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Abstract

In recent publications standard methods of random matrix theory have
been applied to principal components analysis of high-dimensional finan-
cial data. We discuss the fundamental results and potential shortcomings
of random matrix theory in the light of the stylized facts of empirical
finance. It is shown that the Marcenko-Pastur law generally fails when an-
alyzing the empirical distribution function of the eigenvalues given by the
sample covariance matrix of generalized elliptically distributed data. As
an alternative we derive a random matrix referred to as the spectral es-
timator which is distribution-free within the class of generalized elliptical
distributions. We show that the spectral estimator corresponds to Tyler’s
M-estimator. Substituting the sample covariance matrix by the spectral
estimator resolves the problems which are due to the stylized facts and the
Marcenko-Pastur law remains valid. This holds even if the data are not
generalized elliptically distributed but mutually independent.
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Figure 1. Normal QQ-plots of GARCH(1,1) residuals of dadgireturns of NASDAQ

(left hand) and S&P 500 (right hand) from 1993-01-01 to 206630 ¢ = 1892).

1 Stylized Facts of Empirical Finance

1.1 Motivation

Distributions of short-term financial data usually exh#wtmestylized factse.g. heavy
tails or at least leptokurtosis, extremal or tail dependes&ewness and other kinds
of asymmetries, volatility clusters or even long-memory @o on. This holds espe-
cially if log-price changes (so-callddg-returng of stocks, stock indices, and foreign
exchange rates are considered. Furthermore, high-freyugata generally are non-
stationary, have jumps, and are strongly dependent. Indketk is a vast and still
growing literature on that topic, e.g. Bouchaud et al. (398Feymann et al. (2003),
Ding et al. (1993), Eberlein and Keller (1995), Embrechtale{1997, Chapter 6),
Engle (1982), Fama (1965), Junker and May (2005), Mande(t863), McNeil et al.
(2005, Section 4.1.1), and Mikosch (2003, Chapter 1).

Figure 1 shows normal QQ-plots of GARCH 1) residuals given by daily log-returns
of the NASDAQ and S&P 500 stock indices from 1993-01-01 to®08-30. Here the
particular choice of the indices is rather arbitrary andghenomena discussed later
on can be observed for many stocks or stock indices. The @Q@-plearly indicate
that the normal distribution hypothesis is not approprfatethe left tails of the dis-
tributions whereas the Gaussian law seems to be acceptaliteefright tails. Hence
the probability of extreme losses is higher than suggesyeithdd normal distribution
assumption.

Figure 2 shows the joint distribution of the GARCH residuatsmsidered above. Es-
sentially there are four effects which can be observed bgdhter plot:

1. The main part of the distribution seems todhgtically contoured
2. However, we can observe a few outliersegtreme valuesand
3. almost all extremes occsimultaneouslyvhereas

4. the outliers ar@ot symmetricallydistributed.
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Figure 2: NASDAQ vs. S&P 500 GARCH(1,1) residuals from 198301 to 2000-
06-30 (» = 1892).
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Figure 3: Number of extremes in the S&P 500 during 1980-01e02003-11-26.

The effect ofsimultaneousextremes can be observed more precisely in Figure 3. It
shows the total numbers of S&P 500 stocks whose absolutes/aludaily log-returns
exceeded 0% for each trading day during 1980-01-02 to 2003-11-26. Onli®ih
October 1987 (the so-calldBlack Monday there occurred 239 extremes. This num-
ber is suppressed for the sake of transparency. This figuméspmut the concomitance
of extremes. If the extremes of each stock would occur indégetly then the number
of extremal events (no matter if losses or profits) shouldrhellsand more or less
constant over time. Obviously, this is not the case. In emttone can see the October
crash of 1987 and several extremes which occur permanentg the beginning of
the bear market in 2000. Hence there is an increasing tepaddésenultaneous losses.
The phenomenon of simultaneous extremes is often denoteabyayptotic depen-
dence extremalor tail dependencand is part of copula theory as well as multivariate
extreme value theory. We will avoid a formal definition of otgs or tail dependence.
A profound treatment of copula theory can be found, e.g.om @.997) and Nelsen
(2006) whereas Mikosch (2003, Chapter 4) gives a nice os@ragn extreme value
theory. Our arguments are based on the fact that financialecibit tail dependence.
Indeed, this is indicated by many empirical studies (seg, Breymann et al., 2003,
Junker and May, 2005).



