goodness-of-fit test. To test for homogeneity against specific
mixture alternatives, likelihood ratio (LR) tests suggest themselves.
The asymptotic distribution of the LR statistic is not chi-square and
difficult to evaluate. So, in practice and not only for small sam-
ples, these tests have to be based on empirical quantiles, where the
maximum likelihood under the alternative is numerically determined
by some variant of the EM algorithm. Seidel et al. (2000a, 2000b)
demonstrate that in an exponential mixture model the EM algorithm
depends heavily on initial values (and also on stopping rules); there-
fore, in each application of the test, a careful multistart strategy is
needed to find a ‘global’ maximum. By this, the LR test for homo-
geneity in exponential mixtures is awkward and expensive to calcu-
late. Also, the ML estimate under the alternative often yields a com-
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ponent having very small probability weight and/or scale parameter
close to zero. A component like this may be regarded as ‘spurious’.
However, whether it is worth being estimated or not depends on the
real problem to which the test is applied. What is true for exponential
mixtures is a fortiori true in a Weibull mixture model.

To overcome some of the problems connected with LR tests for homo-
geneity in mixtures of life distributions, a penalized LR test, named
MLRT, has been introduced by Chen et al. (2001); see also Charnigo
& Sun (2004). It has simple chi-square asymptotics. Particularly,
when k = 2, the test employs the usual loglikelihood function plus a
term C'ln(4p(1 — p)), which penalizes values of p that are close to 0
or 1. Depending on the penalty constant C', more or less ‘spurious’
solutions are excluded.

An alternative test procedure, called D-test, has been recently pro-
posed by Charnigo & Sun (2004). Test statistic is the L2-distance
between the density under Hy : ‘no mixture’ and the density un-
der Hi : ‘2-mixture’. Two variants of the D-test employ weighted
L2-distances, with weight functions w(t) = ¢ and w(t) = t2, which
correspond to transformations In(7") and %, respectively, of the ran-
dom duration T'. In calculating the D-test statistics, estimates of the
Weibull parameters are needed under both Hy and H;. In our study
we simulated Weibull scale mixtures with v = 1 and employed two
alternative estimation procedures, that by Kaylan & Harris (1981)
and that by Nelder & Mead (see Venables & Ripley, 2002). The D-
statistic with weight w(t) = t? provided relatively best power among
the three variants of the D-test. (We always calculated critical val-
ues by Monte Carlo and did not rely on their asymptotics.) However,
with both estimation procedures, the power of this D-test comes out
to be much worse than that of our AD-DS procedure; see Figure 7.

We also applied the D-test after a Weibull-to-exponential transform
of the data (with shape parameter being estimated under Hy). The
power of this procedure resembles that of the DS test: In particular,
it is fine at upper contaminations, but breaks down at lower contami-
nations; see Figures 8 and 9. We did the same with the penalized LR
test of Chen et al. (2001) and obtained very similar power results,
which are also exhibited in Figures 8 and 9.

11



3 Mixtures in scale and shape

The Weibull finite mixture distribution in scale and shape has survival

function i .
S(t) =3 pjexp (— (;) ) (9)
j=1 J

with some 3; > 0,7; > 0,p; € [0,1],7 =1,...,k, >°;p; = 1. We test

for
.
Hp: S(t) =exp <— (;) > for some ([ >0,7>0

against Hi: (9), but not Hy. Here the DS test is not feasible. In-
stead we employ the above AD test for two reasons. Firstly, this
test is a general goodness-of-fit test; secondly, it develops satisfac-
tory power on scale mixture alternatives and, more general, on al-
ternatives which have a ‘more decreasing hazard rate’ than the null
hypothesis (D’Agostino & Stephens, 1986).

The power of this test has been evaluated on various Weibull mixtures
in scale and shape. Recall that the distribution of this test statistic
does not depend on the true values of the estimated parameters.
Moreover, it is invariant against scale transformations 1" — 01,0 > 0
as well as against exponential transformations T +— T ¢ > 0. From
the invariance property it is clear that the power depends on the

ios 22 22
ratios 3 and " only.

Figures 5 and 6 present some exemplary results on Weibull 2-mixtures
in scale alone and on Weibull 2-mixtures in scale and shape. Figure
5 exhibits the power of the AD test on the mixture alternatives

s=res (- () ra-men (1)) 22

that is, mixtures of a Weibull distribution with a second Weibull dis-
tribution having the same scale parameter, but a larger shape param-
eter, p € {0.1,0.5,0.9}, n = 100, 1000. The mixture is best detected
if the components have equal weights. The power is also reasonable
if the first component outweighs the second one, a case we call more
increasing hazard contamination, but it is poor if the second com-
ponent predominates, which is the case called less increasing hazard
contamination.

Figure 6 exhibits the power of the AD test on mixtures of two Weibull
distributions differing in both scale and shape, with % = 30 and % >

12



1, which is illustrated in Figure 1d. Again, the fifty-fifty mixture is
best detected, the power on a less increasing hazard contamination is
reasonable, and the power on a more increasing hazard contamination
is poor.

