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ABSTRACT. Traditional portfolio optimization has often been criticized for not
taking estimation risk into account. Estimation risk is mainly driven by the
parameter uncertainty regarding the expected asset returns rather than their
variances and covariances. The global minimum variance portfolio has been
advocated by many authors as an appropriate alternative to the tangential
portfolio. This is because there are no expectations which have to be esti-
mated and thus the impact of estimation errors can be substantially reduced.
However, in many practical situations an investor is not willing to choose the
global minimum variance portfolio but he wants to minimize the variance of
the portfolio return under specific constraints for the portfolio weights. Such a
portfolio is called local minimum variance portfolio. Small-sample hypothesis
tests for global and local minimum variance portfolios are derived and the exact
distributions of the estimated portfolio weights are calculated in the present
work. The first two moments of the estimator for the expected portfolio returns
are also provided and the presented instruments are illustrated by an empirical
study.

Keywords: Estimation risk, Linear regression theory, Markowitz portfolio,
Minimum variance portfolio, Portfolio optimization, Top down investment.
2000 MSC: 62F03, 91B28.
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1. MOTIVATION

During the past decades traditional portfolio optimization has often been crit-
icized since it does not account for estimation risk (Jorion, 1986, Kalymon, 1971,
Klein and Bawa, 1976, Michaud, 1989). At the beginning of modern portfolio the-
ory (Markowitz, 1952) it was usually supposed that the parameters of interest, i.e.
the means and (co-)variances of asset returns can be estimated accurately such that
estimation errors remain negligible. Although this conjecture might be true for vari-
ances and covariances if the sample size is large enough compared to the number
of assets, it is not an appropriate simplification for expected asset returns in most
practical situations (Chopra and Ziemba, 1993, Kempf and Memmel, 2002, Merton,
1980). Nowadays many portfolio optimization procedures which take the parameter
uncertainty into account can be found in the literature (Black and Litterman, 1992,
Frost and Savarino, 1986, Herold and Maurer, 2006, Kan and Zhou, 2007, Scherer,
2004).

Consider a d-dimensional random vector R = (Ry, ..., R4) of asset excess returns
at the end of some investment horizon. The excess return of an asset corresponds to
the asset return minus the risk-free interest rate and in the following I will usually
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2 GABRIEL FRAHM

drop the prefix ‘excess’ for convenience. It is assumed that the vector of asset
returns is multivariate normally distributed, i.e. R ~ Ny(p, X), where p (d x 1) is
an unknown vector of expected asset returns and ¥ (d x d) is an unknown positive-
definite matrix containing their variances and covariances.
The tangential portfolio (TP) is defined as the portfolio of risky assets which

maximizes the Sharpe ratio (see Figure 1), i.e.

wrp = argmax p'v/Vv'Sv

(dx1) v
such that the budget constraint 1’v = 1 is satisfied. Here v = (v1,. .., vq) symbolizes
a vector of portfolio weights and 1 is a vector of ones or the one scalar, respectively.

In the following ‘(x1,...,xq)" indicates a d-tuple which is understood to be a d-
dimensional column vector, whereas ‘[ 1 - - x4 |’ (without the commas) is a
d-dimensional row vector, i.e. (x1,...,2q4) =[21 -+ xq

An (mean-variance) efficient portfolio (EP) can be characterized in terms of the
typical mean-variance utility function (or, more precisely, certainty equivalent), i.e.
wgp = argmax (u'v — /2 - 'S o)

(dx1) v
for some risk-aversion parameter o > 0. If the EP satisfies the budget constraint,
it can be found on the efficient frontier, i.e. the upper part of the hyperbola given
in Figure 1. Otherwise it is located on the capital market line.

A rather simple alternative to the TP or some other EP is given by the so-called
global minimum variance portfolio (GMVP). This is defined as

w = argmin v'Yv
(dx1) v
under the budget constraint 1’v = 1. The GMVP can be viewed as an EP after
setting o = oo . Any portfolio which minimizes the variance of the portfolio return
R’'v under some additional constraints for the portfolio weights will be called local
minimum variance portfolio (LMVP).

It is well-known that wrp = X7 /('S p) and w = £711/(1'S71) (a closed-
form expression for the LMVP under a set of linear equality constraints for the
portfolio weights can be found in Section 3.1). The TP strongly depends on the
vector p of expected asset returns and the same holds for the EP if the investor has
a relatively low risk aversion (that means if « is small). In contrast, the GMVP
as well as any LMVP is not determined by the unknown parameter p. However, a
LMVP in general will be inefficient which is shown by Figure 1.

The GMVP has been advocated by many authors (Jagannathan and Ma, 2003,
Kempf and Memmel, 2006, Ledoit and Wolf, 2003). On the one hand choosing the
GMVP is closely related to the basic idea of Markowitz (1952), i.e. searching for
an efficient portfolio by diversification. On the other hand there are no expected
asset returns which have to be estimated and so the impact of estimation errors can
be substantially reduced. However, one might ask why it should be appropriate to
search for a minimum variance portfolio if the investor is interested in maximizing
a mean-variance utility function or the Sharpe ratio according to Tobin’s two-fund
separation theorem (Tobin, 1958). Thus I would like to explain now the main idea
of the present work.

The suggested TP can differ substantially from the true one in the presence
of estimation risk. Put another way, its realized (but not the suggested) Sharpe
ratio can be very small since the expected asset returns are unknown and then it
might be better to search for some minimum variance portfolio. In particular, the
constraints for a LMVP can be chosen in such a way that large volatility assets are
preferred (recall that the variances and covariances of asset returns can be much
better estimated than their expectations). If some branch contains a larger risk
premium than another (e.g. the IT sector bears more risk than the finance sector),
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FIGURE 1. Capital market line (straight), utility isoline (dashed),
TP (O), EP (), GMVP (o), and LMVP (e).

an investor could be simply willing to reap the profit by choosing the corresponding
LMVP. Now this is probably closer to the TP or another EP than the GMVP,
although the LMVP is inefficient (see Figure 1).