1.2 Generalized Elliptical Distributions
1.2.1 Elliptically Symmetric Distributions

It is well-known that the multivariate normal distributicloes neither allow for heavy
tails nor for tail dependence. To overcome that problem nembf the traditional

class of elliptically symmetric distributions (Cambanisak, 1981, Fang et al., 1990,
Kelker, 1970) are often proposed for the modeling of findrdaga (cf., e.g., Bingham
and Kiesel, 2002, Eberlein and Keller, 1995).

In the following definition the ternunit hypersphereefers to the manifold
5“1:{uemﬁwmuz1}

and|| - || denotes the Euclidean norm @,

Definition 1 (Elliptical Distribution). A d-dimensional random vectaX is said to
be elliptically distributed if and only if there exist

1. a k-dimensional random vectal/, uniformly distributed on the unit hyper-
sphere,

2. anonnegative random variable being stochastically independent(6f

3. avectory € IR?, and a matrixA € IR¥* such that
X<+ ARU.

In the following discussion we will calE := AAT the dispersion matri>of X and
‘R its generating variate Many well-known multivariate distributions belong to the
class of elliptically contoured distributions. For instan the multivariate Gaussian
distribution is elliptical since it can be represented by

xXLuta/2u

Further, the multivariate symmetrig-stable or, synonymously, treib-Gaussian dis-

tribution is given by
d
X S p+Ay/Sap3 U,

where0 < o < 2 andS, ), is a positivea/2-stable distributed random variable with
skewness parametgr= 1. Further,S, , and Xi are stochastically independent. For
a = 1 we obtain the multivariate symmetric Cauchy distributiba, the multivariate
t-distribution with one degree of freedom (see below).

The multivariatet-distribution withr > 0 degrees of freedom is given by

X & p+ A/ x2U,

wherex; andx? are stochastically independent. Note thalso corresponds to the
tail index or regular variation indexof X (Mikosch, 2003). For — oo we obtain
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the multivariate normal distribution as a special case efrttultivariatet-distibution.
Moreover, the multivariate symmetric generalized hypkehdistribution is given by

X2+ 0/0aU,

where( is generalized inverse Gaussian distributed. Agaamdy; are stochastically
independent. Faf = v/x? (i.e. ¢ is inverse gamma distributed) once again the mul-
tivariate t-distribution withr degrees of freedom occurs. The generalized hyperbolic
distribution also contains the hyperbolic, the normakise Gaussian, and the gener-
alized Laplace distribution (or, synonymously, the vacesgamma distribution). For

a nice overview of the generalized hyperbolic distributzon its statistical properties
see e.g. McNeil et al. (2005, Section 3.2.3) and Prause (XS8&pter 1).

The main fact that we would like to point out for the furthesaission is that elliptical
distributions possess two sorts of dependencies, viz

1. linear dependencies, which can be expressed by the dispersioix and

2. nonlineardependencies imposed by the generating vaitate

Hence, the generating variat not only defines the particular elliptical distribution
family and — providedR is regularly varying — the heaviness of the tails but als¢ tha
part of the dependence structure which cannot be reducedasia transformation
caused by the matriX . Particularly, that means that the components of an alajii
distributed random vector can be highly dependent everif &me uncorrelated!

For instance, consider the 2-dimensional random védgéter (U, Us) uniformly dis-
tributed on the unit circle. Obviously, the componentd/oére uncorrelated. Never-
theless, each componentdtheavily depends on the other component by the relation

Uy =+4/1-UZ.

Of course, that sort of nonlinear dependence has nothing teitth tail dependence.
But if U is multiplied by aregularly varyingor sayheavy tailedgenerating variate
‘R then the tail index ofR carries over to the spherical random vecil/ and thus
to the elliptical random vectoK =q4 p + ARU (Hult and Lindskog, 2002, Schmidt,
2002). Particularly, théail-dependence coefficierasid also theextremal dependence
coefficientof X are essentially determined by the tail index®{Frahm, 2006, Frahm
et al., 2003, Hult and Lindskog, 2002, Schmidt, 2002).

1.2.2 Asymmetric Distributions

Elliptical distributions inherit many nice properties fnothe multivariate Gaussian
distribution. For instance, they are closed under affinesfrmations, the marginal
distributions are also elliptical, and even the conditladiatributions remain ellipti-
cal. Especially, the distributions considered aboveirinitely divisiblewhich is an
appealing property for the modeling of financial data (Bmghand Kiesel, 2002).
Further, due to the simple stochastic representation iptiell distributions they are
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Figure 4: Observed GARCH(1,1) residuals of NASDAQ and S&P 8éeft hand) and
simulated generalized elliptically distributed residu@ = 1892) (right hand).

appropriate for modeling dfigh-dimensionafinancial data. However, elliptical distri-
butions suffer from the property of symmetry. The picturbeve show that extremes
of financial data are not always symmetrically distributedr that reason we will bear
on the class ofjeneralized elliptical distributiongéFrahm, 2004, Chapter 3).

