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Abstract

The work at hand tries to identify factors that explain accidents on Ger-
man Autobahn connectors. To find these factors the empirical study makes
use of count data models. The findings are based on a set of 197 ramps,
which we classified into three distinct types of ramps. For these ramps
accident data was available for a period of 3 years (January 2003 until De-
cember 2005). The Negative Binomial model proved to be an appropriate
model for our cross-sectional setting in detecting factors that cause acci-
dents. The heterogeneity in our dataset forced us to investigate the three
different types of ramps separately. By comparing results of the aggregated
model and results of the ramp-specific models ramp-type-independent as
well as ramp-type-specific factors were identified. The most significant vari-
able in all models was a measure of the average daily traffic. For geometric
variables not only continuous effects were found to be significant but also
threshold effects.
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1 Introduction

The traffic on German highways, the so called “Autobahn”, has been in-
creasing drastically over the past years and is expected to grow further in
the future due to the geographical location of Germany in the center of Eu-
rope. The increase in traffic surpasses not only the economic growth, but also
the speed of construction of roads. If the road network is not significantly
expanded the increasing number of vehicles on German Autobahns will cer-
tainly lead to an increasing number of accidents. Due to the limitations
in the possible expansions of the Autobahn, in particular in the short run,
an important task is to discover specific accident factors and their influence
on accident probabilities. Having this information may allow to implement
low-cost, short-term improvements in the prevention of accidents on existing
Autobahn-segments. One of the most dangerous situations for car drivers on
Autobahns is the weaving out of the flow of traffic via a road connector. In
the years 2003-2005 nearly 8000 accidents happened on road connectors on
Autobahns in the administrative district Düsseldorf, which is the region we
focus on in this study. Due to the safety-standards on Autobahns “only” 10
of these accidents ended deadly, but the economic damage was remarkable.

Several studies found that about 90% of all accidents are at least partly
caused by human failure, see e.g. Treat et al. [1977]. As driver behavior is
influenced by the whole environment the goal of road construction should be
to construct road sites that forgive human errors. However, road connectors
are constructed differently subject to distinct traffic volumes or geographical
constraints. The question at hand is which factors cause the errors of the
drivers. Our study contributes to the existing research by trying to find some
answers to this question for the case of road connectors. The aim is to find
a model that explains the number or the probability of accidents at various
types of Autobahn connectors, which is a statistical problem. However, due
to the nature of the problem at hand the use of standard linear regression
models is inappropriate, as argued by Jovanis and Chang [1986] and Miaou
and Lum [1993]. The variable of interest, namely the number of accidents
during a given time interval, suggests the use of count data models in our
situation.

Miaou and Lum [1993], who investigate the relationship between truck
accidents and roadway geometries, and Pickering et al. [1986] used the Pois-
son regression model to study accident data. Hauer et al. [1988], on the
other hand, introduced the more appropriate Negative Binomial model to
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find that traffic flow and various road characteristics have a significant effect
on the number of accidents on 145 signalized intersections in Toronto. An-
other study applying the Negative Binomial model to determine the causes of
car accidents is Shankar et al. [1995], who analyze accidents on a 61km por-
tion of the Interstate 90 near Seattle. Both Poisson and Negative Binomial
models require a cross sectional setting. Chin and Quddus [2003] found that
panel count data models have the advantage that they are able to deal with
spatial or temporal effects in contrast to cross sectional count data models.
They analyzed different types of accidents on 52 signalized intersections in
Singapore using a set of 32 variables containing geometric variables, traffic
volume variables and regulatory controls. Another paper applying panel data
techniques to study accident data is Shankar et al. [1998]. As accident data
have the trend to have more zero-observations than are predicted by stan-
dard count data models, so-called zero-inflated models have been introduced
into traffic accident research and applied by e.g. Shankar et al. [1997] who
investigated accidents on arterials in Washington with two years of accident
data and concluded that zero-inflated models have a great flexibility in un-
covering processes affecting accident frequencies on roadway sections. Lee
and Mannering [2002] got promising results in applying zero-inflated models
in contrast to not-zero-inflated models in the context of run-off-roadway ac-
cidents by using a 96.6km section of highway in Washington State. However,
Washington et al. [2003] and Lord et al. [2005] provide arguments against
the use of zero-inflated models in the analysis of accident data.

None of the above-mentioned studies analyzes data on highway connec-
tors, but the statistical techniques and explanatory variables they use are
similar to the ones used here. We make an attempt to find an appropriate
model for our dataset of 3 years of accidents at connectors on Autobahns in
the administrative district Düsseldorf (approximately a fifth of the area of
North Rhine-Westphalia). In our analysis we consider more than 60 Auto-
bahn connectors with 197 ramps in an area of approximately 2300km2 using
traffic data and geometric variables both in continuous form and allowing for
threshold effects.

The rest of the paper is organized as follows. In the next section we
describe our methodology. Section 3 introduces and explains our dataset,
whereas the empirical results can be found in Section 4. Section 5 concludes
and the Appendix contains some additional information on the data.
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2 Methodology

As our variable of interest, the number of accidents on highway connectors,
is a so called count variable linear regression models are not the appropriate
tool for our analysis. Instead we make use of count data regression models
that have been designed for the specific purpose of modeling discrete count
variables. In this section we give an overview of existing models, their esti-
mation and techniques to compare competing specifications.

2.1 Count data models

The benchmark model for count data is the Poisson regression model, which
is derived from the Poisson distribution. A random variable Y is said to
follow a Poisson distribution if

P [Y = y] =
e−µ(µ)y

y!
, y = 0, 1, 2, .... (2.1)

where µ > 0 is the intensity or rate parameter that is also the mean and
variance of Y . Equation (2.1) measures the probability of y occurrences of
an event during a unit of time. The equality of the mean and the variance is
called the equidispersion-property of the Poisson distribution. The Poisson
regression model is obtained by allowing the intensity parameter µ to depend
on a set of regressors. We assume a cross sectional setting with n indepen-
dent observations, the ith of which being (yi,xi), where yi is the number of
occurrences of the event of interest and xi is the vector of linearly indepen-
dent regressors that determine the intensity of yi. Further, it is assumed
that the dependence is parametrically exact and involves no other source of
stochastic variation. Then the Poisson regression model is defined by

f(yi|xi) =
e−µiµyii
yi!

, yi = 0, 1, 2, ... (2.2)

with
µ(xi) = exp(x′iβ), (2.3)

where the log-linear dependence of µi on xi assures that the intensity pa-
rameter is always positive. The assumption that next to the covariates there
is no other source of stochastic variation implies that the equality of the
mean and variance carries over to the Poisson regression model. However, as
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equidispersion is unlikely to hold in reality a natural extension of the model
is to allow for unobserved heterogeneity. Unobserved heterogeneity arises
when the covariates do not account for the full amount of individual hetero-
geneity. One can think of unobserved heterogeneity as a problem of omitted
variables. Assume the true conditional mean equation instead of 2.3 is

θi = exp(x′iβ + z′iγ), (2.4)

where zi are unobserved by the econometrician. Let exp(x′iβ) = µi and
exp(z′iγ) = νi. In a linear regression model the omitted variable bias arises
whenever xi and zi are correlated. Next to measurement errors, omitted
variables are a standard argument for introducing a stochastic relation with
additive error term. However, the stochastic nature of the Poisson Regression
Model is different. Yi is a random variable because the count process is
intrinsically stochastic, given an intensity µ that is measured without error.
This means that a model with unobserved heterogeneity cannot be Poisson
distributed. If we let εi = ln νi then we see that the error is additive on a
logarithmic scale, θi = exp(x′iβ + εi) and we can write (2.4) as

θi = µiνi, νi > 0. (2.5)

Note that it is assumed that µi and νi are independent. The marginal dis-
tribution Yi can be obtained by integrating the joint distribution over νi:

h(yi|µi) =

∫
f(yi|µi, νi)g(νi)dνi, (2.6)

where g(νi) is the density of νi. If for g(νi) you choose the gamma distribution
given by

g(νi|δ, φ) =
δφ

Γ(δ)
νδ−1
i e−νiφ (2.7)

with parameters δ and φ and make the restriction δ = φ, the integral in 2.6
can be solved analytically. Setting δ ≡ α−1 gives us the Negative Binomial
distribution

h(yi|µi, α) =
Γ(α−1 + yi)