Since there are no expected asset returns which have to be estimated for the
LMVP, its realized Sharpe ratio is hopefully larger than the realized Sharpe ratio
of the suggested TP. In fact some authors argue that even if portfolio restrictions
are binding (which is indicated e.g. by the small hyperbola in Figure 1) they can
increase the out-of-sample performance (Frost and Savarino, 1988, Jagannathan
and Ma, 2003). This is because restricting portfolio weights forces diversification
and the investor’s decision becomes less vulnerable to estimation risk. Hence, the
advertising motto for minimum variance portfolios could be ‘A bird in the hand is
worth two in the bush’.

Another argument for restricting portfolio weights is that people might have
prior knowledge apart from empirical data. For instance, investors often believe
that some industry sector, region or stock market will ‘outperform’ another and so
they might wish to take the opportunity. Moreover, in many practical situations an
investor must not choose a mean-variance efficient portfolio. For example, portfolio
managers of mutual funds often have to observe certain limits regarding their choice
of portfolio weights. This is a typical situation in top down portfolio management.
That means the set of available assets is divided into some subsets of assets, each
subset is divided into some further subsets, etc. These subsets are generally referred
to as asset classes, according to some industry sector, rating or regional classifica-
tion. Now, top down portfolio management means that the amount of capital is
allocated to the top level partition at first. Given the portfolio weights for that
partition, somebody has to choose some optimal portfolio weights for the subse-
quent asset classes, etc., so that each of the succeeding decisions are limited by the
preceding allocations.

As already pointed out by Black and Litterman (1992) as well as Herold and
Maurer (2006), combining historical data with ‘expert knowledge’ (which is usually
done in practice) or drawing up some guidelines which must be observed by the
decision maker can lead to more reasonable and well-diversified portfolios rather
than relying on pure statistical portfolio optimization methods. In this work I
will assume that the portfolio weights are generally restricted by a set of linear
equality constraints. Thus one might be interested in testing linear hypotheses for
the corresponding LM VP rather than the GMVP. I will present standard hypothesis
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tests for global and local minimum variance portfolios as well as the small-sample
distributions of the estimated portfolio weights.

The present work is focused on small-sample rather than large-sample properties
but the latter can be easily deduced from the former ones. This is an important
issue for I will show that large-sample approximations fail if the sample size is large
but the number of observations relative to the number of assets is small. As already
mentioned I will concentrate on linear equality constraints though it is clear that in
many practical situations inequality constraints play an important role. However,
the statistical properties of portfolio weights satisfying inequality constraints cannot
be studied by standard econometric methods (Geweke, 1986, Gouriéroux et al., 1982,
Wolak, 1987). Investigating the role of linear inequality constraints is left for future
research.

In the next section I recall some standard hypothesis tests for the GMVP. The
following section deals with hypothesis tests for local minimum variance portfolios.
It is shown that, after a suitable transformation of the data, the corresponding
tests follow immediately by applying the results of Section 2. In Section 4 the
joint distribution of the weights of global and local minimum variance portfolios is
derived. The first two moments of an unbiased estimator for the expected portfolio
return are also presented. Section 5 contains an empirical study where the following
results are applied to stock market data and Section 6 concludes the present work.

2. HYPOTHESIS TESTS FOR THE GLOBAL MINIMUM VARIANCE PORTFOLIO

2.1. Theoretical Foundation. Note that w = X711/(1’X711) is a nonlinear func-
tion of ¥. However, Kempf and Memmel (2006) noticed that minimizing the vari-
ance of the portfolio return can be viewed as a linear regression problem. The return
of the GMVP can be written as

(2.1.1) (1-ws —... —wg)Ry +waRo + ... +wgRqg = n+¢,

where e ~ N(0,0?). By defining 31 :=n, 3j := w;, AR; :== Ri—R; for j =2,...,d,
and u := ¢, Eq. 2.1.1 becomes equivalent to

(2.1.2) Ry =014+ PB2ARs+ ...+ B4dARy + u.

Note that this is a linear regression equation with stochastic regressors but the joint
normality assumption guarantees that the usual results of econometric theory still
hold in this context.

The following proposition is a standard result of linear regression theory. It is
crucial for understanding the basic idea of the subsequent derivations and thus it is
recalled here for convenience.

Proposition 2.1.1. Let Z = (Zy,...,Z4) be a d-dimensional random vector with
positive-definite covariance matrixz. Consider the vector
6 = (61; o '7ﬁd) = argminE{(Zl - bl - b2ZQ e T bdZd)2}a
(dx1) b
where b = (by,...,bq) and define
ui=21— 01— BaZo— ... = PaZy.

The vector B exists and is uniquely defined. More precisely, the subvector (3° :=
(ﬂQa ceey 6d) is given by

B = Var(Z®)"'Cov(Z1, Z°%) ,
where 7% .= (Za, ..., Zq), Var(Z®) ((d — 1) x (d — 1)) is the covariance matriz of

Z®, and Cov(Z1,Z7) is the (d — 1) x 1 vector of covariances between Z, and Z;
(7 =2,...,d). Moreover, the parameter (31 is given by

b =E(Z:) - E(Z°) 5
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and it holds that E(u) =0 as well as Cov(X;,u) =0 forj=2,...,d.

The parameters [1,...,0q in Eq. 2.1.2 are chosen in such a way that E(u) =0
holds and Var(u) = E(u?) is minimal, i.e. Cov(AR;,u) =0 (j = 2,...,d). So it has
been shown that Eq. 2.1.2 indeed is a proper linear regression equation satisfying
the standard assumptions of linear regression theory, especially the strict exogeneity
assumption (Hayashi, 2000, p. 7). For that reason it is possible to develop several
exact hypothesis tests for the GMVP by standard methods of econometrics (cf.
Kempf and Memmel, 2006).

