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1. Introduction

Since modern systems of data processing allow the storage of huge amounts of data,
applications of multivariate data analysis do not only face a large sample size, N = n+1,
but also a large dimension d of the sample. Unfortunately, this setting often leads to
wrong results of the asymptotic n → ∞ with d being fixed. Therefore, the asymptotic
n, d → ∞ with d/n → y ∈ (0,∞), known as (n, d)-asymptotics, is of special interest for
hypothesis tests dealing with high dimensional data.
In this paper, a new test for sphericity of the covariance matrix of a normal popula-

tion under these (n, d)-asymptotics is proposed. The main idea of this test is to check
whether the empirical eigenvalue distribution of a suitably standardized sample covari-
ance matrix obeys the semicircle law. Due to similarities of the semicircle law to the
normal distribution, the proposed test will be an omnibus test such as the well-known
Jarque-Bera test (see Jarque and Bera [1987]).
This article considers the classical situation of having a sample from a d-dimensional

normal population X ∼ Nd(µ,Σ) with unknown expectation µ ∈ Rd and unknown
positive definite covariance matrix Σ ∈ Rd×d. We want to test for sphericity of the
covariance matrix, i.e., we consider the hypothesis H0 : Σ = σ2I against H1 : Σ 6= σ2I
for some unspecified σ2 > 0 (I denotes the identity matrix). It is well known that the
corresponding likelihood ratio test degenerates if d > n, i.e., y > 1 (see, e.g., Muirhead
[1982], Section 8.3). The recent literature proposes and analyzes tests for this hypothesis
that can cope with large-dimensional samples, such as Chen et al. [2010], Fisher et al.
[2010], Ledoit and Wolf [2002], Srivastava [2005, 2007], Srivastava et al. [2011]. All these
tests utilize ratios of eigenvalue moments of the sample covariance matrix as test statistic.
The squared sum of the skewness and kurtosis of the empirical eigenvalue distribution

of a suitably normalized sample covariance matrix is here used as test statistic. A
statistic of this kind has been proposed by Jarque and Bera [1987] to test for normality.
They derive it using the Lagrange multiplier technique, which means that their test is
asymptotically equivalent to the likelihood ratio test that implies maximum local power
for large samples. We will see that the new sphericity test has several similarities to the
Jarque-Bera test, including large local power.
One of the first applications of the skewness and kurtosis of an empirical eigenvalue

distribution in statistics is Ünsalan [2007]. In this article, the ratio of the skewness and
kurtosis of the empirical eigenvalue distribution of a certain random matrix is used to
measure deviations from the quarter circle law in the context of geostatistics. Statistical
properties of this method are not given. The main contribution of the present article
is to provide a deeper analysis of these statistical properties and to show how these
measures can be used for covariance matrix testing.
The next sections are organized as follows: Section 2 provides all necessary prelim-

inaries followed by a description of the statistical setting in Section 3. Based on the
skewness and the kurtosis of the semicircle law, the null distribution of the proposed
test statistic is derived in Section 4. Consistency and power of the new test are investi-
gated in Section 5, followed by a conclusion in Section 6. Selected proofs are provided
in Section A.
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2. Preliminaries

This section provides the framework for the semicircle law test. We begin with basic
facts, assumptions and definitions.

2.1. Basic facts and definitions

The sample shall be denoted by X1, . . . , XN , N = n+1, and is drawn from a multinormal
population X ∼ Nd(µ,Σ) with unknown expectation µ ∈ R

d and unknown covariance
matrix Σ > 0. We will assume the following:

Assumptions.

1. The (n, d)-asymptotics are given by n, d → ∞ and d/n → y ∈ (0,∞).

2. The limits
1

d
tr(Σk) → Bk ∈ (0,∞), k = 1, . . . , 8,

exist under the above (n, d)-asymptotics.

The unbiased sample covariance matrix is given by

S =
1

n

N∑

i=1

(Xi −X)(Xi −X)t,

where X = 1
N

∑N
i=1Xi. The eigenvalues of this matrix can be investigated by means of

the empirical spectral distribution function (ESD) of S which is defined by

F S(x) =
1

d

d∑

i=1

11(−∞,x](λi),

where λ1, . . . , λd are the eigenvalues of S and

11A(x) =

{

1, x ∈ A,

0, x /∈ A,

for a set A. The limiting behavior of F S is one of the main concerns of the spectral
analysis of large-dimensional random matrices or random matrix theory for short. The
first success in finding a limiting distribution of F S is due to Marčenko and Pastur [1967].
A consequence of their results is the following: If X ∼ Nd(µ, σ

2I), then F S converges
under the (n, d)-asymptotics almost surely to a non-random distribution function Fy(x)
consisting of a point mass at the origin in the case of y > 1 and a continuous part,
namely

dFy(x) =

(

1− 1

y

)+

dδ0(x) + fy(x)dx, (1)
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where

fy(x) =
1

2πxyσ2

√

(a+ − x)(x− a−)11[a
−
,a+](x),

a± = σ2(1 ± √
y)2 and δs is the Dirac delta function in s ∈ R. This distribution is

known as the Marčenko-Pastur law (MP law). Here, we can see the so-called curse
of dimensionality in more detail: Although the expectation of the MP law (1) equals
σ2, the eigenvalues of S vary in the interval [a−, a+]. Since the length of this interval
increases as y becomes larger, the variance of the eigenvalues of S increases, too.
If y ց 0, the MP law (1) converges to a point mass in σ2 due to continuity reasons

(see also the introduction in Bai and Silverstein [1998]). Since we are interested in a
non-degenerated limiting distribution of the ESD of S as d/n → 0, we standardize S
appropriately and obtain the semicircle law.

Proposition 1. Let X ∼ Nd(µ, σ
2I). Then, as n, d → ∞ and d/n → y = 0, the ESD

of

S∗ :=

√
n

d
(S − σ2I)

converges almost surely to a non-random continuous distribution function with density

w(x) =
1

2πσ4

√
4σ4 − x211[−2σ2,2σ2](x) . (2)

This distribution is known as the semicircle law.

Proof. The assertion is a special case of Bai and Yin [1988].

The semicircle law can also be deduced from the MP law (1) by a linear transform. Let
ν1, . . . , νd be the eigenvalues of S∗. Taking limit under the (n, d)-asymptotics yields

νi =
1√
y
(λi − σ2) (3)

from which we calculate the density of the continuous part of the limiting ESD of S∗:

wy,σ(x) : =
√
yfy

(√
yx+ σ2

)

=
1

2π(
√
yx+ σ2)σ2

√

4σ4 − (σ2
√
y − x)211[(−2+

√
y)σ2,(2+

√
y)σ2](x)

We see that the limit y ց 0 of wy,σ(x) exists for all x ∈ R and equals the semicircle law
(2). If we include the point mass in (1), then we obtain a limiting distribution function
Wy,σ satisfying

dWy,σ(x) =







(y − 1)+

y3/2
dδ−σ2/

√
y(x) + wy,σ(x)dx, y ∈ (0,∞),

w0,σ(x)dx, y = 0 .

The next proposition helps us to calculate the first four moments of the distribution
Wy,1.
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Proposition 2 (Bai and Silverstein [2010], Lemma 3.1). The k-th moment of the MP
law (1) for σ2 = 1 is given by

MPk :=

k−1∑

m=0

1

m+ 1

(
k

m

)(
k − 1

m

)

ym .

As a corollary, we obtain:

Corollary 3. The first four moments Mk, k = 1, . . . , 4, of the distribution Wy,1 are given
by

M1 = 0, M2 = 1, M3 =
√
y, M4 = 2 + y .

Proof. Due to Equation (3), we have for y > 0:

M1 =
1√
y
(MP1 − 1) = 0,

M2 =
1

y
(MP2 − 2MP1 + 1) =

1

y
(1 + y − 2 · 1 + 1) = 1,

M3 =
1

y3/2
(MP3 − 3MP2 + 3MP1 − 1)

=
1

y3/2
(1 + 3y + y2 − 3(1 + y) + 3 · 1− 1) =

√
y,

M4 =
1

y2
(MP4 − 4MP3 + 6MP2 − 4MP1 + 1)

=
1

y2
(1 + 6y + 6y2 + y3 − 4(1 + 3y + y2) + 6(1 + y)− 4 · 1 + 1)) = 2 + y .