Definition 2 (Generalized Elliptical Distribution). A d-dimensional random vector
X is said to be generalized elliptically distributed if andlpif there exist

1. a k-dimensional random vectal/, uniformly distributed on the unit hyper-
sphere,

2. arandom variablér ,

3. avectory € IR?, and a matrixA € IR*** such that
X<+ ARU.

Note that all the components of elliptical distributiong. ithe location vectog, the
dispersion matrixZ, and the generating variafe are preserved, but generaly can
be negativeand even more it maglependon U. This fact allows for the modeling of
tail dependence and asymmetry. It is worth to point out thatdass of generalized
elliptical distributions not only includes the traditidnglass of elliptically symmet-
ric distributions but also a relatively new class knowrskew-elliptical distributions
(Branco and Dey, 2001, Liu and Dey, 2004). This can be obdaimea modeling
technique callechidden truncation(Arnold and Beaver, 2004, Frahm, 2004, p. 47).
However, skew-elliptical distributions have been introgd especially for the model-
ing of skewness and heavy tails rather than tail dependd@ram¢o and Dey, 2001).

Figure 4 shows once again the joint distribution of the GAREslduals of NASDAQ
and S&P 500 log-returns from 1993-01-01 to 2000-06-30 whighalso given in Fig-
ure 2. The right hand side of Figure 4 contains- 1892 simulated GARCH residuals
on the basis of a generalized elliptical distribution (whtre green curves are the cor-
responding density contours). More precisely, the geimgratariateR corresponds
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to \/vx3/x2 but the number of degrees of freedoentepends on the 2-dimensional
random vectot/ = (U, Us) due to

AU 3
V:4—|—996-5<—,w> ,
AU

whered (v, w) := Z(v,w)/m = arccos(v'w)/m measures the ‘distance’ between

AU

and areference vector

w := (—cos (m/4),—sin (7/4)).

Note that GARCH residuals have zero mean and unit varianagebgition. Hence,
for modeling the linear dependence structure we may coratenon the correlation
coefficient of the observed GARCH residuals of NASDAQ and &®PB which corre-
sponds tgp = 0.78. That means for the transformation matfixwe may choose the

Cholesky root
1 07w _[1 0
078 1 | [0.78 0.63]°

Hence, ifV is closeto the reference vector (that means close to the ‘perfestdos-
nario’) then the corresponding random vector is supposédxt tedistributed with al-
mostr = 4 degrees of freedom (sindex 0). In contrast, a random vector exposed to
the oppositedirection is assumed to be nearly Gaussian distributeddgsin~ 1 and
thusv is large). Admittedly, this specific parameterization ihea arbitrary. However,
by comparing the right hand side of Figure 4 (i.e. the siredatata) with its left hand
side (i.e. the observed GARCH residuals) we can see thahtbe=o model is able to
reproduce the stylized facts observed in Figure 2.

1.3 Conclusions

In virtue of the previous findings our conclusions are afed:

1. The class of generalized elliptical distributions camanany well-known mul-
tivariate distributions. Specifically, it includes thessaof elliptically symmetric
and skew-elliptical distributions.

2. High-dimensional time series reflecting the stylizeddaaf empirical finance
can be readily modeled by means of generalized ellipticdtidutions.

3. This class of distributions seems to be an appropriateehfodfinancial data to
investigate standard methods of random matrix theory.



The problem is that there isteemendousmount of generalized elliptical distribution
families which can be considered for the modeling of findnd#a. Later on we will
see that the results given by standard methods of randonixrtretory heavily depend
on the underlying assumptions concerning the dependenmse of the data and this
is essentially determined by the particular generalizégtiell distribution family or,
more precisely, by the generating varid®e Thus we aim at finding an alternative
approach that idistribution-freewithin the class of generalized elliptical distributions
such that standard methods of random matrix theory can deedgiven the stylized
facts of empirical finance despite that we do not know thee'tdistribution family or
generating variate.

2 Random Matrix Theory

2.1 Principal Components Analysis

Recall that — by the Spectral Decomposition Theorem — evesjtipe semi-definite
d x d matrix ¥ can be decomposed by

Y =0DOT,

where O is an orthonormal matrix of eigenvectors ¥fand D is a diagonal matrix
containing its eigenvaluek;, ..., Ay > 0. So we obtain

5 — OVD (O\/ﬁ)T,

where/D is a diagonal matrix containing the roots of the main diagetements of
D and we may defind := Ov/D.