The next corollary states that the converse of Proposition 2.1.1 is true.

Corollary 2.1.2. Let Z = (Z1,...,Zq) be a d-dimensional random wvector with

positive-definite covariance matriz. Search for some numbers by, ..., by such that
E(u*) =0 and Cov(Z;,u*) =0 for j=2,...,d, where
TR Z1—by —byZoy— ... —bygZy.

The vector b= (b, ...,bq) exists and is uniquely defined by b = 3 where (8 is given
by Proposition 2.1.1.

The proof of that corollary follows immediately from the proof of Proposition
2.1.1 (see the appendix) and noting that the linear equation

0 = Cov(Z®°,u*) = Cov(Z1, Z°) — Var(Z°)b®
has a unique solution (due to the positive definiteness of Var(Z®)). Corollary 2.1.2
implies that the strict exogeneity assumption is satisfied only if the error u has

minimum variance. Later on it is shown that for that reason the standard test
statistics for the GMVP in general must not be applied for testing a LMVP.

2.2. Statistical Inference. Of course, in practice the weights of the GMVP are
unknown, i.e. they have to be estimated from historical data. Let

Ryy Rz -+ Rig
Ro1 Rz -+ Rag
R =| . ) .
(nxd) : : :
Rnl Rn2 e Rnd
be a sample of n > d independent copies of R. Now define
1 X0 - Xy
1 Xoo -+ Xog
(2.2.1) X = ) ol
(nxd) : :
1 Xn2 e Xnd

where X;; == Ry — R;; (i=1,...,n,j=2,...,d) and Y := (Y3,...,Y,) (n x 1)
with ¥; := Ry (¢ = 1,...,n). Similarly, T will also write X := (1, Xa,..., Xy)
(dx1), X%:=(Xa,...,Xq) (d=1)x1),and Y = Ry (1 x1).

According to the standard notation of linear regression theory the linear model
represented by Eq. 2.1.2 is given by

(2.2.2) Y = X8 +u,

where 8 = (B1,...,834) (d x 1) contains the weights (a,..., 34 of the GMVP —
except for the first one — as well as the expected return 3 of the GMVP. Here

u := (uy,...,uy) is an n x 1 vector of unobservable errors. Hence, the ordinary
least squares (OLS) estimator for 3 can be calculated by
(2.2.3) Bors = (i, aba, ... ,10q) = (X'X)7IX'Y.

In fact the weights of the GMVP can be estimated by

W° = (..., 0q) = Q7'0,
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where € is the sample covariance matrix of X® and @ is the (d — 1) x 1 vector of
the sample covariances between Y and X; (j = 2,...,d). The random vector
W= (1—1"0°,0°)

is the best unbiased estimator for the GMVP in the context of normally distributed
asset returns (Kempf and Memmel, 2006). Note that if the normal distribution
assumption for the asset returns is dropped, in general it cannot be guaranteed
that the standard assumptions of linear regression theory are satisfied and thus w
might become inefficient.

Kempf and Memmel (2006) showed that @ = $11/(1'S~11), i.e. @ corresponds
to the traditional GMVP estimator, where the d x d matrix

S = R'R/n —TT’
represents the sample covariance matrix and ¥ := R’1/n (d x 1) is the sample
mean vector of R. Further, also the OLS estimator for the expected GMVP return
corresponds to its traditional estimator, i.e.  =T'w .

The relation between the OLS estimator BOLS and the residual vector @ (n x 1)
can be represented by

Rlzﬁ—l—wQARg—l—...—f—?f}dARd-i-ﬂ

or — according to the usual notation of linear regression theory — as

(2.2.4) Y = XBOLS + 1.
Let 6314 := 0/0/(n — d) be the unbiased OLS estimator for o2, It holds that
a a —d
5 =S =1/(1US11) = 22620,
n

where 62 is the traditional estimator for the variance of the GMVP return.
Now consider the fundamental least squares problem

(2.2.5) (Y — Xb)' (Y — Xb) — mbin!
under the additional constraint Hb = h, where H (¢ x d) is a matrix with rk H =

g < dand h (gx1) some arbitrary vector. The solution of this minimization problem
is given by the restricted least squares (RLS) estimator

(2.2.6) BrLs == arg mbin (Y — Xb) (Y — Xb), s.t. Hb=h.
In the following I will write Brrs = (7*, w3, ..., w}) and correspondingly
(2.2.7) Ry =7"+Ww3ARy + ...+ WjARs + *

or more compactly
(2.2.8) Y = Xfp1s + 0

to indicate that @* (n x 1) is the residual vector with respect to the RLS estimator
and not to the OLS estimator. The RLS estimator can be calculated explicitly by
applying the Lagrange method (Greene, 2003, p. 100). However, in Section 3.2 I
will present an alternative method which is more useful in the context of portfolio
optimization.

Here only inhomogeneous regressions are taken into consideration and so both
and 0" have zero means. That is to say (2.2.5) indeed leads to the local minimum
variance portfolio satisfying the given restriction Hb = h. However, in contrast
to the unrestricted case, each column of X is correlated with @* in general. More
precisely, X't1* # 0 if the linear restrictions are binding. This is an empirical
consequence of Corollary 2.1.2. In the following I will write

(229) wF = (1 _ 1/11\}*3, w*b) ;

where w** 1= (03, ...,10)).
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An exact or, say, small-sample hypothesis test against Hy: HBF = h is given
by the next theorem. For an alternative representation of that F-test and some
applications to financial data see Kempf and Memmel (2006).

Theorem 2.2.1. Let @ be the traditional estimator for the GMVP w = (w, ...,
wq) and W* the RLS estimator given by Fq. 2.2.9. Further, let n be the expected
return of the GMVP. If HB = h with § = (n,wa, ..., wq) it holds that

n—d (b—u*)S W —b*)
' ) ~ Lgn—d,

2.2.1
(2:2.10) : =

where 6% denotes the traditional estimator for the variance of the GMVP return.