Γ(α−1)Γ(yi + 1)

(
α−1

α−1 + µi

)α−1 (
µi

α−1 + µi

)yi
. (2.8)

The mean and variance of this distribution are:

E[Yi|µi, α] = µi and

V[Yi|µi, α] = µi(1 + αµi) > µ.
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Thus for α > 0 this model allows for overdispersion. Cameron and Trivedi
[1986] generalized this result to be more flexible in specifying the variance
function by replacing α−1 by α−1µ2−p

i . The density then generalizes to

h(yi|µi, α) =
Γ(α−1µ2−p

i + yi)

Γ(α−1µ2−p
i )Γ(yi + 1)

(
α−1µ2−p

i

α−1µ2−p
i + µi

)α−1µ2−p
i
(

µi

α−1µ2−p
i + µi

)yi
,

(2.9)
with the first two moments

E[Yi] = µi and

V[Yi] = µi + αµpi . (2.10)

Depending on the choice of p one is able to get e.g. a conditional variance
function that is a linear or a quadratic function of the mean. Using the same
exponential mean function as in the Poisson regression the two most common
forms of the Negative Binomial model are the NB1 regression (p = 1) model
and the NB2 regression (p = 2) model.

2.2 Estimation and inference

Both Poisson and Negative Binomial models are estimated by maximum
likelihood estimation (MLE). The log-likelihood function of the Poisson re-
gression is

lnL(β) =
n∑
i=1

{yix′iβ − exp(x′iβ)− ln yi!}. (2.11)

The first order conditions that yield the Poisson Maximum Likelihood Esti-
mator (Poisson MLE), βP, are given by

n∑
i=1

(yi − exp(x′iβ))x′i = 0, (2.12)

which must be solved numerically. Under a correct model specification MLE
is consistent, asymptotically normal and efficient. Note that it is crucial that
the conditional mean equation is correctly specified and that the assumption
of equidispersion is satisfied. In the case of overdispersion MLE t-statistics
are inflated, which can lead to too optimistic conclusions about the statistical
significance of regressors.
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The assumption that Yi is Poisson distributed can be relaxed considerably
as studied in Gourieroux et al. [1984b,a]. Given a correctly specified mean,
the pseudo MLE based on a density from the linear exponential family (LEF)
is consistent. This allows the assumption of equidispersion to be relaxed. In
particular, specific function forms for the variance function like those for the
NB1 and NB2 model can be assumed to estimate the covariance matrix of βP

or the form of the variance can be unspecified and either a robust sandwich
(RS) estimator or bootstrap (B) standard errors can be used.

For the Negative Binomial model we only present the log-likelihood func-
tion for the NB2 model to save space. It is given by

ln L(α, β) =
n∑
i=1

{(
yi−1∑
j=0

ln(j + α−1)

)
− lnyi!

−(yi + α−1)ln(1 + αexp(x′iβ)) + yilnα + yix
′
iβ

}
.(2.13)

The NB2 MLE, (β̂NB2, α̂NB2), is the solution to the first-order conditions:

n∑
i=1

yi − µi
1 + αµi

xi = 0,

n∑
i=1

{
1

α2

(
ln(1 + αµi)−

yi−1∑
j=1

1

(j + α−1)

)
+

yi − µi
α(1 + αµi)

}
= 0. (2.14)

Given a correct specification of the distribution[
β̂NB2

α̂NB2

]
a∼ N

([
β
α

]
,

[
VML[β̂NB2] CovML[β̂NB2, α̂NB2]

CovML[β̂NB2, α̂NB2] VML[α̂NB2]

])
,

(2.15)
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where

VML[β̂NB2] =

(
n∑
i=1

µi
1 + αµi

x′ixi

)−1

, (2.16)

VML[α̂NB2] =

 n∑
i=1

1

α4

(
ln(1 + αµi)−

yi−1∑
j=0

1

j + α−1

)2

+
µi

α2(1 + αµi)−1

)−1

, (2.17)

CovML[β̂NB2, α̂NB2] = 0. (2.18)

The NB2 MLE is robust to distributional misspecifications for specified α (as
it is a member of LEF). So provided the conditional mean is correctly speci-
fied, the NB2 MLE is consistent for β. If there is any distributional misspeci-
fication, the maximum likelihood standard errors are in general inconsistent.
They are also inconsistent if the conditional variance function is not correctly
specified. Furthermore, even if the variance function is correctly specified,
failure of the Negative Binomial assumption leads to evaluation of (2.16) at
an inconsistent estimate of α. Consistent standard error can be obtained
using a robust sandwich estimator or by using an i.i.d. bootstrap. Note that
Negative Binomial models other than NB2 are not robust to distributional
misspecifications.

2.3 Diagnostics and model comparison

2.3.1 Testing for overdispersion

In order to decide between the competing models it is important to test for
overdispersion in the data. Besides comparing the sample mean and variance,
a simple formal test can be performed by noting that the Negative Binomial
model reduces to the Poisson model when α = 0. Thus the null hypothesis of
equidispersion can be tested by estimating the Negative Binomial and Poisson
models and performing a likelihood ratio (LR) test for H0 : α = 0. Since α is
restricted to be positive the LR statistic asymptotically has probability mass
of a half at zero and a half χ2(1) distribution above 0. The critical value is
then χ2

1−2δ(1) rather than χ2
1−δ(1) if testing at level δ.
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2.3.2 Residuals and goodness-of-fit measures

For count data models residuals cannot be defined as easily as for linear
regression models and for count data there is no residual-type that has zero
mean, constant variance and a symmetric distribution. This also means that
R2 measures can be defined in more than one way. If we assume that Yi is
generated by a LEF density we can use the deviance residual, which is defined
by

di = sign(yi − µ̂i)
√

2{l(yi)− l(µ̂i)}, (2.19)

where l(µ̂i) is the log density of Y evaluated at µ = µ̂i and l(y) is the log
density evaluated at µ = y. It can be shown that for the normal distribution
with σ2 known, di = (yi − µi)/σ, which is the usual standardized residual.

For the Poisson Model this residual is

di = sign(yi − µ̂i)

√
2

{
yi ln

yi
µ̂i
− (yi − µ̂i)

}
, (2.20)

with y lny ≡ 0 if y = 0.
For the NB2 Model with α known this residual is

di = sign(yi − µ̂i)

√
2

{
yi ln

yi
µ̂i
− (yi + α−1)ln

yi + α−1

µ̂i + α−1

}
, (2.21)

with y lny ≡ 0 if y = 0.
As the deviance defined in (2.19) is the generalization of the sum-of-

squares-concept for non-linear models, an R2-measure based on the decom-
position of the deviance was proposed by Cameron and Windmeijer [1996]:

D(y, ȳ) = D(y, µ̂) +D(µ̂, ȳ), (2.22)

where D(y, ȳ) is the deviance in the intercept only model, D(y, µ̂) is the
deviance in the fitted model, i.e. the analogue to the residual variance, and
D(µ̂, ȳ) is the explained deviance. Then

R2
DEV = 1− D(y, µ̂)

D(y, ȳ)
, (2.23)

which measures the reduction in deviance due to inclusion of regressors. R2
DEV

lies between 0 and 1 and increases when regressors are added.
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For the Poisson Regression Model it can be shown that

R2
DEV, P =

∑n
i=1 yiln

(
µ̂i
ȳ

)
− (yi − µ̂i)∑n

i=1 yiln
(
yi
ȳ

) (2.24)

and for NB2 Model

R2
DEV, NB2 =

∑n
i=1 yiln

(
yi
µ̂i

)
− (yi + α̂−1)ln

(
yi+α̂

−1

µ̂i+α̂−1

)
∑n

i=1 yiln
(
yi
ȳ

)
− (yi + α̂−1)ln

(
yi+α̂−1

ȳ+α̂−1

) , (2.25)

where α̂ is the estimate of α in the fitted model. However R2
DEV, P and

R2
DEV, NB2 have different denominators and are thus not directly compara-

ble. For data that are considerably overdispersed it is likely that R2
DEV, P >

R2
DEV, NB2.