Hence, any generalized elliptically distributed randortoeX with dispersion matrix
3} can be represented by

x2,+0VDY,

whereY := RU is ad-dimensional random vector of latent variables calleddctors

or principal componentsf X. We may assume for convenience that the main diagonal
elements ofD are given in decreasing order. That meaass mainly driven by the
first principal component; and its impact onX can be measured by the largest eigen-
value ofX . The next eigenvalue df quantifies the influence of the second principal
componentt; and so on. Hence the eigenspectruntofontains useful information
about thdinear dependence structure 4&f.

2.2 The Marcenko-Pastur Law

SinceX is an unknown parameter the dispersion matrix must be esttn®f course,
this estimator will be a random matrix. Random matrix the@MT) has its origin

both in mathematical statistics by the results of John Wisdrad in statistical physics
dealing with the distribution of eigenvalues hifjh-dimensionatandomly generated
matrices. RMT found its first application in nuclear physidsen trying to model the

8



energy levels of complex nuclei. It was mainly developed byold (1967, 1971),
Grenander (1963), Maenko and Pastur (1967), Pastur (1972, 1973), and Wigner
(1955, 1958). A review of the state of the art of RMT can be tbim Bai (1999)

and Mehta (1991).

Since we are interested in the eigenspectrum of covariandespersion matrices we
will only consider symmetric random matrices. Thus the egponding eigenvalues
are always real. The empirical distribution function of #igenvalues of a random
matrix is defined as follows.

Definition 3 (Empirical Distribution Function of Eigenvalu es). Let M be ad x d
symmetric random matrix with eigenvalugs . .., \;. Then the function

d
1
Fd:)\}—)a' Ellb\IS)\
i

is called the empirical distribution function of the eigafwes of}M.

However, note that each eigenvalue of a random matrix is mahdom variablein
the formal sense since there is no single-valued mapping> \; (i € {1,...,d})
but ratherM — A(M) where (M) denotes the set of all eigenvalues/df. This
can be simply fixed by assuming that the eigenvaluges. . , \; are sorted either in an
increasing or decreasing order.

First of all consider a sample afindependent copies ofé&dimensional random vec-
tor U which is uniformly distributed on the unit hypersphet& ! and thus possesses
the covariance matriX;/d (see, e.g., Fang et al., 1990, p. 34). Multiplying the sample
covariance matrix by the number of dimensiahshould give an appropriate estimator
for the true and normalized eigenspectriim= ... = \; = 1. Indeed, ifn grows to
infinity such thatn/d — oo then the empirical distribution of the eigenvalues given by
the normalized sample covariance matrix converges to ecDmass at point 1. This
holds especially itZ remains fixed. In contrast, for — co andn/d — ¢ < oo the
number of eigenvalues grows to infinity with the same ratdhasample size. In that
case the empirical distribution of the eigenvalues dumonverge to the Dirac mass
and there can be large fluctuations of eigenvalues aroundriitx is large. This can
be seen as a curse of dimensionality problem which prevediseat application of
principal components analysis bigh-dimensionabtlata. This holds even if the distri-
butional assumption concerning the data (e.g. the Gaud@gibution hypothesis) is
fulfilled.

Theorem 1 (MarCenko and Pastur (1967)).Let Ul(d), e fld) be a sample of mu-
tually independenti-dimensional random vectors uniformly distributed on thmt u
hyperspherer(,d = 1,2, ...). Consider the random matrix

d n
SIS S
t=1

and the empirical distribution functiof; of its eigenvalues. Suppose that! — oo,
butn/d — q where0 < ¢ < co. Then there exists a distribution functidfi;p such
that

Fy % Fup (-39),

9



at all points whereFp is continuous. Maoreover, it holds
Fup (A;q) = Rip (V) + By (A;q),  YAeR,

where the Dirac part is given by

. 1—gq, A>0,0<qg<1,
Fﬁp(') Ar—
0, else

and the Lebesgue part By<b (-5 q) fo Leb (x5 q) dx with

Leb ( ) \ q \/()\max - )‘)+ ()‘ - )‘min)+
.o : }—) —_—
MP "3 4 o b\

for all A > 0 where

1 2
)\min,max = <1 + %> .

Proof. Marcenko and Pastur (1967). O

In the following @ will be calledMarcenko-Pastur operatorThe next theorem implies
that the Ma€enko-Pastur law (MPLJp does not only hold for the Méenko-Pastur
operator but also for Pearson’s correlation or, synonyiypasoss correlation matrix
if the data are mutually independent.