A similar F-test for the TP (or any other efficient portfolio which is proportional
to the TP) has been obtained by Britten-Jones (1999). The result given in Theorem
2.2.1 does not follow from this F-test since Britten-Jones requires the existence of
a risk-free asset and the considered portfolios always lie on the capital market line
but not on the efficient frontier.

Another important hypothesis is given by Hy: 02 > o2 (for some 02 > 0) which
can be tested by the next theorem (cf. Kempf and Memmel, 2006).

Theorem 2.2.2. Consider the traditional estimator 62 for the variance o of the
GMVP return. It holds that

52
no 9

oz~ Xn—d -

This is a standard result from linear regression theory (Greene, 2003, p. 50)
after noting that 62 = #'ti/n and so the proof can be skipped. The parameter
uncertainty concerning the variance o of the GMVP return can be quantified by
0?2 |6% ~ 6°n/x%_, either from a fiducial (Rao, 1965, Section 5b.5) or Bayesian
perspective (by using Jeffreys’ prior distribution for %), where the estimate 62 is
considered as fixed. Since E(n/x2_,;) =n/(n —d —2), it follows that

2122\ &2
E(o |U)N1*1/Q’

with @ :=n/d > 1, i.e. the estimation risk essentially depends on the sample size
relative to the number of assets. Hence, the capital market is said to be high-
dimensional if () — which can be interpreted as the effective size of a multivariate
sample — is small. In that case small-sample inference must be applied even if the
number of observations is large.

Usually an investor not only wants to know whether the variance of the GMVP
is bounded by some number o2 but also to test against Hy: n < o, where n
represents the true expected return of the GMVP. This can be done by applying
the next theorem.

Theorem 2.2.3. Consider the traditional estimators 11 for the expected GMVP
return n and &% for the variance of the GMVP return. It holds that

n—n
V{82 + S — 2} (n - d)

where t(n — d) denotes Student’s t-distribution with n — d degrees of freedom.

Nt(n_d)a

The latter theorem completes the repertoire of standard hypothesis tests for the
GMVP. In the next section it is shown that the same repertoire can be used also
for local minimum variance portfolios after a suitable transformation of the data.
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3. HyroTHESIS TESTS FOR LOCAL MINIMUM VARIANCE PORTFOLIOS
3.1. Theoretical Foundation. Consider the LMVP

(3.1.1) w* = (wi,...,w}) = argmin Var(R'v), st. Fvo=f,
(dx1) v

where the budget constraint 1’v = 1 is also satisfied. Here f is a ¢ x 1 vector and F’

is a ¢ x d matrix (¢ < d) such that the stacked (¢ + 1) x d matrix (1’, F) has rank

g+ 1. Both f and F are assumed to be non-random. Using the definitions from

above this can be formulated as a least squares problem, i.e.

(3.1.2) p* =argminE{(Y — X'b)2}
(dx1) b
under a set of linear restrictions affecting only the parameters bo, ..., by (i.e. the

portfolio weights without the first one). However, due to Corollary 2.1.2 this would
not lead to a proper linear regression equation, say

(3.1.3) Ry =07 +05ARy + ...+ BjARg + u*,

since u* generally depends on the regressors ARs, ..., ARy. So the standard test
statistics which have been provided in Section 2.2 cannot be applied. However, in
the following it will be shown how to reformulate (3.1.2) such that the standard
hypothesis tests become applicable.

Consider a matrix 7 (d x (d — q)) such that

Flr=1nd

Then the condition FTv = f is satisfied for any vector v € R4? with 1'v = 1.
Moreover, it is guaranteed that 1’7v = 1, i.e. the budget constraint holds also for
Tv € R%. Now the LMVP can be simply found by searching for the GMVP with
respect to the transformed asset return vector

R*=(Ry,...,Ry_,) = T'R.
Hence, the least squares problem given by (3.1.2) can be reformulated as

3.14 Q@ = argmin E{(Y* — X*a)?}.

(3.1.4) @S gmin E{( )}

Here Y* := R} and X* := (1,X§,...,X§_q) with X7 := Ri—Rforj =2,...,d—q.
The corresponding modified linear model

(3.1.5) RT = +042AR; +...+ad,qAR2_q+u*

is quite similar to the linear regression equation 3.1.3. However, the vector o can
be chosen without any restriction from R9~7 so that Var(u*) becomes minimal
and it is always guaranteed that the condition Fw* = f is satisfied after the re-
parameterization
w =T (1-10a%a%),
where o® := (ag,...,a4—q). Eq. 3.1.5 in fact represents a proper linear regression
equation, i.e. E(u*) = 0 and Cov(X;,u*) =0for j=2,...,d —q.
The LMVP is given by
. T(T'sT)1
W= —— =) -
WT'ST)- 1
and the quantity 7 can be derived as follows. Assume that the (¢ + 1) x d matrix

e m _[F, )|

is structured in such a way that [y is a nonsingular (¢ + 1) x (g + 1) matrix and
Foisa(¢g+1) x (d— q—1) matrix. A structure like this can be always found by
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a permutation of the columns of F' since this has full row rank. Similarly, consider
the partition
T
7-[3)

where 71 is a (¢ +1) x (d —¢) and Tp is a (d — ¢ — 1) x (d — ¢q) matrix.
Recall that 7 has to be such that FF'7 = (1’, f1’). In the following let

(3.1.6) To=1[0 Ig_q1]
so that )
FT=F\Ti+ [0 ol = L} } |

That means
(3.1.7) T :Fll({fll/,} ~[o FQ]) .

Note that for the special case F' = 1/, i.e. if there is no additional restriction at all,
it holds that 7 = I.