Additionally, competing and potentially non-nested models can be com-
pared by looking at information criteria, where the model that minimizes
the information criterion is selected to have the better fit. The two informa-
tion criteria that are usually considered are the Akaike Information criterion
(AIC) proposed by Akaike [1973] and defined as

AIC = −2 ln L + 2k, (2.26)

and the Bayesian Information criterion (BIC) proposed by Schwarz [1978]
and given by

BIC = −2 ln L + (ln n)k, (2.27)

where k is the number of parameters in the model. Note that the BIC places
a larger penalty on additional regressors and thus lead to the selection of
more parsimonious models.

3 Data

In this section we describe important terms and introduce the dataset we use
in this study. Further details about the data can be found in the Appendix.
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Ear-ramp
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driving direction of 
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Autobahn

Autobahn

Figure 1: Autobahn-Autobahn - Connector

3.1 Clarification of Terms

In order to understand the meaning of the data and the variables presented
in this chapter some terms have to be clarified first. It will be distinguished
between the terms connector, ramp and curve. Figures 1 shows a schematic
picture of a connector for two Autobahns. This connector consists of 8 ramps
and each ramp consists of at least one curve. One has to distinguish between
different types of connectors, namely connectors connecting two Autobahns
as in Figure 1 and connectors connecting an Autobahn with an inferior road
as in Figure 2. The schematic pictures present only two shapes of connectors
as the form varies due to construction constraints. For the ramps one can
distinguish between tangents, ears, egress-ramps and drive-up ramps. After a
preliminary analysis drive-up-ramps are not considered here. This decision is
based on two arguments. First, many variables that can be gathered for the
other types of ramps, like the length of a declaration lane, cannot be found
for this type of ramps and hence the heterogeneity in the dataset would be
increase. Second, on these ramps significantly fewer accidents happen than
on the other ramps. One could argue that the fact that less accidents happen
at these ramps might be an interesting fact that should not be neglected in a
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driving direction of 
the lane

Autobahn
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Figure 2: Autobahn-Inferior Road - Connector

statistical analysis. However, we are certain that the low number of accidents
is due to the fact that the speed at which cars drive up on such a ramp is
significantly lower than on the other ramps, as the speed limit on inferior
roads is lower than on the Autobahn. Thus we only consider ramps in the
analysis on which cars leave one specific Autobahn and change onto another
Autobahn or an inferior road. For the sake of simplicity tangent ramps,
ear-ramps and egress-ramps will be called T-ramps, O-ramps and E-ramps
respectively.

3.2 Data description

Our data provides the following information: details on individual accidents,
traffic flow data and geometrical properties of the ramps. We describe each
type in turn.

Accident data The raw data on accidents we study in this paper was
offered by the “Autobahnpolizei Düsseldorf”, the highway police for the dis-
trict Düsseldorf. The dataset contains detailed information for all reported
accidents on Autobahns in the administrative district in the time period Jan-
uary 2003 until December 2005. This amounts to a total of 39032 accidents
(12887 in 2003, 13433 in 2004 and 12712 in 2005). The detailed information
includes the exact point in time of the accident, the location of the accident,
the type and number of vehicles involved, severity and type of the accident,
information on the driver, sight conditions, and road sleekness. Out of the
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Table 1: Descriptive Statistics, Accidents, whole sample period
all ramps E-ramps O-ramps T-ramps

Min number of accidents on a ramp 0 0 0 0
Max number of accidents on a ramp 103 76 99 103
Mean number of accidents per ramp 15.32 10.97 15.86 21.03
Mode 4 4 2 4
Median 9 7 11 12
Standard deviation 18.53 12.01 18.56 23.84
Variance 343.33 144.20 344.48 568.44
Inter Quartile Range 15 12 18 25
Total number of accidents 3048 1042 555 1451
Number of ramps 197 95 33 69
Number of zero-accident ramps 10 5 1 4

nearly 40000 accidents reported we filtered out the accidents that happened
on ramps of the various connectors. Given the constraints imposed by the
datasets we had a total of 197 ramps under investigation of which 95 were
E-ramps, 33 were O-ramps and 69 were T-ramps. Additionally we have to
stress that as we are using Count models we have to disregard the detailed
information of the accidents. After the filtering process a total of 3048 ac-
cidents was to be analyzed. This is due to the fact that count models are
based on aggregated counts over a certain time period at a particular loca-
tion. Table 1 shows some descriptive statistics for accidents on the different
types of ramps. The significant differences in the mean accident numbers for
the different types of ramps is eye-catching. Therefore it might be interesting
to investigate the accidents for the different types separately and not only
for all ramps together, which has the additional advantage of reducing the
heterogeneity in the data at the price of having fewer observations.

A phenomenon that is often present in accident data analysis is the pre-
dominance of zero-observations, which calls for the use of zero inflated mod-
els, i.e. count data models that explicitly account for the presence of a large
number of zero-observations. Lord et al. [2005] concluded that excess zeros
indicate an inappropriate choice of time scale. Referring to Table 1, for nei-
ther ramp-type the mode is zero. We have only 10 zero-observations out of
the 197 ramps (5 E-ramps, 1 O-ramp and 4 T-ramps). On the other hand
on 35 ramps 25 or more accidents happened in our sample period of three
years. Furthermore, Cheng and Washington [2005] found that three years of
crash-history data provides an appropriate crash history duration, which ini-
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tially motivated our choice of the data period. Therefore we decided against
the use of zero inflated models in our analysis.

Traffic flow data The traffic flow data was offered by the Landesbetrieb
Straßenbau Nordrhein-Westfalen (abbreviated: Straßen.NRW). This institu-
tion is responsible for the planning, the construction and the maintenance of
the Autobahn in the area of North Rhine-Westphalia.

The traffic volume is counted automatically by so-called induction loops.
The loops additionally recognize the length of the car that passed the loop
and categorizes it into the group of cars smaller than 7.50 meters and the
group of cars larger than 7.50 meters. For ease of writing we will use the
term passenger cars for the prior and trucks for the latter group of cars.

The raw dataset contained daily data for all induction loops on Autobahns
in the administrative district Düsseldorf for the period 4th of March 2005 until
7th of March 2006. Note that the sample period is not exactly the same as for
the accident data. However, we believe that the available data captures the
essential information on the amount of traffic and can be used without any
reservations. For each day the dataset contains information on the number of
passenger cars and the number of trucks that passed this loop. Additionally
there are observations for six sub periods of each day, namely the periods
between 0am and 6am, 7am and 9am, 6am and 10am, 3pm and 7pm, 6am
and 10pm and 10pm and 12pm. From this data we filtered out the data of
loops that lie on the ramps of interest. Finally we had daily observations for
218 loops, of which 197 could be used in the empirical part due to missing
observation caused, e.g., by defect induction loops.

For a cross sectional analysis we calculated the average daily traffic (ab-
breviated ADT) for each ramp. The ADT for ramp i is defined as:

ADTi =
1

Ti

Ti∑
t=1

TVi,t, (3.1)

where TVi,t is the traffic volume on ramp i on day t and Ti is the number of
daily observations we had for ramp i. We also calculated the truck percentage
on each ramp:

Truck Percentage =
ADTTrucks

ADTTrucks + ADTPC

. (3.2)

Table 2 shows some statistics for the variable ADT . It is imminent that there
is a large spread in the distribution of traffic volume on the various ramps.
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Table 2: Descriptive Statistics ADT, whole sample period
Average Daily Traffic (ADT)

All Vehicles (ADTTotal)

Mean 6630.8
Maximum 28178.47
Minimum 579.26
Standard Deviation 4579.36

Passenger Cars (ADTPC)

Mean 5173.95
Maximum 25094.72
Minimum 472.57
Standard Deviation 3582.56

Trucks (ADTTrucks)

Mean 1456.85
Maximum 15844.4
Minimum 51.94
Standard Deviation 2051.49

Geometry data The geometry data was collected manually by using satel-
lite images of the ramps of interest. Some details on how the variables were
constructed can be found in the Appendix. Table 3 presents a list of the ge-
ometry variables along with their descriptive statistics for all ramps jointly.1

Next, a number of dummy variables were constructed that are shown in Ta-
ble 4. Finally, we have information on the type of surface lying on the ramps.
Three different types of surface have to be distinguished, melted or mastic
asphalt (MA), mastic asphalt using chipping MAC and asphaltic concrete
(AC). Table 5 shows the frequency distribution of the different surface types
on the investigated ramps. The main advantages of the different surface
types, without going into deeper details (taken from Richter and Heindel
[2004]), are: MA is known to have a good grip with the trade-off of being a
quite loud surface type. AC has the worst grip however it is the cheapest of
the three surface types. Roads build out of MAC are very durable and thus

1Descriptive statistics for the individual ramp types are available upon request.
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Table 3: Descriptive Statistics of Geometry Variables (all ramps)
Variable Minimum Maximum Mean Stand.Dev.