Theorem 2 (Yin (1986)). Letde), - ,X,(ld) be a sample of mutually independeht
dimensional random vectors whose components are also Hwindependent, have
zero mean and unit variance. Then the empirical distribufienction of the eigenval-

ues of
1 n
. ZXt(d)
n
t=1

converges almost surely to the distribution functidnp given by Theorem 1 as d —
o0, butn/d — g where0 < g < cc.

Proof. Yin (1986). O

Now the superscript(d)’ in * Ut(d)’ and ‘Xt(d)’ will be dropped for notational conve-
nience. However, we should bear in mind thatand X; are d-dimensional random
vectors and the dimension grows with— oo such that:/d — ¢ .

10



2.3 Application to Principal Components Analysis

Note that in the preceding theorem it is assumed that theadatalready standardized.
Thus, for applying the MPL we can calculate the cross cdioglanatrix

. SN T
Bt Zn: <Xit - Ni) (th - Mj)
n —1 6@ 6]‘ ’
where /i, denotes the sample mean afidthe standard deviation oXyq, ..., X,
(k=1,...,d). Indeed, the eigenspectrum of the cross correlation metrnverges to

the MPL provided the data are mutually independent. Howé&hould be noted that
by standardizing the data not the dispersion mafrisut rather the so-callepgseudo-
correlation matrixp is investigated. This matrix is defined by the equaftivs- opo,
whereos is a diagonal matrix containing the roots of the main diagef@ments of=
andp is a square matrix whose main diagonal elements are equal to 1

Under the null hypothesis = I; the eigenspectrum of a high-dimensional cross-
correlation matrix should be consistent with the MPL. Moreqgisely, empirical eigen-
value distributions close to the MPL indicate that the congis of the considered
random vector arencorrelatedand all apparent correlations are due to ‘random noise’.
In contrast, the morg diverges from the identity matrix, the more eigenvaluesesre
pected to exceed thdartenko-Pastur upper bounkd,,.. given in Theorem 1 and vice
versa. The exceeding eigenvalues are considered as sigmainformation’. This
argument is used by many authors for rejecting the null Hygsi$s and quantifying the
number of principal components which are essentially nesibte for the total vari-
ation of financial data, say the ‘driving risk factors’ of fir@al markets (see, e.g.,
Bouchaud and Potters, 2000, Laloux et al., 1999, Plerou. €129, 2002). Indeed,
since Theorem 2 does not require any specific distributioy (the second moments
must be finite) and the data even do not have to be identicalyilmited but only
stochastically independent, it seems to be a perfect pesiibin for applying the MPL

to heavy tailed financial data. We will see that this is a llan the context of ellipti-
cally contoured and even more for generalized ellipticdiktributed data.

Note that for principal components analysis we are usuatbrésted in analyzing the
dispersion matrixt rather than the pseudo-correlation magriand the null hypothesis
corresponds t& = ¢2I; whereo? is a positive number. Hence, the MPL can be
applied to the empirical distribution function of the eigalues of

o LN X =\ ( X\ o
=— =3
s-n 2 (55) (55) -9

t=1

Q>

whereX. denotes the sample covariance matrix and

d
Z)\Z :25\,
i=1

and )\, ..., \q are the eigenvalues &t . Note thattr(S) = d and the MPL can be
simply applied to the empirical distribution function ofethormalized eigenvalues
Al,., A where A = Ni/A (@ = 1,...,d). We will only consider this kind of
normalization in the subsequent discussion.

o tr(i)_
0= — =

ISH
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Figure 5: Eigenspectra obtained by the sample covariantexned univariate (left)
and multivariate (right) uncorrelateddistributed datar{ = 1000, d = 500) with five
degrees of freedom.

3 Pitfall and Alternative

3.1 Sample Covariance Matrix

Consider a samplen(= 1000) of 500-dimensional random vectors where the vector
components are standardizedistributed withv = 5 degrees of freedom and mu-
tually independent. Indeed, several empirical studiesvstat daily log-returns of
stocks typically possess between three and seven degrdesedbm after fitting a
multivariatet-distribution (see, e.g., McNeil et al., 2005, p. 85). Onldgfehand side
of Figure 5 we see that the eigenspectrum obtained by thelsamyariance matrix is
consistent with the MPL. In contrast, let the datgdirtly ¢-distributed possessing the
same parameters and each vector component being uncedreldw — as indicated
by the right hand side of Figure 5 — the eigenspectrum olddiyethe sample covari-
ance matrix doesot correspond to the MPL. Actually, there are gfuriouseigenval-
ues exceeding the Mé&enko-Pastur upper bound,., = (1+1/v/2)? = 2.91 and the
largest eigenvalue even correspond$i@9. That means oves% of the eigenvalues
are erroneously considered as signals or information! B\@g the sum of the eigen-
values larger than,.x divided by the number of dimensions, i.e. the contributién o
the large eigenvalues to the total variation of the simdlate&ta considered in Figure 5
corresponds t@4%.