If y = 0, we clearly have M1 = M3 = 0 due to symmetry. From Lemma 2.1 in
Bai and Silverstein [2010], we obtain that M2 = 1,M4 = 2 for y = 0.

We also obtain from the corollary that the skewness of the distribution Wy,σ equals√
y and the kurtosis of it is given by 2+ y. In the following, these values will be the null

values of the skewness and kurtosis of the limiting ESD of S∗.

2.2. Free cumulants

In this section, all necessary information about free cumulants is briefly provided so that
the connection between the semicircle law and the normal distribution becomes clearer
and the use of the proposed test statistic is justified.
Let f(t) be the characteristic function of some random variable X and φ(t) := ln f(t).

Assume that X has moments up to order k ∈ N. Then, the k-th classical cumulant of
X , denoted by Ck, can be calculated by

Ck =
φ(k)(0)

ik
,

6



where i2 = −1 and φ(k) is the k-th derivative of φ. Let us define Ak := E(Xk). Then,
we obtain for k = 1, . . . , 4:

C1 = A1,

C2 = A2 −A2
1,

C3 = A3 − 3A1A2 + 2A3
1,

C4 = A4 − 4A1A3 − 3A2
2 + 12A2

1A2 − 6A4
1 .

This way, the skewness and kurtosis of a non-degenerated X , denoted as γ1(X) and
γ2(X), can be expressed in terms of these cumulants as:

γ1(X) =
E((X − A1)

3)

(E((X − A1)2))3/2
=

C3

C
3/2
2

,

γ2(X) =
E((X − A1)

4)

(E((X − A1)2))2
=

C4

C2
2

+ 3 .

If X ∼ N(µ, σ2), then γ2(X) = 3, which is the reason to call γ1(X)− 3 excess kurtosis.
It is well known that the normal distribution is the only distribution having vanish-
ing cumulants for k > 2 and that it is the limiting distribution in many central limit
theorems.
The notion of free probability is introduced in Voiculescu [1985] in order to deal with

non-commutative probability spaces. Such spaces are defined as a pair (A, ϕ), where
A is some unital algebra and ϕ : A → C a linear functional with ϕ(1) = 1. One can
think of A as the set of the considered “random variables” and ϕ as an analogon to
the expectation. Indeed, if we choose (A, ϕ) = (L∞−(Ω, P ),E(·)), where (Ω,F , P ) is a
classical probability space and L∞−(Ω, P ) the algebra of real-valued random variables on
(Ω,F , P ) having finite moments of all orders, usual random variables can be embedded
in that context. In random matrix theory, (A, ϕ) = (Md(L

∞−(Ω, P )),E(tr(·)/d)) is of
special interest, where Md(L

∞−(Ω, P )) is the algebra of symmetric d× d matrices with
real-valued random entries having finite moments of all order.
A combinatorial setting of how to define cumulants for non-commutative random

variables, so-called free cumulants, is developed in Nica and Speicher [2006], Part 2.
Define Ãk := ϕ(Xk) for some X ∈ A. Then, the first four free cumulants C̃k of X are
given by:

C̃1 = Ã1,

C̃2 = Ã2 − Ã2
1,

C̃3 = Ã3 − 3Ã1Ã2 + 2Ã3
1,

C̃4 = Ã4 − 4Ã1Ã3 − 2Ã2
2 + 10Ã2

1Ã2 − 5Ã4
1 .

The derivation of C̃k, k = 1, . . . , 3 can be found in Nica and Speicher [2006], Lecture 11,
and the one of C̃4 is given in the appendix. While classical and free cumulants agree
up to order k = 3, they become different for k > 3. Since the semicircle law W0,σ
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arises as the limiting distribution in the free central limit theorem and, furthermore,
is the only distribution whose free cumulants of an order larger than two vanish (see
also Nica and Speicher [2006], Part 2), the semicircle law may be regarded as the free
analogue to the normal distribution.
Now, we assume that ϕ is real-valued and positive and that the elements of A are

self-adjoint. These properties are always fulfilled if (A, ϕ) = (L∞−(Ω, P ),E(·)) or
(A, ϕ) = (Md(L

∞−(Ω, P )),E(tr(·)/d)) (see also Nica and Speicher [2006], Part 1, for
definitions of these notions). Then, one can define the skewness of X ∈ A in terms of
free cumulants as

γ̃1(X) :=
C̃3

C̃2
3/2

,

provided that C̃2 > 0. If (A, ϕ) = (L∞−(Ω, P ),E(·)), then the classical notion of skew-
ness coincides with this new one.
Since the kurtosis of the semicircle lawW0,σ equals 2, it is natural to define the kurtosis

of a non-commutative random variable via free cumulants as

γ̃2(X) :=
C̃4

C̃2
2

+ 2,

again provided that C̃2 > 0. This way, excess kurtosis is given by γ̃2(X) − 2. If we
deal with classical random variables, i.e., (A, ϕ) = (L∞−(Ω, P ),E(·)), then we have
γ̃2(X) = γ2(X) forX ∈ L∞−(Ω, P ). Thus, the kurtosis of classical and non-commutative
random variables agree in that case. If (A, ϕ) = (Md(L

∞−(Ω, P )),E(tr(·)/d)) is consid-
ered instead, we first note that we have for X ∈ Md(L

∞−(Ω, P )) that

E

(
1

d
tr(X)

)

=
1

d

d∑

i=1

E (λi) = E(Λ),

where we consider the eigenvalues λ1, . . . , λd of X (which are classical random vari-
ables) as a “sample” which is drawn from a population Λ ∈ L∞−(Ω, P ). The definition
of the ESD already suggests considering eigenvalues as a sample. Note that, in con-
trast to usual samples, this “sample” does not consist of independent random variables
(see, e.g., Tulino and Verdú [2004], p. 16, for a literature overview of the Wishart ma-
trix case). Nevertheless, all the unordered eigenvalues of a random matrix have the
same distribution (see again Tulino and Verdú [2004] and the references therein for the
Wishart matrix case). Therefore, if we assign such an “eigenvalue population” Λ to each
X ∈ Md(L

∞−(Ω, P )), we are again in the situation of (A, ϕ) = (L∞−(Ω, P ),E(·)).

3. Statistical setting

We will now consider the hypothesis

H0 : Σ = σ2I vs. H1 : Σ 6= σ2I (4)
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for some unspecified σ2 > 0. This test problem is commonly known as a test for spheric-
ity. The more general test problem, which considers some positive definite matrix Σ0

instead of the identity matrix, can always be obtained by using the transformed sample
Yi = Σ

−1/2
0 Xi, 1 ≤ i ≤ N .

The hypothesis is tested by considering the eigenvalues ν1, . . . , νd of S
∗ as a secondary

“sample” derived from X1, . . . , XN . Under the null, this secondary sample stems from
a population with distribution Wy,σ which is what we are going to test for. Since σ2 is

unspecified, the eigenvalues νi =
√

n/d(λi − σ2) cannot be observed because their cen-
tralization is unknown. Furthermore, the scaling of the eigenvalues λi is also unknown.
Therefore, we use location and scale invariant test statistics, which give the same values
when inserting either the λi or the νi. Two possible test statistics are the skewness and
kurtosis of the ESD of S∗. We have seen in Section 2.2 that the skewness and kurtosis
of the limiting ESD of S∗ can be defined as usual and well interpreted in terms of free
cumulants if y = 0. In this case, the skewness and kurtosis of the limiting ESD of S∗

under the null are given by 0 and 2. Regarding Corollary 3, these null values become√
y and 2 + y respectively for y > 0. So, under the null, the skewness and kurtosis of

the ESD of S∗ must converge to these limits. Note that we have y ≈ d/n > 0 in any
practical situation. Hence, we define the moments, variance, skewness and kurtosis of
the ESD of S∗ by

νk :=
1

d

d∑

i=1

νk
i , s2ν := ν2 − (ν1)

2,

γ1(ν) :=
1

d

d∑

i=1

(
νi − ν1

sµ

)3

, γ2(ν) :=
1

d

d∑

i=1

(
νi − ν1

sµ

)4

.