Length of the ramp (in meters) 49.56 1868.15 335.12 243.95
Length of the declaration lane (in meters) 0.00 902.24 258.00 158.08
Total Width of the lanes on the ramp (in meters) 3.30 8.19 4.93 1.13
Width per Lane (in meters) 3.02 7.16 4.33 0.73
Width of the shoulder lane (in meters) 0.00 4.81 2.14 1.40
Radius steepest curve (in meters) 28.43 1428.47 164.78 195.56
Total Angle passed (in degrees) 0.00 305.15 115.78 92.75
Absolute Total Angle passed (in degrees) 4.32 305.15 148.29 83.97
Angle of the steepest curve (in degrees) 3.76 302.00 119.86 86.47
Length of the steepest curve (in meters) 30.05 1259.25 205.49 155.90

Number of Lanes on the Ramp 1 2 1.17 0.38
Number of Inflection Points on the Ramp 0 4 0.59 0.86
Position of the steepest curve on the Ramp 1 4 1.45 0.72
Number of Curves on the Ramp 1 6 1.72 0.93
Number of Lanes on the Autobahn leaving 1 3 2.48 0.51

Table 4: Descriptive Statistics Dummy Variables (all ramps)
Variable Mean Stand.Dev.

Decl. lane comes from Autobahn lane 0.06 0.24
A curve gets steeper 0.24 0.43
A curve gets less steep 0.13 0.34
Incline on the ramp 0.50 0.50
Decline on the ramp 0.54 0.50
Trees inside 0.87 0.33
Trees outside 0.78 0.42
Crossing lane at the access of the ramp 0.22 0.42
Crossing lane at the exit of the ramp 0.22 0.41
Median between Autobahn and decl. lane 0.38 0.49

Table 5: Frequency Distribution of Surface Types
Surface Frequency

AC 57
MA 136
MAC 4
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MAC is perfect for roads with high traffic exposure.

3.3 Missing information

In this section we shortly discuss which information might have been worth
to be collected, but could not be obtained.

First of all we did not have any information on traffic signs on the con-
nectors. As on German Autobahns there is no general speed limit, this is
also the case on the ramps. However, on several ramps there are speed limit
signs. “Slippery road”-signs can also be found on several ramps. In our point
of view, knowing the existence of signs would have enriched our analysis.

The satellite images we used for the collection of our geometry variables
did not give us any information on standing guardrails on the ramps. An
interesting hypothesis that might have been investigated would have been if
guardrails make the driver feel confident and thus leading to higher accident
rates.

One shortcoming of our dataset was the short period of our traffic flow
variable, not allowing us for a substantiated panel data approach and hence
making us ignoring information on seasonality. As a panel approach was
not conducted no weather variables have been used in our research. As the
area of the connectors investigated is quite small (around 2300km2) we think
there are no significant differences in weather-conditions for aggregated data.
Nevertheless, in a panel approach it might have been interesting to take
weather into consideration, not only to explain cross-sectional differences,
but also to explain seasonality.

The information we had on the surface of the road was also quite rudi-
mentary. Without doubt, not only the type of the surface, but also the age
of the surface has an impact on the grip of the road and thus an influence
on the accident frequency.

4 Empirical findings

In this section we apply the count data models introduced in Section 2 to the
accident data on German Autobahn connectors we introduced in Section 3.
We start with a preliminary analysis studying the time series properties of our
data to motivate the use of cross sectional models only. Next we present some
evidence of overdispersion in our data that justifies the use of the Negative
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Figure 3: Monthly Time Series of aggregated accidents (all ramp-types)

Binomial model instead of the more restrictive Poisson regression. Thus we
apply the Negative Binomial model to the complete dataset, as well as to
each type of ramp separately. After finding appropriate models for our data
we interpret the results and try to draw conclusions regarding the practical
relevance of our results.

Before we start presenting our results we would like to note the following.
First, Table 6 presents all variables we use along with their abbreviations.
Second, for the regressions the unit of measurement of all ADT-variables was
changed to thousands of cars to avoid unreadably small regression results.
Finally, we note that the models are numbered by a capital letter M and a
consecutive arabic number.

4.1 Preliminary analysis

Figure 3 shows a time series plot of the aggregated accidents for all types
of ramps. A clear seasonal effect cannot be seen and we perform a simple
OLS-regression of aggregated monthly accidents on the monthly dummies
for our sample period of three years. Only the dummy for the month Oc-
tober is significant at a 5% significance level. Additionally we perform an
OLS-regression with dummies representing the four seasons of the year. No
dummy can significantly catch any seasonal effects. Given that only the Oc-
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tober dummy is significant, which is likely the case due to chance given that
we perform twelve hypothesis at a 5% significance level, we decide not to
make seasonal adjustments.

Next, we estimate a Poisson regression to identify the variable that can
explain the number of accidents. We start by adding the variables that seem
most obvious to us in having the ability of explaining accident frequencies,
such as ADT. Disregarding assumptions about equidispersion for the Poisson
regression model we look at the t-statistics calculated with the hessian max-
imum likelihood (MLH) standard errors and Pseudo-R2 to get the following
preliminary model:

nb acc = exp(β0 + β1ADT pc + β2ADT trucks + β3angle abs
+ β4radius + β5length ramp + β6pos steepest

+ β7D less steep + β8D steeper + β9D cross exit
+ β10D trees out + β11D incline + β12D autob decl),

(M1)
where nb acc indicates the conditional mean of the variable nb acc. Table
7 shows the variables that are all significant at the 5% significance level
(MLH-standard errors). The Pseudo-R2 calculated with formula (2.24) is
R2

DEV = 0.3009. The table also presents standard errors calculated using
the alternative approaches introduced in Section 2.2, namely using the for-
mulas for NB1 and NB2, as well as the robust sandwich (RS) method and
an i.i.d. bootstrap (B) with 500 bootstrap replications. It is evident that
these standard errors are much larger than the MLH-standard errors, which
is strong evidence for overdispersion. A further indicator for overdispersion
is the sample variance/mean ratio of around 22. This implies that many
of the variables in (M1) are not significant, since overdispersion causes in-
flated t-statistics. Although the various standard errors we presented in this
section account for overdispersion they cannot cope with the second flaw of
the Poisson regression model, namely non-allowance for unobserved hetero-
geneity, which is probably the reason for overdispersion in our dataset. As
a consequence we will exclusively use Negative Binomial regression to model
our data.

4.2 Data analysis with the Negative Binomial model

Initially we considered both the NB1 and NB2 models for our analysis. How-
ever, in all cases the AIC and BIC favored the NB2 model, which means
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that a quadratic variance function seems to model the variation better than
a linear function of the mean. Thus we restrict our attention to the NB2
specification. Furthermore, since the NB2 model nests the Poisson regres-
sion model when α = 0 the null of a Poisson Model and hence the null of
equidispersion can be tested with the LR test as described in Section 2.3.1.
We report this LR statistic whenever we present the complete results for es-
timated models, but we already note that the test has p-values of virtually
zero for all the model specifications we considered. We start by reporting the
results by considering all ramp types jointly, but the descriptive statistics in
our data description already suggested investigating the different ramps types
separately. This procedure allows us to find out whether the heterogeneity in
our data is severe. Although the investigation of the types separately sounds
more fruitful we have to deal with the trade-off of having less observations.