3.2. Statistical Inference. In Section 2.2 the minimization problem given by
Eq. 2.2.6 has been considered, which involves the expected return estimate @RLSJ =
7" = T/w*. Note that the ¢ x d matrix H refers to the expected GMVP return (3,
and the GMVP weights without the first one. However, in practical situations lin-
ear constraints possibly involve the first portfolio weight by considering the vector
wt = (n,w1,...,wg). That means the null hypothesis is given by Hy: Guw' = g
where G is a ¢ x (d + 1) matrix with rkG = ¢ and g is an arbitrary ¢ x 1 vector.
In fact, in that case the LMVP w* defined by Eq. 3.1.1 has to be found under the
budget constraint 1’v = 1 and
=/
G [;d] v=g.

That means (2.2.6) can be solved in the same manner as (3.1.1) if the sample mean
vector T is included in the linear constraint F'v = f. Thus any Markowitz portfolio
wy = argminv'Y v, s.t. w'v =1

(dx1) v
can be represented as a GMVP after a suitable transformation of the data. How-
ever, since in that case the linear constraint is stochastic, the presented methods of
statistical inference cannot be applied.
Due to the preceding theoretical arguments the parameter vector o can be readily
estimated by the OLS estimator

(3.2.1) aoLs = (OAZOLS,l, ceey &OLS,dfq) = (X*’X*)*IX*’Y*,
where
X7y - X{ay
(3.2.2) X* = 1 X,SQ . X;’_d*q
(nx(d—q)) . . .
L X0 0 XJay

and Y* := (Y{,...,Y¥) (n x 1).

n
The relationship between the residual vector @* (n x 1) and the OLS estimator

aors can be represented by

(3.2.3) Y* =X"doLs +0".
After defining 43q = (dors,2;---,&0LS,d—q), the OLS estimator for w* corre-
sponds to

(3.2.4) " =T (1 —1'adg, dprs)
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and dors,1 = 1" is the estimator for the expected return of the LMVP. Hence, w*
turns out to be the best unbiased estimator for the corresponding LMVP.

Any null hypothesis concerning the local minimum variance portfolio can be
implemented in the same way as described at the beginning of this section. Let
w*t = (n*,wi,...,w}) be the parameter vector of the LMVP and consider the
null hypothesis Hf : Cw**T = ¢, where C is some p x (d + 1) matrix with tkC =
p < d—q and c is an arbitrary p x 1 vector. This is similar to the null hypothesis
Hy: Gwt = g. However, for H} there are only d — ¢ degrees of freedom left since
the LMVP has been already characterized by ¢ linear restrictions. Of course it has
also to be guaranteed that Hj does not imply the linear restrictions of the LMVP
or the budget constraint. More precisely, consider the linear system of equations

0 1/ 77* 1
(x1) - (xd)| | (1x1)
0 F ol f
(3.2.5) (gx1) (gxd) : | (gx1)
o Co .* c
(px1)  (pxd)]| |Wq (px1)

with p + ¢ < d. Now it has to be guaranteed that the (p + ¢+ 1) x (d + 1) matrix
on the left hand side possesses full row rank.

The restricted minimum variance portfolio according to H{ is denoted by w**
and can be calculated as described for the null hypothesis Hy without using the
Lagrange method. Moreover, the standard hypothesis tests derived in Section 2.2
can be applied to local minimum variance portfolios just by transforming the asset
returns Ry, ..., R4 into the portfolio returns RY, ... ; R;_, . Then it holds that

n—d+q (?1)* N '(I)**)/i (?f)* o ?1)**)

(3.2.6) » 5+2 ~ Fp,nfdJrq )
provided H{ is not binding, as well as
né*? 9
oz Xn—diq
and
Ui/

~tn—d+q).

Vg2 A+ B TS T T8) — 372} /(n — d + q)
That means

(1) the F-distribution given in Theorem 2.2.1,
(2) the x2-distribution from Theorem 2.2.2, and
3) the t-distribution presented in Theorem 2.2.3
(

simply capture ¢ additional degrees of freedom, where ¢ is the number of linear
equalities characterizing the LMVP. Hence, imposing linear restrictions is a simple
dimension reduction technique which reduces the parameter uncertainty of portfolio
optimization. A similar effect can be also observed for linear inequality constraints
like setting upper bounds for the portfolio weights or using short-selling constraints.
This is confirmed by several simulation and out-of-sample studies (Eichhorn et al.,
1998, Frost and Savarino, 1988, Grauer and Shen, 2000, Jagannathan and Ma, 2003).

It is worth to point out that the GMVP as well as any LMVP can exhibit
large positive or negative weights which are not caused by estimation errors. Asset
returns in general are dominated by a large principal component representing the
market or systematic risk. There often exist some assets — typically belonging to
the finance sector — which strongly depend on the market risk and have a relatively
small amount of idiosyncratic risk. In that case extreme negative portfolio weights
occur as a matter of principle (Green and Hollifield, 1992). Thus, placing short-
selling constraints on the portfolio weights can increase the out-of-sample variance
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of the portfolio return. Of course, this holds also if linear equality constraints
are considered. Nevertheless, Jagannathan and Ma (2003) argue that the negative
effect of restricting portfolio weights is usually outweighed by the positive effect of
reducing estimation risk. This question will be treated analytically in a different

paper.

4. DISTRIBUTION OF THE ESTIMATED PORTFOLIO WEIGHTS

In the following section I will concentrate on the small-sample distribution of the
estimated weights of global and local minimum variance portfolios. This is only
loosely connected to hypothesis testing but the small-sample distribution of the
estimated portfolio weights might be of interest in its own right.