4 Concluding remarks

The paper has studied diagnostic procedures to analyze whether a
given distribution of data stems from some pure Weibull distribution
or rather a mixture of such distributions.

1. Firstly, a dispersion score (DS) test for detecting mixtures in
scale has been investigated. This test is locally most powerful
in any direction, and makes an optimal use of the local infor-
mation on the parameters. Nevertheless, as we have shown,
the practical use of the DS test is rather limited since on many
alternatives its power is poor. The power to detect a Weibull
2-mixture appears reasonable if the mixture is an upper con-
tamination or if the scale ratio of the two components comes
close to 1, but it is poor if, e.g., the mixture is a lower con-
tamination. One reason for this power behavior is that the
test incorporates a Weibull-to-exponential transformation with
an estimated shape parameter. But also if the shape parame-
ter is known, which reduces the problem to one of detecting a
mixture of exponentials, the DS test has poor power on lower
contaminations; see Mosler & Seidel (2001).

2. As an alternative to the DS test we have employed a goodness-
of-fit test and shown that for other alternatives this test is
preferable. A proper version of the Anderson-Darling (AD)
test develops reasonable power also in situations where the DS
test breaks down. On the other hand the DS outperforms the
AD test on upper contaminations.

3. The AD test can be profitably combined with the DS test. A
combination of the two tests has been introduced and it has
been demonstrated that the combined test obtains a good over-
all power, which in all situations considered comes close to the
power of the better of the two tests. The combined test also
often outperforms the MLRT and the D-test.

13



4. For general Weibull mixtures regarding also the shape parame-
ter, the DS test is not applicable, but the AD test proves to be
a useful procedure to detect mixture alternatives.

5. To keep things simple, we have restricted our analysis to non-
censored data. The above procedures may be adjusted for var-
ious situations of censored or truncated data; see D’Agostino
& Stephens (1986, p. 114f), Shorrack and Wellner (1986) and
Andersen et al. (1993, ch. 5) for Anderson-Darling tests under
random censoring and more general sampling situations, and
Lancaster (1990), Commenges & Andersen (1995) and Jag-
gia (1997) for dispersion score tests under different censoring
schemes.
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Appendix

The quantiles in Tables 1 and 2 have been calculated from 10° repli-
cations. The quantiles in Table 3 have been choosen by calculating
(also 10° replications) the power of the AD-DS test under Hy for
various o < «a. For m not in the tables the quantile @, () may be
interpolated by fitting a second degree polynomial to three adjacent

points (1, Qn, ().
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Table 1: Quantiles of the dispersion score statistic O,,

o n

10 20 50 | 100 | 200 | 500 | 1000
0.10 | 0.23 | 0.39 | 0.56 | 0.65 | 0.71 | 0.76 | 0.78
0.05 | 0.38 | 0.60 | 0.82 | 0.92 | 0.99 | 1.03 | 1.04
0.01 | 0.68 | 1.07 | 1.41 | 1.55 | 1.60 | 1.59 | 1.57

Table 2: Quantiles of the Anderson-Darling statistic A2

o n

10 20 50 | 100 | 200 | 500 | 1000
0.10 | 0.62 | 0.62 | 0.63 | 0.63 | 0.63 | 0.63 | 0.64
0.05 1 0.73 | 0.74 | 0.75 | 0.75 | 0.76 | 0.76 | 0.76
0.01 | 098 | 1.01 | 1.03 | 1.04 | 1.04 | 1.04 | 1.04

Table 3: Quantiles for the combination AD-DS of O,, and A2 statistics

a test n
component
10 [ 20 | 50 [ 100 [ 200 | 500 | 1000
0.10 | A2 0.71 [ 0.72 [ 0.73 | 0.73 [ 0.73 | 0.74 | 0.74
Oy, 0.36 | 0.57 [ 0.77 | 0.87 [ 0.94 | 0.99 | 1.00
0.05 | A2 0.82 | 0.84 | 0.85 | 0.86 | 0.86 | 0.87 | 0.87
Oy, 0.50 [ 0.77 [ 1.04 | 1.15 [ 1.22 | 1.25 | 1.25
0.01 | A2 1.07 [ 1.11 | 1.13 | 1.15 | 1.15 | 1.16 | 1.15
O, 0.77 | 1.24 [ 1.65 | 1.81 [ 1.85 | 1.81 | 1.76
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(a) a = 0.05, n =100 (b) & =0.05, n = 1000

G(v) G(v)
1.0 1.0
0.8 0.8 -
0.6 0.6
0.4 - 0.4 -
0.2 - 0.2 -
0.0 0.0 | T | I
v 1 2 3 4 5 Y
(¢) a = 0.01, n = 100 (d) = 0.01, n = 1000
G(v) G(v)
1.0 -
0.8 b "/
0.6 /  ADDS
044 f/
0.2+ A%—AD
0.0 ~— T —
v 1 2 3 4 5 VY

Figure 2: Power G(v) of overdispersion (DS), Anderson-Darling
(AD) and their combination (AD-DS) on alternatives S(t) =