4.2.1 Analyzing all ramps

Considering the original variables in our dataset our search for the most
appropriate model gave us the following simple model with statistically sig-
nificant variables at a 5% significance-level:

nb acc = exp(β0+β1ADT pc+β2radius+β3truck perc+β4D steeper). (M2)

Note that for the sake of readability we do not report parameter estimates
until we have arrived at a final form of the model.2 It is evident that the NB2
model that accounts for overdispersion leads to a very parsimonious model
compared to the (misspecified) Poisson regression. In the next step of our
analysis we test for the different functional forms of the regressor ADT pc:
first we will add a quadratic term and then consider the model with the
log-transformed variable. This gives us the following two new models:

nb acc = exp(β0 + β1ADT pc + β2(ADT pc)2

+ β3radius + β4truck perc + β5D steeper)
(M3)

and

nb acc = exp(β0 + β1ln(ADT pc) + β2radius
+ β3truck perc + β4D steeper).

(M4)
Table 8 clearly shows that all evaluation criteria suggest a different functional

2Detailed estimation results for the intermediate models are available upon request.

19



form of ADT pc than the level-form. However, there is no clear indication
whether the squared form is to be preferred over the logarithmic form. In
order to get an additional evaluation criterion we conducted the LR-test for
non-nested models proposed by Vuong [1989]. The test statistic is equal to
0.2634 and given an asymptotic standard normal distribution of the Vuong
test the null hypothesis of equivalence of the models cannot be rejected in
favor of any of the models.

Although we do not have any clear indication in favor of any functional
form of ADT pc at this stage of the analysis, we continue presenting only the
squared form from Model (M3) in this section as it gave more promising re-
sults in the upcoming analysis. As none of the remaining variables was found
to have additional significant effects in explaining accident frequencies we in-
vestigate whether there are possible threshold effects. We shortly describe
the procedure we use to identify the thresholds: We create dummy variables
that are one for values exceeding the supposed threshold value and zero other-
wise. By varying the threshold-value and comparing the information criteria
and the pseudo R2 we try to determine the actual threshold-value. After we
find the threshold we calculate the RS-standard errors and the bootstrapped
standard errors to assure that our inference is valid. The notation of the
threshold variables is as follows: A “T” in front of the variable will indicate
that this is a dummy measuring the threshold and the index-number shows
the value of the threshold. This means the variable is 1 for values larger than
this threshold and zero otherwise.

Three variables seem to have a threshold effect, namely the length of the
declaration lane (length decl), the total width of the lane(s) (width lanes)
and the position of the steepest curve (pos steepest). After our threshold-
analysis we find the following model that extends model (M3):

nb acc = exp(β0 + β1ADT pc + β2(ADT pc)2 + β3radius
+ β4truck perc + β5D steeper + β6T length decl180

+ β7T width lanes3.90 + β8T pos steepest1).
(M5)

We would like to note two things for model (M5): 1) the variable width lanes
measures the total width of the officially accessible lanes without account-
ing for the width of a possible shoulder lane. We also investigated a possible
threshold effect of the total width of the official road together with the shoul-
der lane (so the whole possibly accessible road). However no threshold effect
could be found. 2) the variable T pos steepest1 takes on the value one if
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the first curve is not the steepest curve on the ramp. Table 9 presents the
estimation results of this model with the estimated RS and bootstrapped
standard errors.

4.2.2 Analyzing E-ramps

With n=95 the majority of ramps in our dataset are egress-ramps. We
perform a similar model search as for all ramp types jointly. First of all, it
turned out that a model with log-transformed ADT pc is to be preferred over
the specification including a quadratic term. Next we searched for threshold
effects and the following two models both turned out to give a good fit for
the E-ramps, with the latter being slightly preferable:

nb acc = exp(β0 + β1ln(ADT pc) + β2nb curves + β3radius
+ β4truck perc + β5T length decl190).

(M6)
and

nb acc = exp(β0 + β1ln(ADT pc) + β2truck perc
+ β3T length decl190) + β4T radius90).

(M7)

Tables 10 and 11 presents the regression results along with the goodness-
of-fit measures for these models.

4.2.3 Analyzing T-ramps

Out of the 197 ramps in our data 69 were tangent ramps. As in the case of
E-ramps there are differences to the estimation results for all types of ramps.
However, this time the functional form of ADT pc with a quadratic term is
the appropriate one. The best fitting model turned out to be

nb acc = exp(β0 + β1ADT pc + β2(ADT pc)2 + β3angle abs
+ β4D decline + β5T length decl150 + β6T width lanes3.90).

(M8)
The regression results can be found in Table 12.

4.2.4 Analyzing O-ramps

For the last type of ramps we have only 33 observations. Probably due to this
small sample relatively few variables were found to be statistically significant

21



and we came up with the model

nb acc = exp(β0+β1ln(ADT pc)+β2T radius48+β3T width lanes4.40) (M9)

with its estimation results given in Table 13.

4.3 Interpretation of the results

Table 14 summarizes the estimated coefficients of the five models. Due to the
non-linear nature of the NB-models we also present other measures that may
help us in getting a feeling for the magnitude of response of the number of
accidents to changes in regressors. In contrast to OLS-regression coefficients
the response does not stay constant with varying regressors. The estimated
coefficients of the NB2 model can be interpreted as semi-elasticities. The
mean-effect-measures “Avg” and “At Avg” give a change in the number
of accidents on a ramp due to a one-unit change of regressors. “Avg” is
calculated as

1

n

n∑
i=1

∂E[Yi|xi]
∂xij

=
1

n

n∑
i=1

βjexp(x′iβ). (4.1)

whereas “At Avg” is given by

∂E[Y |x]

∂xj

∣∣∣∣
x̄

= βjexp(x̄′β), (4.2)

The column “Elast” gives β̂j x̄j, where x̄j is the mean of the regressor, which
measures the elasticity of E[Y] with respect to changes in regressors. Fi-
nally, for dummy variables the conditional mean of the dependant variable
is exp(β̂j) times larger if the dummy variable is one rather than zero. The
exponential of the estimated coefficients can be found in the last column of
the table labeled “Exp”.

4.3.1 Interpreting Model (M5), all ramps

The effect of ADT pc on accidents is the most significant variable in Model
(M5). As the variable enters the equation also in a squared form even a
constant semi-elasticity is not given. Assume an average ADT pc of 5000
passenger cars per day, hence ADT pc=5 and (ADT pc)2=25. An increase
of 100 cars per day leads to a 0.1 × (0.2681 − 2 × 0.0072 × 5) = 0.01961
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proportionate change or 1.9% change in the expected number of accidents.
An increase of truck perc by 0.1 units, hence an increase of the truck ratio by
10 percentage points leads to an increase in the expected number of accidents
by 8.21%. The mean effects Avg suggests that the average effect of a 10
percentage point increase in the ratio of trucks yields to 1.8 more expected
accidents per ramp in a time period of three years. The “Avg” estimates for
this model are about 27% higher than those of the “representative” ramp
given in “At Avg”, which is due to the convex exponential mean function.
The same phenomenon can therefore be observed for the other models.

The other variables are more interesting from an engineering perspective.
For the radius an MLE of -0.1035 indicates that an increase of the radius
by 10 meters decreases the expected accident number by slightly more than
1%. To get a feeling for the mean effects assume an average ramp (mean
of radius=164 meter). If the radius of the steepest curve of this ramp were
increased to 174 meters the expected number of accidents in three years would
decrease by 0.188 accidents. Next, a ramp on which a curve gets steeper has
a exp(0.4886) = 1.63 times higher expected number of accidents than a ramp
on which no curve is getting steeper.