Note that in the former case (i.e. mutually independencallofiata) the considered
random vector isiot generalized elliptically distributed and although theteecom-
ponents are heavy tailed they are not tail-dependent. Ielskmown that the multi-
variate Gaussian distribution is the only elliptical distition where uncorrelatedness
and stochastical independence are equivalent. That meanthe components of a
random vector possessing any other elliptical distriuiannot be stochastically in-
dependent even if they are uncorrelated. Hence, in the [ete (where the random
vectors are multivariate-distributed) tail dependence is present and the princpal
sumption of Theorem 2 is violated. This is the reason why tiRtigenerally does not
work for generalized elliptically distributed random vert.

12



Figure 6: Normalized sample covariance matrix for muliaer ¢-distributed data
(n = 1000,d = 500) with three degrees of freedom (left) and the corresponding
true dispersion matrix (right).

Since the sample covariance matrix corresponds tdvhestimatorfor multivariate
Gaussian distributed random vectors but correlation apémltdence are equivalent in
the Gaussian case any sortmalineardependence is confounded with linear depen-
dence. Especially, tail dependence may lead to obsergatitrere the vector com-
ponents seem to be highly correlated and the smaller thatkik of the generating
variateR, i.e. the heavier the tails of, the more spurious eigenvalues occur.

3.2 Spectral Estimator

As mentioned before, the true linear dependence structirthe dispersion matrix of
a generalized elliptically distributed random vecforin general cannot be estimated
efficiently (in the statistical sense) by the sample covengamatrix. If the data stem
from a leptokurtic or even regularly varying ellipticallystributed random vector both
the finite sample and asymptotic (co-)variances of the sawwplariance or cross cor-
relation matrix can be very large (see, e.g., Lindskog e2@D3, Oja, 2003, van Praag
and Wesselman, 1989). For example, Figure 6 contains aaéal of the (normal-
ized) sample covariance matrix for multivariatdistributed datar{ = 1000, d = 500)
with three degrees of freedom (left hand side) and the qooreting true dispersion
matrix (right hand side).

Large perturbations of the sample covariance matrix carubaalextreme values (e.g.

in the case of regular variation) oontaminatiorof the data which is typically caused
by measurement errors. It is worth to point out that these@imena can even occur in
low dimensions. Actually, this is a well-established branchobiust statistics and one
can find a large number of robust covariance matrix estiratathe literature such as
M-estimators (Maronna, 1976), S-estimators (Lopuha&a9),98e MVE- and MCD-
estimators proposed B3, estimation procedures based on trimming (Gnanadesikan
and Kettenring, 1972) and orthogonal projections of tha §atahel, 1981), etc.

Further, suppose that the data gemeralizecelliptically distributed such thak and
U depend on each other. If the true covariance matriX a$ not a linear function of
Y, the sample covariance matrix even will béiasedestimator fory, generally. In
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the following it is shown that there exists a distributiord alternative to the sample
covariance matrix for the class of generalized elliptidatributions. Note that we do

not focus on robust budistribution-freeestimation ofY and therefore we will not go

into the details of robust statistics.

For the following discussion it is assumed thais ad-dimensional generalized ellip-
tically distributed random vector wheyeis supposed to be known, € IR¥** with
r(A) = d,andP(R = 0) = 0 (that isX has no atom at). Further, the random vector
V defined by Eq. 1 is referred to as theit random vectogenerated bw .

Due to the stochastic representation’ofjiven by Definition 2 the following relations

hold:

X-p o RAU o AU

[X—ul  TRAUT  TAC]

where+ := sgn(R). Note that the random vectarl” does not depend on the absolute
value of R. Especially, it is completely invariant against extremecomes of the
generating variate. However, the sign7fstill remains and indeed this may depend
onU, anymore.

o
n

— 4V, )

Suppose for the moment that is known for each realization dR so that we can
easily calculate any realization &f. Then the dispersion matrix oX can be es-
timated via the method ahaximum likelihood ML) but without any distributional
assumption concerning . Even the dependence structurefandU is not relevant
since the distribution of depends only om. Hence, the resulting estimator will be
distribution-free. That is we have to calculate the derfsitction of V', sayv — 1(v)
and search fof” := I'T'" with

n
I:= ‘A
arg m/iixtl_ll P (v

Theorem 3. Let A be ad x k£ matrix withr(A) = d. The density function of the unit
random vector generated by corresponds to

I'(d/2) —d
vi— P (v) = 5 d//2 Vdet(S1) - VoTs -1y VoeS8t,
whereX = AAT.
Proof. See, e.g., Frahm (2004, pp. 59-60). O

This distribution is sometimes referred to as émgular central Gaussian distribution
on the spheréTyler, 1987b, Kent and Tyler, 1988) but we will call it singgbpectral
density function’. This is justified by the next two corolks.