Similarly, we define the same statistics with respect to the λi, 1 ≤ i ≤ d:

λk :=
1

d

d∑

i=1

λk
i , s2λ := λ2 − (λ1)

2,

γ1(λ) :=
1

d

d∑

i=1

(
λi − λ1

sλ

)3

, γ2(λ) :=
1

d

d∑

i=1

(
λi − λ1

sλ

)4

.

Note that γi(ν) = γi(λ), i = 1, 2. Therefore, the statistics γi(ν), i = 1, 2, can be calcu-
lated without knowing σ2.
As will be seen in the following, the estimators λk, k = 1, . . . , 4, are only n-consistent

for the true value Bk but not (n, d)-consistent if y > 0. This inconsistency leads to the
MP law under the null and to the limiting ESDWy,σ of S∗, which is exactly what we want
to exploit in the following. It has to be pointed out that the principle of the following test
is not to compare some (n, d)-consistent estimator for a parameter of the true limiting
eigenvalue distribution of Σ (i.e., the limit of FΣ under the (n, d)-asymptotics) with a
theoretic null value. Such a comparison would not be reasonable in our situation as
the limiting eigenvalue distribution of Σ under the null is just a point mass. Due to
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Proposition 1, the skewness and kurtosis of this limiting eigenvalue distribution equal
0 and 2, respectively. But (n, d)-consistent estimators for the skewness and kurtosis
of the true limiting eigenvalue distribution of Σ must have a degenerated distribution
under the null (shown in the appendix). Instead, using the statistics above leads to
testing for the empirical phenomenon of the distribution Wy,σ arising under the null.
This distribution will be rejected if either the skewness or the kurtosis of the ESD of
S∗ deviates significantly from

√
y ≈

√

d/n or 2 + y ≈ 2 + d/n, respectively. Thus, the
estimators γ1(ν) and γ2(ν) should be understood as estimators for the skewness and
kurtosis of the limiting ESD and not of the true limiting eigenvalue distribution.
It has been pointed out in Section 2.2 that the semicircle law is quite similar to the

normal distribution which is why we are going to test for the semicircle law in the same
manner as for the normal distribution. It will be shown that a test statistic of the form

SL := b





(

γ1(ν)− z1
√

Var(γ1(ν))

)2

+

(

γ2(ν)− z2
√

Var(γ2(ν))

)2


 ,

where z1 ≈
√

d/n, z2 ≈ 2+d/n and b is a suitable blow-up factor, converges weakly to a
χ2 distribution with two degrees of freedom under the null as n, d → ∞ and d/n → y = 0.
Jarque and Bera [1987] propose a statistic of this kind to test for normality. In the
following, we show several similarities of the new test to theirs including large local
power.
In the next section, we derive the null distribution of SL and see how to extend this

distribution to the case of y > 0.

4. Distribution of the test statistic

First, the following law of large numbers is provided.

Lemma 4. Let X ∼ Nd(µ,Σ). Then, we have the following probability (n, d)-limits:

• λ1 → B1

• λ2 → yB2
1 +B2

• λ3 → y2B3
1 + 3yB1B2 +B3

• λ4 → y3B4
1 + 6y2B2

1B2 + 4yB1B3 + 2yB2
2 +B4

Proof. Yin [1986] shows in Formula 4.14 that these limits hold even almost surely.

This law of large numbers shows that the estimators λk, k ≥ 2, are not (n, d)-consistent
for Bk unless y = 0. As already mentioned, we exploit this fact when using the statistics
from Section 3 to test for the distribution Wy,σ. Hence, we consider the λk as what they
are: (n, d)-consistent estimators for the limits given in Lemma 4. Note that the limits
of Lemma 4 equal the first four moments of the MP law in Proposition 2 if Σ = I, i.e.,
Bi = 1, i = 1, . . . , 4. A direct calculation from Lemma 4 gives the following corollary.
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Corollary 5. Let X ∼ Nd(µ,Σ). Then, we have the following probability limits under
the (n, d)-asymptotics:

• γ1(ν) →
y2B3

1 + 3yB1B2 +B3 − 3B1(yB
2
1 +B2) + 2B3

1

((y − 1)B2
1 +B2)3/2

=: lγ1

• γ2(ν) →
1

((y − 1)B2
1 +B2)2

(y3B4
1 + 6y2B2

1B2 + 4yB1B3 + 2yB2
2 +B4

−4B1(y
2B3

1 + 3yB1B2 +B3) + 6B2
1(yB

2
1 +B2)− 3B4

1) =: lγ2

We see that the denominators of the limits lγ1 and lγ2 equal zero if and only if y = 0 and
B2−B2

1 = 0. Due to the Cauchy-Schwarz inequality, the latter condition is equivalent to
the null hypothesis. Under the null, the numerator and denominator of lγ1 become σ6y2

and (σ2y)3/2 so that the denominator cancels down. Similarly, the denominator of lγ2 also
cancels down under the null hypothesis. Thus, the probability limits of γi(ν), i = 1, 2,
are finite under the null and the alternative for y ≥ 0.
If Σ = σ2I, then lγ1 and lγ2 equal

√
y and 2 + y, respectively. But the null hypothesis

Σ = σ2I may not be necessary for obtaining these limits, which can imply certain
inconsistencies of the tests as will be seen in Section 5.1. However, it will be shown that
the sphericity tests based on SL and γ2(ν) are consistent on the whole alternative if
y ≥ 1. Further, consistency of the SL test for 0 < y < 1 can also be conjectured.
Now, we compute the asymptotic null distribution of (γ1(ν), γ2(ν)).

Theorem 6. Let X ∼ Nd(µ, σ
2I). Then, as n, d → ∞ and d/n → y ∈ (0,∞), the

random vector

d

(
γ1(ν)− z1
γ2(ν)− z2

)

,

where

z1 =

(
d

d+ 1

)3/2
(√

d

n
+

3√
nd

)

,

z2 =

(
d

d+ 1

)2(

2 +
d

n
+

5

d
+

6

n

)

,

converges weakly to a normally distributed random vector with mean zero and covariance
matrix (

6 + 9y 24
√
y(1 + y)

24
√
y(1 + y) 8 + 96y + 64y2

)

.

Proof. See the appendix.

We see that the centralizations of γ1(ν) and γ2(ν), z1 and z2, both converge to the
null values

√
y and 2 + y under the (n, d)-asymptotics. The reason for using these

centralizations, and not
√

d/n and 2 + d/n as one might expect, is that the empirical
moments λk, k ≥ 2, are biased from their probability limits given by Lemma 4 (with
y = d/n). Since this bias is of the order O(n−1), it is not negligible when blown up by a
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factor of d (see the appendix for more details). As mentioned in Section 3, we are only
interested in the null hypothesis (4). Thus, a bias correction, which would be helpful if
null matrices other than a multiple of the identity were of interest, is not necessary.
Let us define

γ∗
1(ν) : =

d (γ1(ν)− z1)
√

6 + 9d/n
,

γ∗
2(ν) : =

d (γ2(ν)− z2)
√

8 + 96d/n+ 64(d/n)2
,

SL : = (γ∗
1(ν))

2 + (γ∗
2(ν))

2 .