The estimates of the remaining two variables were rather counterintuitive.
The estimate of 0.3988 for the coefficient of the variable T length decl180

suggests that on ramps with declaration lane larger than 180 meters we have
to expect exp(0.4433) = 1.557 times more accidents than on ramps with a
declaration lane that is smaller than 180 meters. Similarly, the expected
number of accidents on ramps with a width of their lanes exceeding 3.9
meters is 1.49 times higher than on ramps with a width of less than 3.9
meters. The estimate of the threshold variable T pos steepest1 suggests that
we can expect the number of accidents to be 1.4 times higher if the first
curve is not the steepest on the ramp. A reason for these three at first glance
counterintuitive results might be that an unsafe looking ramp leads to more
awareness of the driver. Another explanation is an omitted variables bias,
since it is likely that there are stricter speed restrictions (or warning sings) on
these unsafe ramps, which in turn would decrease the number of accidents.

4.3.2 Interpreting Model (M6), E-ramps (I)

The results for the first model of the E-ramps are in line with the results we
got for all ramps together although ADT pc enters the model in a different
functional form. If the traffic volume increases by 1% the expected number of
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accidents will increase by 0.7%. A value of -0.33 for the estimated coefficient
of nb curves suggests that if the number of curves on the ramp could be
increased by 1 the expected number of accidents would go down by 33%.
The mean effect “At Avg” shows us that if we add one curve to the average
ramp the expected number of accidents in three years will decrease by 0.38.
The truck percentage seems to have a much higher impact on the expected
number of accidents for egress-ramps than in a model with all ramps. An
increase of the truck-ratio by 10 percentage points leads to an increase in the
expected number of accidents by more than 20%. Finally, the threshold effect
for the declaration lane seems also to be much more severe for egress ramps.
If the declaration lane exceeds 190 meters the expected number of accidents
has to be multiplied by the factor 3. Such a high response is surprising, but
can again be attributed to the omitted variable bias.

4.3.3 Interpreting Model (M7), E-ramps (II)

The results for the alternative model for egress ramps are similar to the ones
reported above. The exponential of the estimated coefficient of T radius90

suggests that there are 45% less expected accidents if the radius of the steep-
est curve is below 90 meters. The mean effects are also quite interesting for
this variable: “Avg” is -6.718. This means that in three years there are on
average nearly 7 expected accidents less on ramps if the radius of the steepest
curve is not below 90 meters. Together with the results of Model (M6) it
cannot be dismissed that there seems to be a strong negative relationship
between the radius of the steepest curve on a egress ramp and the number
of accidents.

4.3.4 Interpreting Model (M8), T-ramps

Model (M8) is the only model among the five here presented that did not
show a significant effect of radius, neither in the continuous form nor as a
threshold variable. Nevertheless angle abs entered the model as a kind of
curvature measure. A coefficient of 0.0049 indicates that if angle abs rises by
10 degrees the expected number of accidents rises by 4.9%. Given the average
response over all ramps an increase by 10 degrees leads to 1 more expected
accident in three years. A variable we were quite surprised to find in one
of the models was D decline. This variable does not only enter the model
significantly, but it does improve the overall fit of the model considerably.
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If there is a decline on the ramp the expected number of accidents is 35%
smaller. Finally two threshold variables can be found in the model that
already were in Model (M5) investigating all ramps. The threshold value
of T length decl150 is even 40 meters smaller than before. The exponential
of the estimated coefficient implies that if the declaration lane exceeds 150
meter the expected number of accidents increases by a factor of 1.77. The
estimates of the other threshold variable imply that if the width of a lane
exceeds 3.90 meters we expect the number of accidents to be higher by a
factor of 2.4

4.3.5 Interpreting Model (M9), O-ramps

For O-ramps we see that a 1% increase in passenger car flow increases the
expected number of accidents by 0.94%. Compared to the estimates of
ln(ADT pc) in Models (M6) and (M7) with values of 0.70 and 0.58 respec-
tively, a proportionate increase of traffic flow has a more severe impact on
the number of accidents on O-ramps than it has on E-ramps. Next to the
traffic flow only two threshold variables entered the model. The estimated
coefficient are for T radius48 as well as for T width lanes4.40 positive, again
a counterintuitive result. We conclude that this result is disputable due to
our small sample of only 33 observations.

5 Conclusion

The aim of this paper was to find an appropriate statistical model that helps
explain accident frequencies on Autobahn connectors in Germany. The na-
ture of the data suggested the use of count data models for the analysis and
a Negative Binomial regression model turned out to be the appropriate tool.
The available dataset contains detailed accident data on Autobahn for the
entire administrative district Düsseldorf for the years 2003 to 2005. In par-
ticular, the number of accidents on the connector ramps was extracted as
the dependent variable in this study. Additionally, traffic flow data for 197
ramps was available, which can be subdivided in three different ramp-types,
the so-called E-ramps (n=95), T-ramps (n=69) and O-ramps (n=33). For
all ramps we collected a set of nearly 30 geometry variables. These variables
already indicated that the various types of ramps have very different char-
acteristics and the induced heterogeneity by investigating all ramps jointly
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appeared to be quite severe. The aggregated model contained a mixture of
the variables that were also significant in the individual E-ramp and the T-
ramp models. Therefore, the resulting estimates from the aggregated model
should be interpreted with care, as some effects might be due to one spe-
cific type of ramps. Nevertheless if the results of the aggregated model are
compared to the results of the specific models one may deduce valuable in-
formation. In particular, the dummy variable indicating a curve that gets
steeper on a ramp is only significant in our aggregated model, but not in the
ramp specific models. We reason that this is a ramp type independent effect
that was not found in the ramp specific models due to the small number of
observations. Based on our results, on average a ramp on which a curve gets
steeper is expected to suffer 11 more accidents in 3 years. As the other vari-
ables in the aggregated model can also be found in one of the ramp specific
models, conclusions should be based on the estimates of the latter models.

For E-ramps we found that the radius of the steepest curve plays a role
in explaining accident frequencies. We could identify a continuous as well
as a threshold effect. Ramps with a radius of the steepest curve exceeding
90 meters suffer on average 6.7 accidents less in 3 years. Additionally to
the radius a threshold value for the length of the declaration lane could be
identified. Surprisingly, less accidents happen if the declaration lane does
not exceed the threshold value of 190 meters, but this is likely the results
of an omitted variable bias, since no information on road signs and speed
restrictions was available.

In the case of T-ramps the absolute total angle of the ramp plays a role.
Additionally a decline on the ramp has a negative effect on the expected
number of accidents. As in the E-ramps case a, threshold value was identified
for the length of the declaration lane with the same counterintuitive sign. For
the width of the lane a threshold value of 3.90 meters could be found leading
to less accidents if the width of these ramps is smaller than the threshold,
which again is a counterintuitive result.

For O-ramps our model could only identify two threshold variables, whose
signs are again quite counterintuitive: a threshold value for radius of 48
meters and a threshold value for the width of the lanes of 4.40 meters, but
due to the small number of observations we have doubts in the validity of
these results.

The final question at hand it whether and how our findings can be used
improve the safety of existing Autobahn connectors and to give recommen-
dations in the construction of new ones. The accident factors identified in
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this study cannot be used for simple short term improvements, which is not
surprising, as the easiest and cheapest solution one can think of is putting
up additional warning signs and speed restrictions. Since we had no data
available on these, and it is likely that these measures were already taken
on relatively dangerous connectors, we have to leave the recommendation of
simple solutions to future research that includes such information. However,
if connectors are build from scratch our results might be helpful. The finding
that curves getting steeper yield higher accident frequencies is definitely a
result that future planning should not disregard. The radius effect on E-
ramps might also be interesting for the design of such ramps. As we not only
found a threshold value, but also a continuous effect we can say: the steeper a
curve, the more accidents can be observed (a 10 meter increase in the radius
of the steepest curve decreases the expected number of accidents on a ramp
by 1%). The significant positive parameter of the variable absolute total
angle in the case of T-ramps can be interpreted as: the simpler a T-ramp is
constructed, the less accidents can be expected.