0.9exp (—t7) + 0.1exp (— (%)7) (upper contamination).
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(a) a = 0.05, n =100 (b) @ = 0.05, n = 1000

G(v) G(v)
1.0 1.0
0.8 0.8 -
0.6 - 0.6 -
0.4 0.4
0.2 - 0.2 -
0.0 0.0 | I | I
v 1 2 3 4 5V
(c) a = 0.01, n = 100 (d) a = 0.01, n = 1000
G(v) G(v)
1.0 1.0
~-3
0.8 AD—>z. 5" 0.8 DS
/,/
0.6 - 77 0.6 - e AD
,~<—AD-DS i

0.4 // 0.4 4
0.2 _/JS—_ 0.2 4 AD-DS
0.0 - T T 1 T 0.0 T 1 T I >~

2 4 6 8 10 15 Y 1 2 3 4 5 VY

Figure 3: Power G(v) of overdispersion (DS), Anderson-Darling
(AD) and their combination (AD-DS) on alternatives S(t) =

0.7exp (—t7) + 0.3 exp (— (%)7) (upper contamination)
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(a) a = 0.05, n =100 (b) @ =0.05, n = 1000

G(v) G(v)
1.0 - 1.0 - o
0.8 - 0.8 , re
0.6 064 A=/
AD-DS . 27
0.4 P 0.4 /<— AD-DS
P ,A"— /II
0.2 4 AD— 3 17 [is 0.2 VG [is
0.0 .“:f: — —t— 0.0 ’"{%‘ | T —
10 20 30 40 50 Y 5 10 15 20 Y
(c) a=0.01, n =100 (d) @ =0.01, n = 1000
G(v) G(v)
1.0 - 1.0 -
0.8 - 0.8 -
7,7
0.6 0.6 AD 1o
0.4 Ap AD:DS 0.4 /,’«'—AD_DS
0.2 LOT—L:D:S 02 /.' D\J{S
0.0 A""'Td’r— ? t \¥ - 0.0 -+t t +—
10 20 30 40 50 Y 5 10 15 20 Y

Figure 4: Power G(v) of overdispersion (DS) , Anderson-Darling
(AD) and their combination (AD-DS) on alternatives S(t) =
0.1exp (—(vt)?) 4+ 0.9exp (—t7) (lower contamination).
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(a) a = 0.05, n =100 (b) & =0.05, n = 1000

G(2) (%)

1.0 1.0 4

0.8 - 0.8

0.6 0.6

0.4 0.4

0.2 1 0.2

0.0 L2 0.0 L T
1 2 3 ¥ 123 45 6 7~

Figure 5: Power GG (

1—1) of Anderson—Darhng (AD) test on alterna-
tives S(t) = pexp ( (%

")+ 1o (-(5)").

(a) a = 0.05, n = 100 (b) & = 0.05, n = 1000
G (%) G(%)
1.0 - 1.0 -
0.8 0.8
0.6 - 0.6
0.4 7 0.4
0.2 ‘, o l 0.2
P indiun s 0.0 o
1 2 3 4 5 6m 1 o

Figure 6: Power G (

22) of Anderson-Darling (AD) test on alterna-
tives S(t) = pexp ( (

)")+a=pew (= (555) ).

R+ \_/
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(a) a =0.05, n = 1000

/ AD-DS —
D-test N-M — -
_ 4 D-test Kyl — —
L
0.0 T T T I -
1 2 3 4 5 v

Figure 7: Power G(v) of the AD-DS test and the D-Test for Weibull
Mixtures (7 = 1) using the Nelder-Mead estimator (D-test N-M)
resp. the Kaylan estimator (D-test Kyl) on alternatives S(t) =

0.9exp (—t7) + 0.1exp (— (%)W) (upper contamination).
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(a) a =0.05, n =100 (b) @ =0.05, n = 1000

G(v) G(v)
1.0 1.0 H
0.8 0.8
0.6 - 0.6
0.4 AD-DS —— 047 AD-DS ——
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(¢c) a=0.01, n =100 (d) @ =10.01, n = 1000
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Figure 8: Power G(v) of the AD-DS test, the D-test with weighting
function wo(t) = t* (D-test W2) and the modified likelihood ratio

test (MLRT) on alternatives S(t) = 0.7 exp (—t7) + 0.3 exp (— (%)U

(upper contamination), both D-test and MLRT after Weibull-to-
exponential transformation, v = 1.
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(a) a = 0.05, n = 100 (b) o = 0.05, n = 1000
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(c) a=0.01, n =100 (d) a = 0.01, n = 1000
G(v) G(v)
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Figure 9: Power G(v) of the AD-DS test, the D-test with weighting
function wo(t) = t? (D-test W2) and the modified likelihood ratio test
(MLRT) on alternatives S(t) = 0.9 exp (—t7)+0.1exp (— (vt)”) (lower
contamination), both D-test and MLRT after Weibull-to-exponential
transformation. Note that both the power of the MLRT and the
D-test approaches zero when v increases, v = 1.
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