Under the null, γ∗
i (ν), i = 1, 2, are approximately standard normal for large n, d. We

reject the null if either |γ∗
1(ν)| > Φ−1(1−α/2) or |γ∗

2(ν)| > Φ−1(1−α/2), where Φ is the
standard normal cdf and α ∈ (0, 1) the level of the test. From Theorem 6, we see that
γ∗
1(ν) and γ∗

2(ν) become independent as y ≈ d/n approaches zero. Thus, SL converges
under the null weakly to a χ2 distribution with two degrees of freedom as n, d → ∞ and
d/n → 0. Since W0,σ equals the semicircle law, we obtain another similarity of SL to the
Jarque-Bera test statistic. However, it is not clear whether the asymptotic distributions
of γ∗

i (ν), i = 1, 2, and SL exist under the alternative for y = 0. For this reason, we
will not allow for y = 0. Nevertheless, the null distribution of SL will be close to a χ2

distribution with two degrees of freedom and the ESD of S∗ under the null close to the
semicircle law as y ≈ d/n > 0 becomes small.
There is another nice interpretation of the test based on SL: This test leads us to

testing whether the third and fourth free cumulant of the limiting ESD of S∗ can be
zero in the case of small y ≈ d/n. This can be seen from

lγ1 −
√
y ≈ C̃3

C̃
3/2
2

and

lγ2 − (2 + y) ≈ C̃4

C̃2
2

,

if y is small, where C̃k is the k-th free cumulant of the limiting ESD of S∗. Note that
the original Jarque-Bera test can be seen as a test whether the third and fourth classical
cumulant of some underlying distribution can be zero.
The asymptotic null distribution of SL for y > 0 is given by the next theorem.

Theorem 7. Let X ∼ Nd(µ, σ
2I). Then, under the (n, d)-asymptotics, SL converges

weakly to a random variable with distribution function

FSL(x) =

∫ x

0

(

Φ

(√
x− z − a

√
z√

1− a2

)

+ Φ

(√
x− z + a

√
z√

1− a2

)

− 1

)

f1(z) dz,

where Φ is the standard normal distribution function,

a =
24
√
y(1 + y)

√
6 + 9y

√

8 + 96y + 64y2
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and f1(z) is the density of the χ2 distribution with one degree of freedom.

Proof. See the appendix.

So, we reject the null hypothesis for large n, d if SL > F−1
SL (1 − α), where y ≈ d/n.

Note that 0 < a < 1 for every y ∈ (0,∞) so that there will not be a division by zero.
But one may consider even the limit y → ∞ or, equivalently, a → 1. Note that

lim
a→1

Φ

(√
x− z − a

√
z√

1− a2

)

=

{

1, x > 2z

0, x < 2z

and

lim
a→1

Φ

(√
x− z + a

√
z√

1− a2

)

= 1 .

By applying the dominated convergence theorem, we obtain:

lim
a→1

FSL(x) =

∫ x/2

0

f1(z) dz

Thus, the quantiles of FSL for y = ∞ are twice the quantiles of the χ2 distribution
with one degree of freedom. We see that the distribution of SL under the null does
not degenerate as d/n → ∞. Considering the statistics γ∗

1(ν) and γ∗
2(ν), that is a

surprising result. However, it is not clear whether the distribution of SL exists under
the alternative for y = ∞. We will therefore not consider this case any further.

Remark. The blow-up factor for the statistics γ∗
i (ν), i = 1, 2, is chosen to be d and not

n. A blow-up by n is obtained by multiplying these statistics by a factor of n/d ≈ 1/y.
This would lead to a multiplication of all variances by a factor of (n/d)2 ≈ (1/y)2 so
that all variances would become arbitrarily large as d/n becomes small. Since we want
to consider small values of d/n, the d-blow-up is therefore more suitable. Further, the
eigenvalues are considered as some kind of a sample. Therefore, the “sample size”, which
is usually the blow-up factor, is d rather than n.

5. Properties of the test

In this section, we want to analyze consistency and power of the proposed test. We
begin with consistency.

5.1. Conditions for consistency

Consistency is usually proved by investigating the distribution of the test statistic un-
der the alternative in order to compute the power function. However, this is a rather
complicated strategy in our situation because the parameter to be tested is described in
a non-linear way and, furthermore, has an infinite asymptotic dimension. Instead, we
adopt a method introduced by Ledoit and Wolf [2002]. This method is advantageous
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as it does not require any knowledge about the distribution of the statistics under the
alternative but about their probability limits in this case. The idea is to investigate
whether the probability limits

γ1(ν)− z1 → 0, γ2(ν)− z2 → 0,

or, equivalently,

γ1(ν) →
√
y, γ2(ν) → 2 + y,

only hold under the null. From Corollary 5, we know the probability limits of γi(ν),
i = 1, 2, which coincide with the limits above under the null. But if the probability limits
of Corollary 5 become the limits above for some covariance matrix from the alternative,
then the corresponding test will have an inconsistency. Note that the test based on
SL is (n, d)-consistent if either the test based on γ∗

1(ν) or the one based on γ∗
2(ν) is

(n, d)-consistent. Thus, we seek for sufficient restrictions for the alternative so that the
equations

lγ1 =
√
y, lγ2 = 2 + y,

are only solvable for the null hypothesis. Note that the limits lγi consist of the limits Bk

which have been defined in Section 2.
In the following, we will make use of the Cauchy-Schwarz inequality which implies that

B2k ≥ B2
k, k > 0, and B2k = B2

k if and only if Σ = σ2I. This way, the null hypothesis is
equivalent to B2k = B2

k for some k > 0.
Now, we look for representations of the equations lγ1 −

√
y = 0 and lγ2 − (2 + y) = 0

which consist of non-negative summands which are zero-valued under the null. Further,
at least one summand has to be a multiple of the term B2k − B2

k for some k > 0 which
ensures that these equations will then only be solvable for a covariance matrix from the
null hypothesis.
According to Corollary 5, the probability limit of γ1(ν) under the alternative can be

expressed as:

lγ1 =
√
y

⇒ 0 =l2γ1 − y

⇔ 0 =(y − 1)(3B1B2(B3 − B1B2) + 2B1B3(B2 − B2
1) + B2(B1B3 − B2

2))

+ (1− y)2(6B2
1(B2 − B2

1)
2 + 2B3

1(B3 −B3
1))

+ 3y(1− y)2B4
1(B2 − B2

1) +B2
3 − B3

2

Note that B3 − B1B2 ≥ 0, B3 − B3
1 ≥ 0, B2

3 − B3
2 ≥ 0 because of Jensen’s inequality.

Thus, we have that the sphericity test based on γ∗
1(ν) is (n, d)-consistent in the case of

y > 1 if
B1B3 − B2

2 ≥ 0 (5)

holds. This restriction is not as strict as it may seem because it is fulfilled by many
well-known distributions on the positive real line, e.g., the χ2, Pareto, exponential and
Poisson distribution as well as the MP law.
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Now, we take a look at the probability limit of the kurtosis:

lγ2 =2 + y

⇔ 0 =4(y − 1)B1(B3 − B1B2) + 4(y − 1)2B2
1(B2 − B2

1)

+ (y − 1)(B2 − B2
1)

2 +B4 −B2
2

Thus, the sphericity test based on the kurtosis is (n, d)-consistent on the whole alterna-
tive if y ≥ 1. The SL test is therefore also (n, d)-consistent on the whole alternative if
y ≥ 1.
In contrast, finding restrictions for the alternative in the case of 0 < y < 1 is very

difficult. One can derive various sufficient restrictions so that either l2γ1 = y or lγ2 = 2+y
can only be fulfilled under the null. As far as the author knows, all these restrictions
are complicated and difficult to interpret. This is why this question will be left open
for future research. But it seems that there is some duality between the tests based on
γ∗
1(ν) and γ∗

2(ν): If one of them lacks consistency, the other one does not. All in all, it
is conceivable that the SL test is also consistent if 0 < y < 1. We will come back to this
point in the next subsection.
There are representations of the equations l2γ1 = y and lγ2 = 2 + y from which we can

derive restrictions for the alternative so that consistency is achieved for every y > 0. We
have:

l2γ1 =y

⇔ 0 =(B3 − 3B1B2 + 2B3
1)

2 + 2y2B3
1(B3 − 3B1B2 + 2B3

1)

+ 6y(B2 −B2
1)(B1B3 − B2

2 +B4
1 − B2

1B2)