In future research, next to using the information not available here one
may try to expand the dataset and consider temporal and dynamic effects.
However, as our attempt to reveal seasonal effects was not successful this
may not be the most promising road to take. It might be more effective to
investigate a larger dataset with more ramps, as the number of observations
was a limiting factor here.
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A Connectors in the analysis

Table 15 shows a list of all connectors of which ramps have been used in
this study. The connectors are sorted by the number of their Autobahn.
Connectors of an Autobahn and an inferior road are called Anschlussstelle in
Germany, which is abbreviated AS in the following table. Connectors of two
Autobahns are called Autobahnkreuz (abbreviated AK) or Autobahndreieck
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(abbreviated AD). For these types of connectors the Autobahn with the lower
number is stated.

Table 15: Connectors in dataset

Autobahn-Number Connector-Name

A2 AS Oberhausen-Königshardt
A2 AK Oberhausen
A3 AK Oberhausen-West
A3 AS Oberhausen-Lirich
A3 AS Dinslaken-Süd
A3 AK Duisburg-Kaiserberg
A3 AS Duisburg-Wedau
A3 AK Ratingen-Ost
A3 AS Mettmann
A40 AK Duisburg
A40 AS Duisburg-Häfen
A40 AS Duisburg-Homberg
A40 AS Duisburg-Rheinhausen
A40 AS Moers-Zentrum
A40 AS Moers
A42 AK Kamp-Lintfort
A42 AS Duisburg Beeck
A42 AK Duisburg-Nord
A42 AS Duisburg-Neumühl
A42 AS Oberhausen-Buschhausen
A42 AS Oberhausen-Zentrum
A42 AS Oberhausen-Neue Mitte
A44 AK Meerbusch
A44 AS Ratingen-Schwarzbach
A44 AS Osterath
A44 AS Düsseldorf-Stockum (W)
A44 AS Düsseldorf-Stockum (O)
A44 AS Düsseldorf Flughafen
A44 AK Düsseldorf-Nord
A46 AK Neuss-Süd

continued on next page...
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...continued

Autobahn-Number Connector-Name

A46 AS Neuss-Holzheim
A46 AS Neuss-Uedesheim
A46 AS Düsseldorf-Bilk
A46 AS Düsseldorf-Holthausen
A52 AK Kaarst
A52 AS Kaarst-Nord
A52 AS Bderich
A52 AS Düsseldorf-Rath
A52 AS Ratingen
A52 AS Tiefenbroich
A52 AD Breitscheid
A52 AS Essen-Kettwig
A52 AS Essen-Haarzopf
A52 AS Essen-Rütenscheid
A52 AS Essen-Süd
A52 AS Essen-Bergerhausen
A57 AS Krefeld-Gartenstadt
A57 AS Krefeld-Zentrum
A57 AS Krefeld-Oppum
A57 AS Bovert
A57 AS Holzbttgen
A57 AS Neuss
A57 AS Neuss-Reuschenberg
A57 AS Moers-Hülsdonk
A57 AS Moers-Kapellen
A57 AS Dormagen
A59 AS Duisburg-Fahrn
A59 AS Duisburg-Marxloh
A59 AS Duisburg-Althamborn
A59 AS Duisburg-Meiderich
A59 AS Duisburg-Wahnheimerort
A59 AS Duisburg-Buchholz

continued on next page...
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...continued

Autobahn-Number Connector-Name

A59 AS Duisburg-Groenbaum
A516 AS Oberhausen-Sterkrade Nord
A516 AS Oberhausen-Sterkrade Süd
A516 AS Oberhausen-Eisenheim
A524 AS Duisburg-Rahm
A524 AS Lintfort

B Determination of the geometry data

All variables presented in the last section were determined by using satellite
images that can be found on the home page of the land surveying office
of North-Rhine-Westphalia (Landesvermessungsamt NRW)3. On this home
page one can find satellite images of whole North-Rhine-Westphalia with the
accompanying Gauss-Krüger-coordinates.

By means of an example we show how we constructed the data. Figure 4
shows a satellite image of a connector (connector Autobahnkreuz Moers, con-
necting Autobahn A40 and Autobahn A57) that connects two Autobahns.
For our example we chose the bottom left tangent (cars are coming from the
west and change directions to the south). There are three curves on that
ramp, two inflection points and there is clearly a decline. There are trees
inside and outside of the ramp. The Autobahn leaving has two lanes and
there is a declaration lane. There is only one lane on this ramp, but there is
also a shoulder lane.

Figure 5 shows then a zoom onto this tangent-ramp, where already the
angles measured are indicated. Angle α is the total angle passed on the ramp,
the sum β + γ + δ is the absolute total angle passed on the ramp, where it
holds that α = |β − γ + δ|. As can be seen in the picture, the last curve is
the steepest one, which is on the 3rd position. Hence, angle γ is the angle of
the steepest curve.

Figure 6 shows how the lengths were measured. The lane that leads
directly to the ramp was in the previous section defined as the declaration
lane. The declaration lane starts in point A and ends in point B, the first

3http://www.tim-online.nrw.de/tim-online/LVermA/index.html

30

http://www.tim-online.nrw.de/tim-online/LVermA/index.html
http://www.tim-online.nrw.de/tim-online/LVermA/index.html


Figure 4: Satellite Image of the Autobahnkreuz Moers

Figure 5: Determination of the angles on a ramp
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Figure 6: Determination of the lengths on a ramp

steering movement on the ramp. Thus the distance between A and B is the
length of the declaration lane. From point B on the length of the ramp itself
was measured. The distance between B and D is the length of the ramp. In
point C the steepest curve starts, so the distance between C and D is the
length of the steepest curve.

The radius ri of the steepest curve of ramp i is calculated by the formula:

ri =
360 · li
2παi

, (B.1)

where li denotes the length of the curve and αi denotes the angle of the curve
(for the calculation of the radius it is assumed that the radius of the curve
stays constant).

A similar procedure was conducted for all 197 ramps.
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Table 6: Abbreviations of variables in our dataset
Variable Abbrevation

Number of Accidents nb acc
Length of the ramp length ramp
Length of the declaration lane length decl
Total Width of the lanes on the ramp width lanes
Width per Lane width per lane
Width of the shoulder lane width should
Radius steepest curve radius
Total Angle passed angle tot
Absolute Total Angle passed angle abs
Angle of the steepest curve angle steepest
Length of the steepest curve length steepest
Number of Lanes on the Ramp nb lanes
Number of Inflection Points on the Ramp nb infl
Position of the steepest curve on the Ramp pos steepest
Number of Curves on the Ramp nb curves
Number of Lanes on the Autobahn leaving nb autob lanes
Dummy - Decl. Lane comes from Autobahn lane D autob decl
Dummy - A Curve gets steeper D steeper
Dummy - A Curve gets less steep D less steep
Dummy - Incline on the ramp D incline
Dummy - Decline on the Ramp D decline
Dummy - Trees Inside D trees in
Dummy - Trees Outside D trees out
Dummy - Crossing lane at the Access of the Ramp D cross access
Dummy - Crossing lane at the Exit of the Ramp D cross exit
Dummy - Median between Autobahn and Decl. Lane D median
ADT Passenger Cars ADT pc
ADT Trucks ADT trucks
Truck percentage truck perc
Threshold Dummy - Length declaration lane T length declthreshold
Threshold Dummy - Width of the lanes T width lanesthreshold
Threshold Dummy - Position of the steepest curve T pos steepestthreshold
Threshold Dummy - Radius of the steepest curve T radiusthreshold
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Table 7: Parameter estimates and standard errors Poisson Regression, Model
(M1)

Variable Coefficient
Standard Errors

MLH NB1 NB2 RS B(500)

ADT pc 0.11341 0.00537 0.0196 0.0284 0.0176 0.0226
ADT trucks 0.06532 0.00681 0.0248 0.0472 0.0160 0.0261
angle abs 0.00205 0.0003 0.0013 0.0016 0.0011 0.0013
radius -0.00037 0.0001 0.0005 0.0005 0.0003 0.0004
length ramp -0.00048 0.00008 0.00030 0.00048 0.00024 0.00036
pos steepest 0.17989 0.02714 0.09902 0.13095 0.09412 0.10947
D less steep 0.17433 0.05319 0.19405 0.25442 0.24148 0.27316
D steeper 0.40499 0.0514 0.187686 0.211761 0.1786 0.2067
D cross exit -0.28331 0.05058 0.18454 0.2459 0.19707 0.22971
D trees out 0.23733 0.05432 0.19820 0.20486 0.25290 0.25391
D incline 0.11686 0.0399 0.145885 0.166006 0.1441 0.1574
D autob decl 0.33232 0.07333 0.26755 0.322815 0.25572 0.28117
Constant 1.20651 0.0919 0.33558 0.36656 0.271 0.29336