4.1. Preliminary Definitions. For the sake of simplicity from now on I will ig-
nore the standard notation of linear regression theory. Recall that w denotes the
estimator for the GMVP whereas w* is the estimator for some LMVP. Correspond-
ingly, w symbolizes the true GMVP and w* is the true LMVP. The expected return
of the GMVP is denoted by 1 whereas the expected return of the LMVP is given by
n*. Moreover, o2 is the variance of the GMVP return whereas ¢*2 symbolizes the
variance of the LMVP return. The corresponding traditional estimators for these
quantities are given by 7, 7*, 62, and 6*2.
In the following t(a, B, v) (where t(-) = t1(-)) stands for the k-variate t-distribution

with v > 0 degrees of freedom, location vector a (k x 1), and positive-semidefinite
dispersion matrix B (k x k), i.e.

a+

¢ ~ 1 (a, B,v),
Vi /v
where ¢ ~ N3 (0, B) is stochastically independent of 2. Here ¢ ~ B'Y/2¢ with
€ ~ Ni(0, ;) and B'/? is some matrix such that B/2B'/2’ = B.

By defining the (d — 1) x d matrix A := [1 — I4_1] it follows that AR = X* and
thus Q := AXA’ denotes the covariance matrix of X®. Analogously, in the context
of local minimum variance portfolios the notation R* = 7'R and AR* = X™** will
be used. Further, Q* := AYX*A’ is the covariance matrix of X*%, where ¥* := 7'X7
denotes the covariance matrix of R*.

4.2. Global Minimum Variance Portfolio. The next theorem provides the small-
sample distribution of the traditional estimator for the GMVP. Another variant of
this theorem can be found in Okhrin and Schmid (2006) and so the proof is skipped.

Theorem 4.2.1. Let w = (w1,...,wy) be the GMVP of d assets and w = (w1,
..., Wq) the corresponding traditional estimator given a sample of asset returns with
size n > d. It holds that

o2

— Q' n-d 1)
’n—d—i—l ) TV + )

(’LDQ, ceey ﬁ)d) ~ td,1<(’LU2, ceey wd)
where Q is the covariance matriz of AR and 0? = w'Sw is the variance of the
GMVP return.

An unbiased estimator for the covariance matrix of w® = (s, ..., wq) is provided
by the next corollary.

Corollary 4.2.2. Consider a sample of asset returns with size n > d + 2 and let
w = (w1, ...,%0q) be the traditional estimator for the GMVP. Then the matriz

— . 62~
Var{(wg,...,wd)}::nid-Q
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is an unbiased estimator for the covariance matriz of w® = (s, ..., Wq), where 0
is the sample covariance matriz of AR and 62 is the traditional estimator for the
variance of the GMVP return.

Note that w7 = 1 — 174%® and from Theorem 4.2.1 it follows that the GMVP
estimator W is t-distributed with mean w, dispersion matrix o2A’Q"'A/(n—d+1),
and n—d+ 1 degrees of freedom. From Proposition 1 of Okhrin and Schmid (2006)
it follows that 0?A’Q"'A = 02X ~! — ww' and thus

W~ td(w, (257 —ww') /(n—d+1),n—d+ 1) .
Moreover, Corollary 4.2.2 implies that
(4.2.1) Var(@) := (627" — @) /(n — d)
is an unbiased estimator for the covariance matrix of w.
A stochastic representation for 7, i.e. the traditional estimator for the expected
return of the GMVP could be found after some calculation. However, this is cum-
bersome and not useful for econometric purposes. In contrast, the first two moments

of the distribution of 7} can be easily derived. First of all recall that T and S are
stochastically independent. Thus

E(7) = E{E(F'%|%)} = B(u'd) = p'w =17.
Further, it holds that
Var(q) = E{Var(F'w|Z)} + Var{E(F'w|Z)}
= E@@'Xw/n)+ p' Var(d)u,

and after some calculation it follows from Theorem 4.2.1 that
n—2 9
n—d—1 7"

E(d'Sd) =

That means if n > d+ 2,

R , . n—2 o?
Var(i) = p'Var(w)p + m—d—1
where
Var(w) = (6?27 —ww')/(n —d —1).

Note that 02 /n is the variance of ¥/w, i.e. the variance of the expected GMVP
return if w would be known but the expected asset returns puq,..., g unknown.
That means the estimation risk concerning the expected GMVP return can be
decomposed into two parts, viz

(1) one part carrying the estimation risk of the portfolio weights and
(2) another part for the estimation risk concerning the expected returns.

More precisely, the variance of 7 is an affine-linear transformation of o2 /n , where
(n—=2)/(n—d—1)>1and p/'Var()u > 0.

4.3. Local Minimum Variance Portfolios. From the previous discussion it is
clear that any LMVP can be found in the same manner as the GMVP after trans-
forming the asset return vector R into the portfolio return vector R*. Recall that
the LMVP estimator w* can be written as w* = 7 (1 — 1'a¢);q, G4 1g) (see Section
3.2), where

0_*2

_ Ol n—d 1).
n—d+qg+1 " tat

dors ~ ta—g-1 (asv
Thus it holds that

0~ ta(w”, (0PTS T — wr ) f(n = d g+ 1) d g+ 1))
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TABLE 1. Industry sectors and numbers of assets.

Industry sector Assets
Consumer Discretionary 54
Energy 14
Consumer Staples 31
Financial 38
Health Care 22
Industrial 40
Information Technology 20
Materials 24
Telecommunications 5
Utilities 26
b 274

Similarly, the remaining assertions follow from the theorems and corollaries al-
ready derived for the GMVP, simply by substituting d by d — ¢, n (or ) by n* (or
7*), and o2 (or 62) by 0*2 (or 6*?). For example, according to Eq. 4.2.1 it follows
that -

Var(o*) == (627 1T — @*6*) /(n — d + q)
is an unbiased estimator for the covariance matrix of w*. Moreover, E(7*) = n
and

*
n—2 o*?

V Ak _ IV A~k .
ar(n®) = p Mwﬁu+5jgizji -

)

where
Var(v*) = (0TS T —w*w™)/(n —d+q—1).