+ 3y(B2 −B2
1)(B2 + (y − 1)B2

1)
2 + 2y(B2 −B2

1)
3,

lγ2 =2 + y

⇔ 0 =B4 − 4B1B3 − 2B2
2 + 10B2

1B2 − 5B4
1

+ 4yB1(B3 − 3B1B2 + 2B3
1) + y(B2 − B2

1)
2 + 4y2B2

1(B2 − B2
1)

We see that the skewness test is (n, d)-consistent for all y > 0 if the skewness of the true
limiting eigenvalue distribution is non-negative and

B1B3 − B2
2 +B4

1 − B2
1B2 ≥ 0, (6)

which is slightly stricter than Restriction (5). Nevertheless, all distributions mentioned
above that fulfill Restriction (5) also fulfill Restriction (6). Thus, a wide range of limiting
eigenvalue distributions for the alternative is still allowed.
The kurtosis test is (n, d)-consistent for all y > 0 if the true limiting eigenvalue

distribution exhibits a non-negative third and fourth free cumulant or, equivalently, a
non-negative skewness and a kurtosis which is greater than or equal to 2. Thus, if
one restricts the alternative according to these restrictions, then these “one-sided tests”
based on γ∗

1(ν) (where Restriction (6) is additionally fulfilled) and γ∗
2(ν) are always

(n, d)-consistent regardless of y.
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5.2. Simulation results

In this subsection, the finite sample properties of the proposed tests are investigated by
simulation.

5.2.1. Size and Power

The QQ-plots in Fig. 1 illustrate that the normal approximation of the distribution of
the statistics γ∗

i (ν), i = 1, 2, under the null fits quite well for small n, d. These plots are
made by choosing n = 100, d = 50, y = d/n and simulating 10, 000 realizations of γ∗

1(ν)
and γ∗

2(ν) under X ∼ Nd(0, I).
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Figure 1: Normal QQ-Plots of γ∗
1(ν) (left) and γ∗

2(ν) (right) for y = 0.5 under H0

It can be seen that γ∗
1(ν) converges faster to a standard normal than γ∗

2(ν). However,
the normal approximation for γ∗

2(ν) holds if we do not go too far into the tail of the
distribution of γ∗

2(ν).
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Figure 2: QQ-Plot of SL for y = 0.5 under H0

Next, we have a look at the distribution of the statistic SL which shall be approx-
imated by the distribution given in Theorem 7. Again, we choose n = 100, d = 50,
y = d/n and simulate 10, 000 realizations of SL under H0. The QQ-plot in Fig. 2 shows
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the result of this simulation. We see that the kurtosis affects the weak convergence of
SL. But the approximation of the distribution of SL by FSL still remains valid if we do
not go too far into the tail again. Note that F−1

SL (0.99) = 12.8514 for y = 0.5 so that
all relevant quantiles are well approximated by the asymptotic quantile function F−1

SL .
Thus, γ∗

1(ν) assures that the weak convergence of SL under the null is of a certain speed
while γ∗

2(ν) produces power, as we will see in the following.

n

d 25 50 100 200 500

25 0.0464 0.0464 0.0489 0.0474 0.0439

50 0.0541 0.0481 0.0527 0.0515 0.0475

100 0.0523 0.0520 0.0531 0.0523 0.0516

200 0.0537 0.0533 0.0529 0.0534 0.0528

500 0.0557 0.0531 0.0532 0.0506 0.0543

Table 1: Actual sizes of the sphericity test based on γ∗
1(ν)

n

d 25 50 100 200 500

25 0.0369 0.0403 0.0413 0.0419 0.0454

50 0.0525 0.0498 0.0498 0.0562 0.0498

100 0.0555 0.0560 0.0544 0.0549 0.0536

200 0.0552 0.0535 0.0568 0.0556 0.0565

500 0.0565 0.0555 0.0537 0.0511 0.0537

Table 2: Actual sizes of the sphericity test based on γ∗
2(ν)

n

d 25 50 100 200 500

25 0.0432 0.0448 0.0461 0.0436 0.0425

50 0.0541 0.0494 0.0519 0.0525 0.0505

100 0.0545 0.0544 0.0532 0.0538 0.0529

200 0.0545 0.0535 0.0555 0.0538 0.0555

500 0.0566 0.0542 0.0542 0.0516 0.0532

Table 3: Actual sizes of the sphericity test based on SL

Next, the actual sizes of the sphericity tests for finite n, d are obtained by simulation.
These simulations work as follows: Choose some n, d, a theoretical test level α ∈ (0, 1)
and a large number m ∈ N. Then, draw m samples of size n from Nd(0, σ

2I) (w.l.o.g.
choose σ2 = 1) and obtain m realizations of one of the test statistics under the null.
Count the number of rejections (see Section 4 for when to reject) and divide this number
by m. The result should be near to the theoretical value of α. Tables 1-3 report the
results of these simulations for different n, d after m = 10, 000 repetitions and setting
α = 0.05. We see that the approximations of almost all null distributions are near to the
true ones, leading to actual test sizes which are close to the theoretical value of α = 0.05.
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Thus, in contrast to the slow weak convergence of the Jarque-Bera test statistic to the
χ2
2 distribution (see, e.g., Bowman and Shenton [1975]), the weak convergence of the

statistic SL appears to be quite fast.
A comparison of Tables 1 and 2 shows again that γ∗

1(ν) converges faster in distribution
to a standard normal than γ∗

2(ν). The case of n = d = 25 for γ∗
2(ν), which only exhibits

a rejection probability of 0.0369, illustrates this point, which is in line with the results of
Fisher et al. [2010] who also use a test statistic based on the fourth empirical eigenvalue
moment. The weak convergence of SL is affected by that, but still remains fast enough
to obtain reasonable results in Table 3.
Now, we investigate the power of the new sphericity test by Monte Carlo simulation

and compare the new test with the ones of Fisher et al. [2010] and John [1971]. It is
shown in John [1971] that the sphericity test based on his statistic U is the locally
most powerful invariant test. Ledoit and Wolf [2002] further show that this test is ap-
plicable under (n, d)-asymptotics. Note that this test agrees with the sphericity test by
Srivastava [2005] up to some bias correction. Another (n, d)-consistent sphericity test
is introduced by Fisher et al. [2010]. They demonstrate that the test based on their
statistic T performs well if y ≥ 1 and if the alternative is chosen to be near sphericity.
They define a near sphericity matrix as

Σ =

(
Θ 0t

0 I

)

, (7)

where Θ ∈ Rk×k, k << d, is a diagonal matrix with diagonal entries unequal to 1,
0 ∈ R(d−k)×k is a matrix of zeros and I is the (d − k) × (d − k) identity matrix. The
following tables show the results of Monte Carlo simulations which have been made
according to the same principle as explained above, except that Σ is chosen as a near
sphericity matrix. We will see that the new test performs very well in this near sphericity
case for small values of y = d/n. The test level for all following tests is chosen as α = 0.05.

statistic

d/n=0.01 γ∗1(ν) γ∗2(ν) SL T U

25/2,500 0.5630 0.6734 0.7094 0.6383 0.5381

50/5,000 0.7287 0.8724 0.8918 0.7025 0.5894

100/10,000 0.8233 0.9619 0.9671 0.7368 0.6140

200/20,000 0.8793 0.9936 0.9933 0.7606 0.6259

500/50,000 0.9110 0.9992 0.9991 0.7695 0.6381

Table 4: Power of the sphericity tests under near sphericity with k = 1,Θ = 1.2

Table 4 reports the results of a Monte Carlo simulation with k = 1,Θ = 1.2,
y = d/n = 0.01 after m = 10, 000 repetitions. We observe (n, d)-consistency of all
new tests and see that all of them (except the skewness test for d/n = 25/2, 500) out-
perform the tests based on T and U . As has already been mentioned, the sphericity
test based on the kurtosis leads to more power than the one based on the skewness.
Moreover, the test based on SL is even more powerful than the one using γ∗

2(ν). Thus,
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the squared sum of γ∗
1(ν) and γ∗