Table 8: Model evaluation criteria different functional forms of ADT
Model (M2) Model (M3) Model (M4)

pseudo R2 0.0487 0.0537 0.0529
ln L -703.55 -699.88 -700.46
AIC 1412.10 1405.76 1405.92
BIC 1418.57 1413.52 1412.39
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Table 9: Estimation Results all ramps, Model (M5)

Variable Coefficient
standard errors t-statistic (p-value)

RS B(500) RS B(500)

ADT pc 0.2681 0.0504 0.0585 5.31 (0.000) 4.58 (0.000)

(ADT pc)2 -0.0072 0.0020 0.0028 -3.57 (0.000) -2.62 (0.009)

truck perc 0.8212 0.3862 0.4054 2.13 (0.033) 2.03 (0.043)

radius -0.0010 0.0003 0.0004 -3.27 (0.001) -2.77 (0.006)

D steeper 0.4886 0.1606 0.1671 3.04 (0.002) 2.92 (0.003)

T length decl180 0.4433 0.1407 0.1425 3.15 (0.002) 3.11 (0.002)

T width lanes3.90 0.3988 0.1973 0.2038 2.02 (0.043) 1.96 (0.050)

T pos steepest1 0.3368 0.1536 0.1604 2.19 (0.028) 2.10 (0.036)

Constant 0.9190 0.2566 0.2774 2.03 (0.043) 3.31 (0.001)

α̂ 0.6378
LR 1276.63

(p-val.) (0.000)
ln L -691.14
AIC 1391.29
BIC 1402.94

pseudo R2 0.0655
n 197
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Table 10: Estimation results E-ramps, Model (M6)

Variable Coefficient
standard errors t-statistics (p-values)

RS B(500) RS B(500)

ln(ADT pc) 0.7094 0.1427 0.1608 4.97 (0.000) 4.41 (0.000)

nb curves -0.3225 0.1323 0.1375 -2.44 (0.015) -2.35 (0.019)

radius -0.0011 0.0004 0.0005 -2.67 (0.008) -2.01 (0.047)

truck perc 2.0780 0.4265 0.4908 4.87 (0.000) 4.23 (0.000)

T length decl190 1.2195 0.2051 0.2266 5.95 (0.000) 5.38 (0.000)

Constant 0.5390 0.3218 0.3638 1.68 (0.094) 1.48 (0.139)

α̂ 0.50954
LR 348.7

(p-val.) (0.000)
ln L -302.343
AIC 610.68
BIC 618.45

Pseudo R2 0.0737
n 95

Table 11: Estimation results E-ramps, Model (M7)

Variable Coefficient
standard errors t-statistics (p-values)

RS B(500) RS B(500)

ln(ADT PC) 0.5808 0.1318 0.1425 4.41 (0.000) 4.08 (0.000)

truck perc 1.4978 0.4125 0.4323 3.63 (0.000) 3.47 (0.001)

T length decl190 1.1316 0.1943 0.2127 5.82 (0.000) 5.32 (0.000)

T radius90 -0.6153 0.1631 0.1694 -3.77 (0.000) -3.63 (0.000)

Constant 0.4864 0.2879 0.3105 1.69 (0.091) 1.57 (0.117)

α̂ 0.5048
LR 345.99

(p-val.) (0.000)
ln L -302.18
AIC 609.37
BIC 615.85

Pseudo R2 0.0742
n 95
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Table 12: Estimation results T-ramps, Model (M8)

Variable Coefficient
standard errors t-statistics (p-values)

RS B(500) RS B(500)

ADT pc 0.2219 0.0695 0.0835 3.20 (0.001) 2.66 (0.008)

(ADT pc)2 -0.0071 0.0025 0.0039 -2.82 (0.005) -1.80 (0.072)

angle abs 0.0049 0.0014 0.0015 3.60 (0.000) 3.37 (0.001)

D decline -0.4426 0.2084 0.2342 -2.12 (0.034) -1.89 (0.059)

T length decl150 0.5756 0.2476 0.2630 2.32 (0.020) 2.19 (0.029)

T width lanes3.90 0.8875 0.3839 0.4383 2.31 (0.021) 2.03 (0.043)

Constant 0.1812 0.5322 0.5878 0.34 (0.734) 0.31 (0.758)

α̂ 0.5592
LR 442.19

(p-val.) (0.000)
ln L -257.94
AIC 522.88
BIC 531.94

Pseudo R2 0.0808
n 69

Table 13: Estimation results O-ramps, Model (M9)

Variable Coefficient
standard errors t-statistics (p-values)

RS B(500) RS B(500)

ln(ADT pc) 0.9431 0.1678 0.1696 5.62 (0.000) 5.56 (0.000)

T radius48 0.9960 0.2685 0.3687 3.71 (0.000) 2.7 (0.007)

T width lanes4.40 0.7593 0.3013 0.3467 2.52 (0.012) 2.19 (0.029)

Constant -0.3171 0.3775 0.4465 -0.84 (0.399) -0.71 (0.478)

α̂ 0.4988
LR 141.44

(p-val.) (0.000)
ln L -108.7194
AIC 221.43
BIC 226.61

Pseudo R2 0.1242
n 33
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Table 14: Response measures for best models

Model Variable Coefficient
Mean Effect

Elast Exp
Avg At Avg

(M5), all ramp types

ADT pc 0.2681 6.1644 4.8592 1.3870 1.3074
(ADT pc)2 -0.0072 -0.1660 -0.1309 -0.2855 0.9928
truck perc 0.8212 18.8836 14.8854 0.1625 2.2733
radius† -0.1035 -2.3809 -1.8768 -0.1717 0.9016
D steeper 0.4886 11.2359 8.8569 0.1215 1.6301
T length decl180 0.4433 10.1929 8.0348 0.3173 1.5578
T width lanes3.90 0.3988 9.1702 7.2286 0.3360 1.4900
T pos steepest1 0.3368 7.7441 6.1045 0.1111 1.4004
Constant 0.9190

(M6), E-ramps (I)

ln(ADT pc) 0.7094 7.7531 6.3244 0.9112 2.0328
nb curves -0.3225 -3.5249 -2.8754 -0.5025 0.7243
radius† -0.1055 -1.1534 -0.9409 -0.1988 0.8998
truck perc 2.0780 22.7097 18.5247 0.4247 7.9881
T length decl190 1.2195 13.3272 10.8712 1.0141 3.3853
Constant 0.5390

(M7), E-ramps (II)

ln(ADT pc) 0.5808 6.3415 5.1796 0.7460 1.7875
truck perc 1.4978 16.3532 13.3570 0.3061 4.4717
T length decl190 1.1316 12.3546 10.0910 0.9410 3.1005
T radius90 -0.6153 -6.7183 -5.4874 -0.2915 0.5405
Constant 0.4864

(M8), T-ramps

ADT pc 0.2219 4.6548 3.5008 1.4648 1.2485
(ADT pc)2 -0.0071 -0.1479 -0.1112 -0.4464 0.9930
angle abs 0.0049 0.1036 0.0779 0.6605 1.0050
D decline -0.4426 -9.2834 -6.9820 -0.2694 0.6423
T length decl150 0.5756 12.0730 9.0800 0.4088 1.7782
T width lanes3.90 0.8875 18.6147 13.9999 0.7589 2.4291
Constant 0.1812

(M9), O-ramps

ln(ADT pc) 0.9431 14.5218 10.3466 1.2850 2.5678
T radius48 0.9960 15.3364 10.9270 0.8752 2.7073
T width lanes4.40 0.7593 11.6918 8.3303 0.5522 2.1367
Constant -0.3171

† For a better illustration the unit of measurement has been changed to hundreds of meters
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