Corollary 1. Consider Theorem 3. The extremal positiong @fre given by the space
of normalized eigenvectors &f, i.e. for anyv € S satisfyingZv = \v the value
¥ (v) is a local extremum of and vice versa.
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Figure 7: Spectral density of a 2-dimensional unit randoitaregenerated by;; =
Yoo = landXiy = Y91 = 0.7.

Proof. Define the Lagrangian
) 2 T
L= ~J log(v) — ¢ (v v 1) .

The derivative ofl with respect ta corresponds to

oL 2y 1y
—_— = — 2.
ov  vTyx 1y v

SettingdL/dv = 0 leads to the relation
iy = (UT271U> v =0\"tv,

whereA~! is an eigenvalue ot ~! and? = 1. Note that due ta(A) = d the matrix®

is positive definite\ > 0 is an eigenvalue of,, andw is the corresponding normalized
eigenvector. We have shown thatv) is a stationary point. Sincé~! is also positive
definite bothy : v — vTX1v andey o« ¢~ %2 cannot possess saddle points. That
means)(v) is a local extremum of) . O

Corollary 2. Consider Theorem 3. The local extrema/ofan be calculated by

I'(d/2
v =Y.

det(AX1),
where) is an eigenvalue ok andw is the corresponding normalized eigenvector.

Proof. This is a direct consequence of Corollary 1. O

Figure 7 exemplifies the spectral density of a unit randontoredistributed on the
unit circle. Note that) is symmetric and thus the sign & does not matter at all.
That means we do not have to knawfor calculating the ML-estimator based on the
spectral density function. Suppose that, .. ., X,, aren independent copies of. It
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can be shown that the desired ML-estimator, say the ‘sgezstamator’, is given by
the following fixed-point equation (Frahm, 2004, Sectiop.2):

n

d I’ATAl
Ti=—- -t 3
n 7AN R A ®

whereV; = (X; — p)/|| Xy — pf| fort = 1,...,n. Actually, the spectral estimator
corresponds tdyler's M-estimator(Tyler, 1983, 1987a), i.e.

(X — p) (X — M)T

=3 ; X — ) T NX;,—p)

(4)

Note that the solution of that fixed-point equation is onlygue up to a scaling con-
stant and thus we will require’(T") = d in the subsequent discussion. We also could
have considered other constraints like, elgt(7") = 1 or fixed the upper left element
of T"to 1 (Frahm, 2004, p. 64). However, in the context of RMT thst fiestriction
has the advantage that we do not need to normalize the elgeavaf’l’ in an extra
step for applying the MPL.

The spectral estimator possesses several nice propeRiesnstance, it is strongly
consistent, asymptotically normally distributed, andragtotically efficient among
all distribution-free estimators (Tyler, 1987a, FrahmQ20Chapter 5). Note that for
obtaining these asymptotic properties it is implicitly @s®d that the dimensiasis
fixed We have found only one exception in the literature. DUmb@&98) inves-
tigated the asymptotic behavior of Tyler's M-estimator for— oo butn/d — co.
However, this is not the topic of RMT where/d — ¢ < oo is assumed.

Further properties concerning both the existence and cgemee of Tyler's M-estima-
tor by applying fixed-point iteration algorithms were dexdvby Tyler (1987a) as well
as Kent and Tyler (1988, 1991). Particularly, Kent and Tyl¥88) proved that for
any given sample;, ..., z, the fixed-point solutiorf” exists and the sequenc¢g;)
defined by the simple fixed-point iteration scheme

d < (z¢ — p) (g — M)T
Tivq = — -
T ; (¢ — ) TT; (e — p)

. i=0,1,..., (5)

converges tar27T" provided the data stem from a continuous distributiorRifi and
n > d. Here the initial valud} can be any positive definii¢ x d matrix andos? > 0
is a scaling constant depending on the initial vdlye We can see by Eq. 3 that for
the existence of’ and convergence dfT;) it is only required that the distribution of
the projecteddataly, ..., V,, defined by Eq. 1 are continuously distributed and note
that

v L AU AU

is generalized elliptically distributed with generatingriate® = ||AU|~!. Hence,
Tyler’s proof holds for the class of generalized elliptichdtributions, too, given the
rather weak conditions mentioned at the beginning of thiti@e.

