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Abstract

We consider four orthant stochastic orderings between random vectors
X and Y that have finitely discrete probability distributions in IR*. For
each of the orderings conditions have been developed that are necessary and
sufficient for dominance of ¥ over X. We present an algorithm that checks
these conditions in an efficient way by operating on a semilattice generated
by the support of the two distributions. In particular, the algorithm can be
used to compute multivariate Smirnov statistics.
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1 Description and purpose of the algorithm

For random vectors X, Y in IRk, the four orthant orderings <;,, <o, =iocc and
<uocz are defined in the following way:

X < Y < PIX <a] > PIY <d] for all « € R,

X < YV < PIX >a] < PIY >d] for all « € R,

X < ¥V = /P[X <zdz > /P[Y < z]d= for all a € R,
]—00,a] ]—00,a]

X Zpoer Y = /P[XZZ]dZ < /P[YZZ]dZ for all a € IR,

[a,00[ [a,00[

The orders are called lower orthant order, upper orthant order, lower orthant
concave order and upper orthant convex order, respectively.

We provide an algorithm to check whether one of these four stochastic orderings
holds, when X and Y have finitely discrete probability distributions.

This algorithm can also be used to compute four multivariate Smirnov statistics.
Let

DHX.Y) = max(F(e) = Gla)) (1)
DI(X.Y) = min(F(e) = Gla)) (2)
DIXY) = max(G(a) = T(a)) (3)
Dy (X,Y) = min(Gle) - F(a). (1)

F(z)=P[X <z], F(z)=P[X>z], Gz)=PlY<z]|, Gz)=PY>az]

When k = 1, both <, and <,, become the usual stochastic order (= first de-
gree stochastic dominance), while <,.. and <,..; become the univariate con-
cave, respectively convex, order (= second degree stochastic dominance). Then
our problem reduces to checking two finite discrete distributions for first and
second degree stochastic dominance. A number of computational approaches has
been proposed in the literature to solve this problem when k& = 1. See Porter et
al. (1973), Markowitz (1977), Bawa et al. (1979), Levy and Sarnat (1984), Levy
(1992), Aboudi and Thon (1994).

For general k& > 1, Dyckerhoff and Mosler (1997) present the background, the-
ory and applications of the four orthant stochastic orderings and the theoretical
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justification of the present algorithm. Let S denote the joint support of the dis-
tributions of X and Y, and J(S) the join-semilattice (Birkhoff 1940) generated
by S. For each s € S let §; = P[X = s] — P[Y = s]. We introduce A” by

AP(zy= > 6, zeRM (5)

SES,s<z

For a nonempty I C {1,2,...,k} and = € IR¥, let 2; = (2;);e; € IR’. Further, let
X7 and Y; be the marginals with respect to I, and S; their joint support. Ak« is
defined as follows:

AIIOCC(Z) = Z O - 1_[(2Z - %), z€ R (6)

s€Ssr<z i€l
Dyckerhoff and Mosler (1997) prove the following results.
Result 1. X <, Y if and only if
AP(z) >0 forall z € J(S). (7)
Result 2. X <. Y if and only if
Ale(2) >0 for all z € J(S) and all nonempty subsets I of {1,...,k}. (8)
Result 3. X <, Y = X <o ¥V =

E[X] < E]Y]. (9)

Result 4.

X Suo Y — -Y Slo _X7
X Suocx Y — -Y Slocc -X.

The main subroutine in our algorithm is the procedure CheckJoinSemilattice. This
procedure proceeds as follows:

Step 1 For a given set [ of components the joint support S of the two distribu-
tions w.r.t. I is constructed. Further, the ¢,, s € Sy, are computed.

Step 2 S7 is put into lexicographical order.

Step 3 In a recursive way, all joins z of at most k£ points of S which are not
comparable in the usual componentwise ordering of IR* are determined.
This generates all points of the join-semilattice J(.S7). As soon as a point z
is generated, one of the following steps is done.

Step 3a If the algorithm was called to check for =<, inequality (7) is
checked. Once a violation is detected the calculations are stopped.