5. EMPIRICAL STUDY

The following empirical study is based on daily asset prices between 1980-01-01
and 2003-11-26 of the 500 stocks listed by the S&P 500 stock index on 26" November
2003. The data have been kindly provided by Thomson Financial Datastream and
the considered asset prices are adjusted for dividends, splits, etc. However, only
for 285 stocks the asset prices are available over the whole sample period. The
residual 215 time series exhibit missing values caused by IPO’s or M&A’s during
the sample period and are not considered in this study. Moreover, 274 firms could
be found to belong to one of 10 industry sectors according to S&P’s Global Industry
Classification Standard (GICS). The other 11 stocks have been also removed from
the study.

The risk-free interest rate is calculated by the secondary market 3-month US
treasury bill rate (p.a.). The investment period is supposed to be 21 days (i.e.
one trading month) and so the corresponding yields have been divided by 12. For
example, the treasury bill rate on 15¢ January, 1980, corresponds to 12.04% and
so the risk-free interest rate between 1980-01-01 and 1980-01-22 is set to 1% . The
interest rates are used to calculate the excess returns of each asset.

The sample contains n = 296 monthly excess returns for each of the d = 274
firms. The estimated expected return of the GMVP corresponds to 7 = 0.18%,
whereas & = 0.8% is its estimated standard deviation. The latter is obtained by the
biased traditional estimator 2. After adjusting for the bias the estimated standard
deviation corresponds to

n ] 1 A
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TABLE 2. Estimated weights of the GMVP and corresponding
standard errors in parentheses.

Sector Weight | Sector Weight
Consumer Discretionary —14.67% | Industrial 27.07%
(10.24%) (13.10%)
Energy 14.33% | Information Technology —4.70%
(4.29%) (4.09%)
Consumer Staples 35.50% | Materials -5.81%
(9.79%) (9.64%)
Financial —17.14% | Telecommunications 18.18%
(7.89%) (5.34%)
Health Care 6.02% | Utilities 41.22%
(7.19%) (5.88%)

with effective sample size @ = n/d = 1.08. Hence, the considered capital market
is high-dimensional and the small-sample bias is tremendously large although there
are 296 observations.

For the purpose of dimension reduction a pre-allocation is done by aggregating
the stocks within each industry sector. More precisely, the asset returns of the
firms belonging to the industry sector ‘Consumer Discretionary’ (see Table 1) are
equally weighted by 1/54 , the asset returns belonging to ‘Energy’ by 1/14 and so on.
Hence, after the pre-allocation there remain 10 portfolios which can be interpreted
as sector indices. The estimate for the expected return of the corresponding GMVP
(see Table 2) amounts to 77 = 0.33%, whereas the estimated standard deviation
is & = 3.62%. Now there are only d = 10 assets (which are the sector indices),
@ = 29.6 and so the curse of dimension is lifted. Hence, the estimate for o based
on the unbiased estimate for o2 corresponds to 3.68%, which is quite similar to &.

By applying Theorem 2.2.1 one can test for example against the null hypothesis
Hp:w=1/d =0.1-1, ie. that the GMVP corresponds to the trivial portfolio.
Thus g=d—1=9,n—d =286, w* =0.1-1, and the F-statistic corresponds to

n—d (- (b — )

q o

with a = 0.05. Hence, Hy can be rejected which means that for the purpose of risk
minimization it is not sufficient to choose the trivial portfolio.

The next null hypothesis is given by Hy: 02 > o8 = (0.2)?/12 = 0.33%. Due to
Theorem 2.2.2 the test statistic is given by

=15.7536 > 1.9127 = Fj§ 554(1 — )

né?

-1
0—3 = 116.2874 < 247.8302 = FX2,286(a) .

That means the GMVP has a sufficiently low risk of return (i.e. 1202 < (0.2)?).
Another null hypothesis is given by Hp: n < 19 = 0.02/12 = 0.17%. For the t-test
based on Theorem 2.2.3 one has to calculate the ¢-statistic

77— N0
V62 +FE10) 02} (- d)

and so the null hypothesis cannot be rejected. Although 7) is twice the size of 7y,
the estimate for the expected return of the GMVP is not significantly larger than
0.02/12 or, equivalently, 12n > 0.02. This is a typical problem of performance
measurement (Frahm, 2007).

Now suppose that an investor wants to put 80% into the sectors ‘Energy’ and
‘Information Technology’ and he is searching for the corresponding LMVP. The
matrix F' given by (3.1.1) corresponds to the row vector [0 100001000 ],

= 0.7352 # 1.6502 = F; y54(1 — ) ,
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TABLE 3. Estimated weights of the LMVP and corresponding stan-
dard errors in parentheses.

Sector Weight | Sector Weight
Consumer Discretionary —19.48% | Industrial —18.37%
(12.66%) (15.57%)
Energy 51.30% | Information Technology  28.70%
(3.81%) (3.81%)
Consumer Staples 77.92% | Materials —21.99%
(11.36%) (11.82%)
Financial —20.03% | Telecommunications 5.84%
(9.76%) (6.50%)
Health Care —16.77% | Utilities 32.88%
(8.61%) (7.23%)

f =0.8, the matrix

possesses full rank and

Fa=1o 00010 0 0

The transformation matrix 7 can be simply calculated by (3.1.6) and (3.1.7) and
the estimated weights of the LMVP are given in Table 3. Further, the estimate
for the expected LMVP return corresponds to n* = 0.45% and 6* = 4.49% for the
standard deviation. Both the risk and expected return are apparently higher for
the LMVP than for the GMVP. This effect has been already motivated in Section
1 and indicated by Figure 1.