2(ν) seems to be overadditive with respect to power.
Note that the test problem still can be viewed as a large-dimensional one if y > 0 is
small (see Bai and Zheng [2007]).
Table 5 reports the results of a further simulation with k = 2,Θ = diag(1.2, 1.3),

y = d/n = 0.025 after m = 10, 000 repetitions. Except in the case of d/n = 25/1, 000,
we observe once again that the SL test outperforms the other tests. The overadditivity
property of the SL test can also be seen.

statistic

d/n=0.025 γ∗1(ν) γ∗2(ν) SL T U

25/1,000 0.5560 0.5803 0.6272 0.7679 0.6695

50/2,000 0.7701 0.8496 0.8714 0.8635 0.7480

100/4,000 0.8835 0.9636 0.9684 0.9026 0.7882

200/8,000 0.9346 0.9930 0.9938 0.9249 0.8109

500/20,000 0.9645 0.9997 0.9995 0.9379 0.8237

Table 5: Power of the sphericity tests under near sphericity with k = 2,Θ = diag(1.2, 1.3)

The results of Tables 4 and 5 indicate that the SL test is asymptotically locally very
powerful for small y. Furthermore, this test seems to become even more superior to the
tests from the literature the smaller y becomes.
Next, we compare the tests for larger values of y = d/n. Table 6 provides the results

of a power simulation after 10, 000 repetitions. The parameters are chosen as k = 3,
Θ = diag(2, 2, 2), y = d/n = 0.5. The overadditivity property of the SL test can only be
observed for d = 50, 100 and the kurtosis test is now outperformed by the skewness test
for d < 100. While the test based on T outperforms the new ones in smaller dimensions,
the kurtosis and SL tests become comparable to this test in larger dimensions. Further,
we see that the test based on U is asymptotically less powerful than each of the new
ones.

statistic

d/n=0.5 γ∗1(ν) γ∗2(ν) SL T U

25/50 0.4118 0.3843 0.4059 0.5471 0.5671

50/100 0.7048 0.7006 0.7128 0.8097 0.7264

100/200 0.8636 0.8810 0.8826 0.9309 0.8158

200/400 0.9431 0.9638 0.9591 0.9775 0.8631

500/1,000 0.9814 0.9951 0.9933 0.9960 0.8927

Table 6: Power of the sphericity tests under near sphericity with k = 3,Θ = diag(2, 2, 2)

Now, we look at the case where the sample covariance matrix becomes singular, i.e.,
y = d/n > 1, and set k = 1,Θ = 4, y = d/n = 2. This case has also been considered in
Fisher et al. [2010]. From Table 7, we observe (n, d)-consistency of the new tests again
and see that the overadditivity property of the SL test is no longer given. Further, the

19



new tests outperform the test based on U , but are less powerful than the test based on
T .

statistic

d/n=2 γ∗1(ν) γ∗2(ν) SL T U

50/25 0.5222 0.5566 0.5450 0.5593 0.5033

100/50 0.6738 0.7247 0.7079 0.7646 0.5845

200/100 0.7908 0.8525 0.8321 0.8999 0.6489

500/250 0.8830 0.9445 0.9250 0.9786 0.6854

Table 7: Power of the sphericity tests under near sphericity with k = 1,Θ = 4

The results of this section indicate that the new tests locally dominate the tests from
the current literature for small y = d/n, i.e., when the ESD of S∗ under the null is close
to the semicircle law. In this case, the test based on SL becomes overadditive with
respect to power compared to the tests based on γ∗

1(ν) and γ∗
2(ν). Further, the statistic

SL has an interesting structure concerning the role of its summands: While (γ∗
1(ν))

2

ensures that the weak convergence of SL under the null is of a certain speed, (γ∗
2(ν))

2

produces power. If 0 << y < 1, the tests based on γ∗
2(ν) and SL are still comparable to

the existing tests, but the overadditivity property of SL cannot be assured any more. If
y ≥ 1, the new tests underperform the tests from the literature.
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Figure 3: 95% Quantiles of SL as a function of y

These observations are in line with Fig. 3 which shows a plot of the 95% quantiles of
the distribution of SL as a function of y. As long as the quantiles are about 6, we have
the overadditivity property of SL. The steep slope of the curve in a neighborhood of
y = 0 leads to rapidly increasing quantiles, which goes hand in hand with the observed
loss of the overadditivity property. As y increases, the curve becomes flat and converges
to twice the 95% quantile of the χ2 distribution with one degree of freedom (see Section
4). This convergence comes with the loss of the power superiority of the SL test.

20



5.2.2. Limitations and further consistency properties of the sphericity tests

In Section 5.1, (n, d)-consistency of the proposed sphericity tests was investigated. While
the tests based on γ∗

2(ν) and SL were shown to be (n, d)-consistent for y ≥ 1, the case
of 0 < y < 1 was left open. Now, this case shall be further investigated by simulation
results. Table 8 shows the simulated power of the new tests compared to the tests of
Fisher et al. [2010] and John [1971]. Again, the test level is chosen as α = 0.05 and the
alternative is of the form (7), but with k = d/2,Θ = 1.1I, y = d/n = 0.025 (if d = 25,
the dimension of Θ is chosen as 12). Such an alternative could be regarded as being
“further away” from sphericity.

statistic

d/n=0.025 γ∗1(ν) γ∗2(ν) SL T U

25/1,000 0.0490 0.0503 0.0529 0.2917 0.2946

50/2,000 0.0623 0.0577 0.0646 0.6928 0.7072

100/4,000 0.1112 0.0563 0.0892 0.9959 0.9965

200/8,000 0.3122 0.0544 0.2049 1.0000 1.0000

500/20,000 0.9630 0.0572 0.9187 1.0000 1.0000

Table 8: Power of the sphericity tests with k = d/2,Θ = 1.1I

We see that the kurtosis test lacks consistency, while the skewness test is consistent.
Consequently, the SL test is also consistent. The power of the new tests appear to be
poor compared to the tests based on T and U .
Table 9 reports the simulated power of the new tests under the alternative (7) with

k = d/2,Θ = 0.5I, y = d/n = 0.05. Whereas the skewness test is biased for
d/n = 25/500, the kurtosis test leads to power of more than 90% so that the SL test
gains power of almost 80%. We even see that the kurtosis test and thus the SL test are
comparable to the tests based on T and U if d > 25.

statistic

d/n=0.05 γ∗1(ν) γ∗2(ν) SL T U

25/500 0.0054 0.9217 0.7875 1.0000 1.0000

50/1,000 0.2026 1.0000 1.0000 1.0000 1.0000

100/2,000 0.9525 1.0000 1.0000 1.0000 1.0000

200/4,000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 9: Power of the sphericity tests with k = d/2,Θ = 0.5I

These examples indicate that the skewness and kurtosis tests complement each other
concerning (n, d)-consistency. Hence, one may expect that the SL test is also (n, d)-
consistent on the whole alternative for 0 < y < 1. Further, we have seen that the
tests based on T and U outperform the new ones if the alternative is further away from
sphericity. In contrast, the performance of the new SL test is superior to the other
ones if y is small and the alternative is of a local kind such as the previously discussed
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near sphericity case. We therefore observe another similarity of the SL test to the
Jarque-Bera test: It seems that the SL test is asymptotically locally optimal for small
y.