Step 3b If the algorithm was called to check for <,.., inequality (8) is
checked. Once a violation is detected the calculations are stopped.
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Step 3c If the algorithm was called to compute the Smirnov statistics
D (X,Y) and Dy (X,Y) the maximum and minimum of A”(z) over

all z in the join-semilattice is computed.

To decide whether the lower orthant order holds between X and Y, our algo-
rithm proceeds as follows: First, it is checked whether the necessary condition
(9) holds. If not, the algorithm stops. If the inequality (9) holds, the procedure
CheckJoinSemilattice is called with I ={1,...,k}.

To compute the Smirnov statistics Df (X, Y) and D; (X,Y) CheckJoinSemilattice
is again called with I = {1,...,k}. Since A”(z) = F(z) — G(z), this procedure
yields the desired result.

To check for the lower orthant concave order between X and Y, more extensive
calculations have to be performed. Again, first we check the inequality (9) which
is a necessary condition for the lower orthant concave order, too. Then the pro-
cedure CheckAllMargins is called. It constructs all subsets [ of {1,... k}. This
is again done by a recursive procedure. Whenever such a subset is constructed
CheckJoinSemilattice is called with the [ that was just constructed.

Upper orthant order and upper orthant convex order between X and Y are checked
using Result 4, i.e., by applying the previous procedures to the transformed ran-
dom Vectors —Y and —X. The same holds for the Smirnov statistics DF (X,Y)
and D (X,Y). The transformation of the random vectors is done in Step 1 of
CheckJoinSemilattice.

The algorithm has been used (Holz and Mosler 1994) to determine a nondominated
(with respect to one of the orderings) set of distributions from a given finite set
of distributions. This is a standard problem in multiattribute decision making
under risk. The algorithm has also been employed to construct statistical tests on
F >, Gand F »,, G which are based on resampling.

2 Structure
Language

[SO-Pascal (Level 0)

Procedures

PROCEDURE CheckForOrthantOrdering(PX, PY: PDistribution; Dim: Integer;
VAR Info: Tinfo; VAR [Fault: Integer);

Global constant

MaxDim is the maximum dimension.



Global types

TPoint ARRAY[1..MaxDim] OF Real;

PDistribution = "“TDistribution;
TDistribution = RFECORD
Point : TPoint;

Prob : Real;
Link : PDistribution;
END:;

Y

Remark. Distributions are represented by simply linked lists of records of the
type TDistribution. Every such record contains a point of the support, its
probability, and a pointer at the next support point. If there is no further
point, the value of the Link-field is nil. A distribution is identified with a
variable of the type PDistribution which points at the first support point of
the distribution.

TCheck = (lo,locc,uo,uocx,Smirnovl,Smirnov2);

TInfo = RFECORD
CASE Check:TCheck OF
lo,uo,loce,uoca: ( Dominance: Boolean; Index: —1..1);
Smirnovl,Smirnov2: ( DeltaMin, DeltaMaz: Real );
END:;
Remark. A TlInfo-record is used as an input-output parameter. The tag field
Check specifies which check shall be done or which statistics shall be com-
puted. It serves as an input parameter to the algorithm. Depending on the
value of the tag field the algorithm returns the result in the following way.

If Check is lo, wo, locc or uwocx, then Dominance is true if X dominates Y in
the respective order or vice versa. In this case

Index =1 if X dominates Y,

Index = -1 if Y dominates X,

Index =0 if X and Y are equivalent.
If neither X dominates Y nor vice versa, then Dominance is false and Index
is undefined.

If Check is Smirnovl, then DeltaMaz is the value of DY (F,G) and DeltaMin
is the value of Dy (F, Q).

If Check is Smirnov2, then DeltaMaz is the value of D (F,G) and DeltaMin
is the value of D; (F, ).



Formal parameters

PX PDistribution value: the distribution of X

PY PDistribution value: the distribution of Y

Dim  Integer value: the dimension &

Info TInfo input/output: the tag field Check specifies the

operation to be made, the result
is returned in the variant part of
the record, see above

[Fault Integer output: the error indicator

Local constants

MaxSupport is the maximum size of the joint support of PX and PY.