Similar to the F-test conducted above, the null hypothesis is now that the indus-
try sectors are equally weighted (except for ‘Energy’ and ‘Information Technology’).
Here p =7, n—d+1 = 287, and it can be found that w3* = 64.82%, w3* = 15.18%,
W W, g, Wi, L i, = 2.50%. The F-statistic given by (3.2.6) amounts
to

—[11111111}

n—d+q (0*— w**)li (" — W**)
D ’ G*2
That means the LMVP is not a trivial one.
Further, the y2-test against the null hypothesis Hy: 0*2 > 042 = 0.33% leads to

= 18.4532 > 2.0416 = F} 55(1 — ).

na_*2 .

and so also the LMVP risk of return is sufficiently low. However, for the t-test
against Ho: n* < nf = 0.17% it holds that

)
a2+ B T(TST) 1 TE) — 72} /(n — d + q)

= 1.0689,

whereas Ft,_2187(1 — «a) = 1.6502. Once again it is not possible to proof that the
expected excess return of the LMVP is significantly large whilst the ¢-value obtained
for the LMVP (1.0689) exceeds the t-value of the GMVP (0.7352).

6. CONCLUSION

Traditional portfolio optimization does not take estimation risk into account.
Many empirical and numerical studies show that estimation risk is a substantial
drawback of pure statistical portfolio optimization techniques. This is an important
problem in practice, particularly when the sample size compared to the number of
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assets is small. In the present work it has been shown that estimation risk can
be simply reduced by imposing linear constraints on the portfolio weights. Small-
sample hypothesis tests for global and local minimum variance portfolios have been
derived by linear regression theory. Further, the joint distribution of the weights as
well as the first two moments of the estimator for the expected return of the global or
some local minimum variance portfolio have been calculated. The presented results
hold in small samples, which is an important fact since large-sample approximations
fail if the sample size is large but the number of observations relative to the number
of assets is small. Hence, the estimation risk of global and local minimum variance
portfolios can be readily controlled by applying the given instruments even in the
context of high-dimensional data.

APPENDIX

Proof of Proposition 2.1.1. Since

E{(Z1— by — Z°V)*} = Var(Zy — b1 — Z%0°) + {E(Z1 — by — Z9b%)}

= Var(Zi — Z°F) + {E(Z) — by — B(2°)5°}7,
where b° := (ba, ..., bq), it is clear that /1 = E(Z1) — E(Z°)'5° and thus E(u) = 0.
That means the minimization problem can be solved equivalently by minimizing
(6.0.1) E{(Z] — 0225 — ... — baZ})*},
where 77 := Z; — E(Z;) for j = 1,...,d. Now define Z** := (Z3,...,Z}) so that
(6.0.1) corresponds to
E{(Z] — Z*'v*)*} = Var(Z,) — 2Cov(Z1, Z°)'b° + b Var(Z®)b° .

2

Due to the positive definiteness of Var(Z) also Var(Z*®) is positive-definite. Hence,
this is a simple quadratic minimization problem and its unique solution is given by

3% = Var(Z%) " 'Cov(Z1, Z%) .
Now calculate the (d —1) x 1 vector of covariances between v and Z; (j =2,...,d),
ie.
Cov(Z%,u) = Cov(Z° 7y — p — Z93°%)
= Cov(Z1,2°%) — Var(Z®)3° =0.
|

Proof of Theorem 2.2.1. From linear regression theory (Greene, 2003, p. 102) it

is known that
n—d aYa* —d'a

¢~ aa e

Since Eq. 2.2.7 constitutes an inhomogeneous regression it holds that #* = t/w*
and hence 0* = (R — 1F/)®*. That means
' /n =" (R - 18") (R — 1F")@* /n = 6*2,
where 6*2 := *'S @, Since 62 = 'S b and & = £-11/(1'S11), it follows that
6*2 =62 4 (b — 0*)'S (b — ).
Note also that 62 = #’i/n and thus

et —da (b —0*)S (b — o*)

u'a o o
which leads to the desired F-statistic. O
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Proof of Theorem 2.2.3. From linear regression theory (Greene, 2003, p. 51) it
follows that
n—n
Vno? [(XX) =1y, /(n—d)
where [(X’X)7!] | denotes the upper left component of (X'X)™!, i.e.

~t(n—d),

[(XX) 1], = {n— ' (X¥x%) 50}t = L2 "§'<X:XS>‘ 3

where X® (n x (d — 1)) symbolizes the regressor matrix X without the column of

ones. Note that X¥X5 = n(Q +xx’ ) and due to the binomial inverse theorem
(Press, 2005, p. 23) it holds that

n(X¥X*) = (Q+xx) " =07 -

1+x0-1x
That is
1—nx/(X¥X%) 'x=1-%X'0"'x+ (inii)Q = 1A
1+x'Q 1 1+X'Q°1x
and thus
1+ 7/ A'Q AT
/ —1 _
[(X X) }11 - n

Since 62A'QO1A = 62571 — i’ and 7) = T/, it follows that
ne? [(X'X)7],, =62 +F/(6?57! — o) T = 621+ F'E7'F) — .

a

Proof of Corollary 4.2.2. Theorem 4.2.1 implies that the covariance matrix of
(e, ..., Wq) is given by

0.2

n—d—1

From Wishart theory it follows that Q=1 ~ W, ((Q/n)~Y,n+d—1) (Press, 2005,
p. 117). Hence, it holds that

Var{(ws,...,wq)} = oL

(Q/n)~t B n .
n+d—-1)-2(d-1)-2 n-d-—1

BEQ) = Q!

(Press, 2005, p. 119). Moreover, from linear regression theory (Greene, 2003, p. 56)
it is known that 634 = @/@/(n — d) is a conditionally unbiased estimator for o2.

That means
52 ~ &2 ~ ~ 0% ~
E( OLS Ql> E{E( OLS Q1|Q1)} :E<_ Ql>
n n n
2

g
= —— —.Ql=V Do, ..., W
n—d—1 ar{(wg, awd)}
and note that 63,4 =n/(n —d) - 62 O
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