6. Conclusion

This article provides a new approach to test for sphericity of the covariance matrix of
a multinormal population under (n, d)-asymptotics. The main idea of this approach
is to consider the empirical eigenvalue distribution of a suitably standardized sample
covariance matrix which tends to a kind of semicircle law under the null. Since the
semicircle law is very similar to the normal distribution, this paper proposes to use a
test statistic which is of the type of the well known Jarque-Bera test statistic. This new
test can be nicely interpreted in terms of free cumulants and its test statistic exhibits an
asymptotic distribution which is comparable to that of the original Jarque-Bera test. It
is shown that the new sphericity test is (n, d)-consistent if the limiting ratio of dimension
to sample size, y, is greater than or equal to one. Further simulations indicate that (n, d)-
consistency for 0 < y < 1 can also be conjectured. Future research will be dedicated
to the proof of this conjecture and the derivation of the distribution of the test statistic
under the alternative. Lastly, a comprehensive simulation study shows that the new
sphericity test seems to be asymptotically locally optimal if y becomes small.
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A. Proofs

In this appendix, all skipped proofs are provided. We begin with the derivation of the
fourth free cumulant C̃4 from Section 2.2 which will be done by using the moment-
cumulant formula (11.7) from p. 176 in Nica and Speicher [2006]. It is given by

C̃4 =
∑

σ∈NC(4)

ϕσ(X)µ(σ, 14),

where (A, ϕ) is a non-commutative probability space, X ∈ A, NC(4) the set of all non-
crossing partitions of {1, 2, 3, 4}, 14 = {(1, 2, 3, 4)} ∈ NC(4), ϕσ(X) =

∏

V ∈σ ϕ(X
|V |).

Here, V ∈ σ denotes a block of the partition σ, |V | its size and µ(σ, 14) the Möbius func-
tion on {1, 2, 3, 4} (see also Nica and Speicher [2006], Lecture 10). Note that the only
crossing partition of {1, 2, 3, 4} is {(1, 3), (2, 4)} so that NC(4) = {04, τ1, . . . , τ12, 14},
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where

04 = {(1), (2), (3), (4)}, τ1 = {(1, 2), (3), (4)}, τ2 = {(1), (2), (3, 4)},
τ3 = {(1), (2, 3), (4)}, τ4 = {(1, 4), (2), (3)}, τ5 = {(1, 3), (2), (4)},
τ6 = {(1), (2, 4), (3)}, τ7 = {(1, 2), (3, 4)}, τ8 = {(1, 4), (2, 3)},
τ9 = {(1, 2, 3), (4)}, τ10 = {(1), (2, 3, 4)}, τ11 = {(1, 3, 4), (2)},
τ12 = {(1, 2, 4), (3)} .

Now, the values of the Möbius function are computed. Due to Proposition 10.15 in
Nica and Speicher [2006], we have µ(04, 14) = −5. From Remark 10.9 in this book, we
obtain

µ(τ1, 14) = µ(τ2, 14) = µ(τ3, 14) = µ(τ4, 14) = 2,

µ(τ5, 14) = µ(τ6, 14) = 1,

µ(τ7, 14) = µ(τ8, 14) = µ(τ9, 14) = µ(τ10, 14) = µ(τ11, 14) = µ(τ12, 14) = −1,

µ(14, 14) = 1 .

All in all, we have:

C̃4 =
∑

σ∈NC(4)

ϕσ(X)µ(σ, 14)

=ϕ04(X)µ(04, 14) + ϕτ1(X)µ(τ1, 14) + ϕτ2(X)µ(τ2, 14)

+ ϕτ3(X)µ(τ3, 14) + ϕτ4(X)µ(τ4, 14) + ϕτ5(X)µ(τ5, 14)

+ ϕτ6(X)µ(τ6, 14) + ϕτ7(X)µ(τ7, 14) + ϕτ8(X)µ(τ8, 14)

+ ϕτ9(X)µ(τ9, 14) + ϕτ10(X)µ(τ10, 14) + ϕτ11(X)µ(τ11, 14)

+ ϕτ12(X)µ(τ12, 14) + ϕ14(X)µ(14, 14)

=ϕ4(X)(−5) + ϕ(X2)ϕ2(X)2 + ϕ(X2)ϕ2(X)2 + ϕ(X2)ϕ2(X)2

+ ϕ(X2)ϕ2(X)2 + ϕ(X2)ϕ2(X) + ϕ(X2)ϕ2(X) + ϕ2(X2)

+ ϕ2(X2) + ϕ(X3)ϕ(X)(−1) + ϕ(X3)ϕ(X)(−1)

+ ϕ(X3)ϕ(X)(−1) + ϕ(X3)ϕ(X)(−1) + ϕ(X4)

=ϕ(X4)− 4ϕ(X)ϕ(X3)− 2ϕ2(X2) + 10ϕ2(X)ϕ(X2)− 5ϕ4(X),

which is the result of Section 2.2.

Proof of Theorem 6

Now, we come to the skipped proofs of Section 4 and begin with the one from Theorem
6. We need the following theorem.

Theorem 8. Let X ∼ Nd(µ, I). Then, as n, d → ∞ and d/n → y ∈ (0,∞), the vector

d







λ1 − c1
λ2 − c2
λ3 − c3
λ4 − c4







,
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where

c1 = 1,

c2 = 1 +
d

n
+

1

n
,

c3 = 1 + 3
d

n
+

(
d

n

)2

+ 3
1

n
+ 3

d

n2
,

c4 = 1 + 6
d

n
+ 6

(
d

n

)2

+

(
d

n

)3

+ 6
1

n
+ 17

d

n2
+ 6

d2

n3
,

converges in distribution to a normally distributed vector Z = (Z1, Z2, Z3, Z4)
t with mean

zero, variances

Var(Z1) = 2y, Var(Z2) = 4y(2y2 + 5y + 2),

Var(Z3) = 6y(3y4 + 24y3 + 46y2 + 24y + 3),

Var(Z4) = 8y(4y6 + 66y5 + 300y4 + 485y3 + 300y2 + 66y + 4)

and covariances

Cov(Z1, Z2) = 4y(y + 1), Cov(Z1, Z3) = 6y(y2 + 3y + 1),

Cov(Z1, Z4) = 8y(y3 + 6y2 + 6y + 1),Cov(Z2, Z3) = 12y(y3 + 5y2 + 5y + 1),

Cov(Z2, Z4) = 8y(2y4 + 17y3 + 32y2 + 17y + 2),

Cov(Z3, Z4) = 24y(y5 + 12y4 + 37y3 + 37y2 + 12y + 1) .

Proof. This result is firstly stated for a standard normal population in Arharov [1971]
and corrected by Jonsson [1982] without specifying the mean and the covariances in gen-
eral. Bai and Silverstein [2004] and Lytova and Pastur [2009] generalize this result and
give explicit formulas for the mean and covariances. The calculation of the centraliza-
tion and the covariances can be found in Bai and Silverstein [2004], Section 5. Since the
determinant of the covariance matrix equals 384y10, this matrix is non-singular unless
y = 0.

If we compare E(λk) with the moments of the MP law MPk (with y = d/n), we see
that the estimators λk, k ≥ 2, are biased from these (null) moments and that the bias is
of the order O(n−1).
If X ∼ Nd(µ,Σ), then the asymptotic covariances in Theorem 8 will contain the

limits Bi, i = 1, . . . , 8 (see also Fisher et al. [2010] and Srivastava [2005] for a derivation
method). Thus, the existence of these limits ensures that the distribution of the test
statistics under the alternative exists as well.
Now, we obtain Theorem 6 by an application of the delta method.

Proof. Set

f(x1, x2, x3, x4) =
(

1

(x2 − x2
1)

3/2

(
x3 − 3x1x2 + 2x3

1

)
,

1

(x2 − x2
1)

2

(
x4 − 4x1x3 + 6x2

1x2 − 3x4
1

)
)

.
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Note that f(λ1, λ2, λ3, λ4) = (γ1(λ), γ2(λ)) = (γ1(ν), γ2(ν)) and

f (c1, c2, c3, c4) =

((
d

d+ 1

)3/2
(√

d

n
+

3√
nd

)

,

(
d

d+ 1

)2(

2 +
d

n
+

5

d
+

6

n

))

= (z1, z2) .

The derivative of f in (c1, c2, c3, c4) is given by

f ′(c1, c2, c3, c4)

=

(
3
√
n(dn+n+d−1)

(d+1)5/2
−3

√
n(2dn+d2+2n+3d)

2(d+1)5/2

(
n

d+1

)3/2
0

4(2d2n−dn2−n2+2d2+5dn−3d)
(d+1)3

2(3dn2−2d2n−d3+3n2−5dn−6d2)
(d+1)3

− 4n2

(d+1)2
n2

(d+1)2

)

→






3

y3/2
−6 + 3y

2y3/2
1

y3/2
0

8y − 4

y2
6− 4y − 2y2

y2
− 4

y2
1

y2






as d/n → y. The given covariance matrix is obtained from the calculation of the limit
of [f ′(c1, c2, c3, c4)]Cov(Z)[f

′(c1, c2, c3, c4)]
t.