It is worth to point out that the spectral estimator is a rossimator and its robust-
ness properties (i.e. breakdown point, maximum bias andneg) were already in-
vestigated by Adrover (1998), Dumbgen and Tyler (2005),dviaa and Yohai (1990),
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Figure 8: Spectral estimator for multivariatelistributed data{ = 1000, d = 500)
with three degrees of freedom (left) and the corresponding tispersion matrix

(right).

and Tyler (1983, 1987a). In particular it has been shownttf@Dirac contamination
breakdown point of” corresponds ta/d (Maronna and Yohai, 1990) whereas &y
kind of contamination it is betweety (d + 1) and1/d (Adrover, 1998) if the data are
elliptically distributed. Due to the arguments given abtwe same holds for general-
ized elliptical distributions and the spectral estimatmgdiks down forl — oo if the
data are contaminated. Thus when working with financial dasamportant to elim-
inate clusters such as null-returns before applying TyIBt‘estimator in the context
of RMT.

The left hand side of Figure 8 contains a realization of thecspl estimator for the
multivariate¢-distributed data already used for calculating the samglargance ma-
trix in Figure 6. This can be compared with the corresponding dispersion matrix
on the right hand side of Figure 8 and the sample covariant¢gxnraFigure 6. Ob-
viously, the spectral estimator provides a robust altéredab the sample covariance
matrix. Note that we do not need to investigate the specstithator under a ‘true’
generalized elliptical distribution such as the model psaul at the end of Section
1.2.2. By the relations (2) it was already proved thatepends only on the dispersion
matrix > and not on the generating varigke or the relationship betweeR andU.
That means under generalized elliptically distributechdaé spectral estimator would
perform as well as e.g. under the multivariatdistributed data considered in Figure 8
provided the dispersion matrices are equal.

The following arguments are based on the distribution feeemather than the robust-
ness off’. Consider once again the Ma&nko-Pastur operatdp given in Theorem 1
and note that under the null hypotheEisx I; the spectral estimator corresponds to

d <~ UU’
T=—-) ——Lt .
n ;UJT—lUt

Due to the strong consistency Bfwe know thatl/,’T—'U; — 1 almost surely (where
d is fixed andn — o0) for everyt = 1,2,.... Thus our intuition tells us thal' ~ @
for n — oo though we have to bear in mind that in the context of RMT algwows
to infinity. Thus it is not clear wheth€er is strongly consistent fon,d — oo but
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density
density

eigenvalue eigenvalue

Figure 9: Eigenspectra obtained by the spectral estimatarfivariate (left) and mul-
tivariate (right) uncorrelated-distributed datar{ = 1000, d = 500) with five degrees
of freedom.

n/d — g < oo. However, we expect that the empirical distribution fuocs of the
eigenvalues of” and(@ are asymptotically equivalent.

What if the data are not generalized elliptically distrémibut — as described in Theo-
rem 2 — standardized and mutually independent? Now consideiandom matrixs
given by Theorem 2 and Eqg. 4 with= 0, i.e.

n

1 b el
= 2 X %
t=1 "t ¢

If T is strongly consistent in the strict sense of RMT we obt&jh7" ! X, /d — 1 al-
most surely ¢, d — oo, n/d — q < oc) for everyt = 1,2,... (due to the Strong Law
of Large Numbers). Hence, the empirical distribution fimas$ of the eigenvalues of
T and.S might be asymptotically equivalent, too, provided the dbods of Theorem
2 are fulfilled. Unfortunately, the authors did not resolie difficulties to prove these
two conjectures, yet.

Usually, the true location vecteris unknown. It can be substituted by a consistent es-
timator like, e.g., the sample mean or some other robushalige (Tyler, 1987a). An-
other possibility is to estimate and>: simultaneouslyas described by Tyler (1987a).
However, for applying RMT our simulation studies indicatattthe particular choice

of the location estimator does not matter at all. For the senulation studyu was
simply substituted by the sample mean

Consider once again the sample50f)-dimensional random vectors with sample size
n = 1000 where the vector components are standardizditributed withy = 5
degrees of freedom and mutually independent. On the lefll kate of Figure 9 we
can see that the eigenspectrum obtained by the spectrabgstiis consistent with the
MPL. Indeed, this is also true for the sample covariance imgtee the left hand side

of Figure 5). Now, if the data are jointlyrdistributed possessing the same parameters
but the vector components are only uncorrelated, the gigetrsim obtained by the
spectral estimatargainis consistent with the MPL as indicated by the right hand side
of Figure 9. Remember that this is not true for the sample riavee matrix (see the
right hand side of Figure 5).
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