Eps is the precision. Numbers whose absolute values are smaller
than or equal to Eps will be treated as zero. This ensures that
small rounding errors do not lead to an erroneous violation of
(7) or (8). Thus, Eps should be set to at least the accuracy of
the data.

Failure indications

IFault = 0 no error occurred.

IFault = 1 the constraint 1 < Dim < MaxDvm 1s not satisfied.
[Fault = 2 the joint support of PX and PY exceeds MazSupport.
[Fault = 3 PX or PY is not a probability distribution.

3 Accuracy and time

The accuracy of the results depends on the compiler. All constants are set in a
declaration part and can be adapted to the machine and the compiler used. Since
in calculating the Smirnov statistics only additions are involved, the accuracy of
the Smirnov statistics is the same as the accuracy of the data.

Because the algorithm is very efficient it has been used in statistical resampling
procedures and in building nondominated sets of distributions.

The CPU-times depend strongly on the given data. Consider two k-variate prob-
ability distributions with n points in the joint support. In the case of <;, and <,
to prove (7), at most S5, (7;) points have to be checked. This stems from the fact
that every point in the join-semilattice J(.9) is the join of at most k points in S. To
prove lower orthant concave order (or upper orthant convex order), all marginal
distributions are examined. Thus in the worst case Y5, 2;21 (f) (?) points are
constructed and checked.



In practical applications the parameters should stay within certain limits. For
k =1 a number of 100000 points in the joint support seems to be feasible, whereas
for £ = 5 the number of points in the joint support should not exceed 100.

It should be emphasized that the above bounds are no equalities. In general, the
join-semilattice has cardinality much smaller than 2%, (7;) Apart from n and k,
the size of the semilattice depends strongly on how the points of S are dispersed in
k-space. Further, if the algorithm just checks for one of the orthant orders, it stops
as soon as (7) or (8) is violated at some z € J(5). This reduces the computation
time when the distributions are not ordered and no Smirnov statistic is calculated.

Table 1 summarizes some computation times. Two samples of size n/2 were drawn
from a k-variate normal distribution having expectations py = po = ... = pp =0
and covariances o;; = pli=il i j = 1,... k. Then the one-sided Smirnov statis-
tics (1) and (2) were computed. For every triple (n, k, p) this procedure was carried
out ten times. The table shows the average computation times in seconds on a

60 MHz Pentium™.

k

p n 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8
20 0.00 0.03 0.20 0.93 2.68 9.24 22.63
0.6 | 40 0.02 0.36 4.90 55.32
100 0.23 13.88 | 482.70
20 0.01 0.07 0.42 1.94 6.08 16.94 36.57
0.0 | 40 0.04 0.91 12.33 | 123.91 | 821.99 | 5336.62
100 0.53 34.38 | 1167.45
20 0.01 0.09 0.53 2.31 7.01 18.43 37.82
0.6 | 40 0.07 1.38 16.66 | 150.94
100 0.93 51.27 | 1571.41

Table 1. Computation times [in seconds] of the algorithm.

As can be seen from Table 1 the computation times depend not only on n and k.
The greater the correlation of the distributions, as measured by p, the faster is
the algorithm.

4 Additional comments

Although the algorithm works for every & >1, for £ = 1 a special approach is
advisable. In the unidimensional case we have J(S) = 5, since the support S is
linearly ordered. Thus, the differences A and AY“ can be easily calculated in a
recursive way, which is simpler and more efficient than the above algorithm.



The algorithm as presented here is capable of checking for four different orders
and of computing four different statistics. If one is interested only in some of these
issues, its structure can be simplified in an obvious way.

However, it should be noted, that these modifications will only simplify the struc-
ture. They will not result in a significant reduction of computation times compared
to our algorithm.

5 Availability

The algorithm is available by request from the authors or can be downloaded from
our website http://www.uni-koeln.de/wiso-fak/wisostatsem/algorithms.
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