Remark. We immediately see from Corollary 4 that an (n, d)-consistent estimator for

B2 is given by λ2 − yλ
2

1, where y = d/n, leading to

s̃2λ := λ2 − (y + 1)λ
2

1

as an (n, d)-consistent estimator for the variance B2−B2
1 . Unfortunately, s̃

2
λ can become

negative so that a root of it is possibly complex. So, an (n, d)-consistent estimator for the
skewness of the true limiting eigenvalue distribution would have a complex distribution
which is not what we are aiming for.
Next, an (n, d)-consistent estimator for the third centralized eigenvalue moment

B3 − 3B1B2 + 2B3
1 is given by

B̂c
3 := λ3 − 3(y + 1)λ1λ2 + (2y2 + 3y + 2)λ

3

1,

which leads to
B̂c

3

s̃
3/2
λ

as an (n, d)-consistent estimator for the skewness of the true limiting eigenvalue distri-
bution. In order to obtain its null distribution applying the delta method, one has to
consider the function

f̃(x1, x2, x3) :=
1

(x2 − (y + 1)x2
1)

3/2
(x3 − 3(y + 1)x1x2 + (2y2 + 3y + 2)x3

1) .

But the derivative f̃ ′(c1, c2, c3) does not exist under the (n, d)-asymptotics. Similar con-
siderations show that the asymptotic null distribution of an (n, d)-consistent estimator
for the kurtosis of the true limiting eigenvalue distribution also does not exist.
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All in all, the method of constructing a test based on a test statistic which is (n, d)-
consistent for the skewness and kurtosis of the true limiting eigenvalue distribution fails.
This is why this article proposes to use estimators for the skewness and kurtosis of the
limiting ESD.

Proof of Theorem 7

The derivation of the asymptotic distribution of SL requires two small lemmas.

Lemma 9. Let (Ω,A, P ) be a probability space and A,B,C ∈ A with B ∩ C = ∅ and
P (B) > 0 or P (C) > 0. Then:

P (A|B ∪ C) =
P (B)

P (B) + P (C)
P (A|B) +

P (C)

P (B) + P (C)
P (A|C)

Proof. This proof is elementary and therefore omitted.

Lemma 10. Let (X, Y ) be a two dimensional continuously distributed random vector.
Further, let the marginal distribution of Y be symmetric around 0 and X be A − B
measurable. Then:

P (X ∈ B|{Y = s} ∪ {Y = −s}) = 1

2
P (X ∈ B|Y = s) +

1

2
P (X ∈ B|Y = −s),

where B ∈ B, s ∈ R.

Proof. The assertion is obviously true for s = 0. Therefore, let s 6= 0. Set
Bε := {s − ε < Y ≤ s + ε}, Cε := {−s − ε < Y ≤ −s + ε} for ε > 0. Note that
P (Bε) = P (Cε) because of the symmetry of Y . Further, if ε is sufficiently small, then
Bε ∩ Cε = ∅. Thus, we have:

P (X ∈ B|{Y = s} ∪ {Y = −s}) = lim
εց0

P (X ∈ B|Bε ∪ Cε)

Lem. 9
= lim

εց0

[
P (Bε)

P (Bε) + P (Cε)
P (X ∈ B|Bε) +

P (Cε)

P (Bε) + P (Cε)
P (X ∈ B|Cε)

]

=
1

2
P (X ∈ B|Y = s) +

1

2
P (X ∈ B|Y = −s)

Now, we can prove Theorem 7.

Proof. We obtain from the law of total probability:

FSL(x) = P (SL ≤ x) = P
(
(γ∗

1(ν))
2 + (γ∗

2(ν))
2 ≤ x

)

=

∫ ∞

0

P
(
(γ∗

1(ν))
2 + (γ∗

2(ν))
2 ≤ x | (γ∗

2(ν))
2 = z

)

︸ ︷︷ ︸

=0 if z>x

f1(z) dz

=

∫ x

0

P
(
(γ∗

1(ν))
2 + (γ∗

2(ν))
2 ≤ x | (γ∗

2(ν))
2 = z

)
f1(z) dz
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Now, we notice that (γ∗
1(ν), γ

∗
2(ν)) has an asymptotic joint normal distribution because

of Theorem 6. The parameters of this normal distribution are asymptotically given by

E (γ∗
1(ν)) → 0,E (γ∗

2(ν)) → 0,Var (γ∗
1(ν)) → 1,Var (γ∗

2(ν)) → 1,

Cov (γ∗
1(ν), γ

∗
2(ν)) → a =

24
√
y(1 + y)

√
6 + 9y

√

8 + 96y + 64y2
.

Thus, γ∗
1(ν) given γ∗

2(ν) = ξ is also asymptotically normally distributed with mean

E (γ∗
1(ν)) +

Cov (γ∗
1(ν), γ

∗
2(ν))

Var (γ∗
2(ν))

(ξ − E (γ∗
2(ν))) → aξ

and variance

Var (γ∗
1(ν))

(

1− Cov2 (γ∗
1(ν), γ

∗
2(ν))

Var (γ∗
1(ν))Var (γ

∗
2(ν))

)

→ 1− a2

From these considerations and Lemma 10, we have for x ≤ z:

P
(
(γ∗

1(ν))
2 + (γ∗

2(ν))
2 ≤ x | (γ∗

2(ν))
2 = z

)

= P
(
(γ∗

1(ν))
2 ≤ x− z | (γ∗

2(ν))
2 = z

)

= P
(
−
√
x− z ≤ γ∗

1(ν) ≤
√
x− z | {γ∗

2(ν) =
√
z} ∪ {γ∗

2(ν) = −
√
z}
)

=
1

2
P
(
−
√
x− z ≤ γ∗

1(ν) ≤
√
x− z | γ∗

2(ν) =
√
z
)

+
1

2
P
(
−
√
x− z ≤ γ∗

1(ν) ≤
√
x− z | γ∗

2(ν) = −
√
z
)

→ 1

2

[

Φ

(√
x− z − a

√
z√

1− a2

)

− Φ

(−√
x− z − a

√
z√

1− a2

)]

+
1

2

[

Φ

(√
x− z + a

√
z√

1− a2

)

− Φ

(−√
x− z + a

√
z√

1− a2

)]

=
1

2

[

Φ

(√
x− z − a

√
z√

1− a2

)

−
(

1− Φ

(√
x− z + a

√
z√

1− a2

))]

+
1

2

[

Φ

(√
x− z + a

√
z√

1− a2

)

−
(

1− Φ

(√
x− z − a

√
z√

1− a2

))]

= Φ

(√
x− z − a

√
z√

1− a2

)

+ Φ

(√
x− z + a

√
z√

1− a2

)

− 1

So, the proof of this theorem is completed.
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Cem Ünsalan. Measuring land development in urban regions using graph theoretical
and conditional statistical features. IEEE Trans. Geoscience and Remote Sensing, 45
(12):3989–3999, 2007.

Dan Voiculescu. Symmetries of some reduced free product C*-algebras. In Operator
algebras and their connections with topology and ergodic theory, Lecture Notes in
Mathematics, vol. 1132, pages 556–588, Berlin, 1985. Springer.

Y. Q. Yin. Limiting spectral distribution for a class of random matrices. J. Multivariate
Anal., 20(1):50–68, 1986.

29

http://dx.doi.org/10.1561/0100000001

	Introduction
	Preliminaries
	Basic facts and definitions
	Free cumulants

	Statistical setting
	Distribution of the test statistic
	Properties of the test
	Conditions for consistency
	Simulation results
	Size and Power
	Limitations and further consistency properties of the sphericity tests


	Conclusion
	Proofs
	References

