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Figure 1: Normal QQ-plots of GARCH(1,1) residuals of daily log-returns of NASDAQ
(left hand) and S&P 500 (right hand) from 1993-01-01 to 2000-06-30 (n = 1892).

1 Stylized Facts of Empirical Finance

1.1 Motivation

Distributions of short-term financial data usually exhibitsomestylized facts, e.g. heavy
tails or at least leptokurtosis, extremal or tail dependence, skewness and other kinds
of asymmetries, volatility clusters or even long-memory, and so on. This holds espe-
cially if log-price changes (so-calledlog-returns) of stocks, stock indices, and foreign
exchange rates are considered. Furthermore, high-frequency data generally are non-
stationary, have jumps, and are strongly dependent. Indeed, there is a vast and still
growing literature on that topic, e.g. Bouchaud et al. (1997), Breymann et al. (2003),
Ding et al. (1993), Eberlein and Keller (1995), Embrechts etal. (1997, Chapter 6),
Engle (1982), Fama (1965), Junker and May (2005), Mandelbrot (1963), McNeil et al.
(2005, Section 4.1.1), and Mikosch (2003, Chapter 1).

Figure 1 shows normal QQ-plots of GARCH(1, 1) residuals given by daily log-returns
of the NASDAQ and S&P 500 stock indices from 1993-01-01 to 2000-06-30. Here the
particular choice of the indices is rather arbitrary and thephenomena discussed later
on can be observed for many stocks or stock indices. The QQ-plots clearly indicate
that the normal distribution hypothesis is not appropriatefor the left tails of the dis-
tributions whereas the Gaussian law seems to be acceptable for the right tails. Hence
the probability of extreme losses is higher than suggested by the normal distribution
assumption.

Figure 2 shows the joint distribution of the GARCH residualsconsidered above. Es-
sentially there are four effects which can be observed by thescatter plot:

1. The main part of the distribution seems to beelliptically contoured.

2. However, we can observe a few outliers orextreme values, and

3. almost all extremes occursimultaneouslywhereas

4. the outliers arenot symmetricallydistributed.
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Figure 2: NASDAQ vs. S&P 500 GARCH(1,1) residuals from 1993-01-01 to 2000-
06-30 (n = 1892).
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Figure 3: Number of extremes in the S&P 500 during 1980-01-02to 2003-11-26.

The effect ofsimultaneousextremes can be observed more precisely in Figure 3. It
shows the total numbers of S&P 500 stocks whose absolute values of daily log-returns
exceeded10% for each trading day during 1980-01-02 to 2003-11-26. On the19th
October 1987 (the so-calledBlack Monday) there occurred 239 extremes. This num-
ber is suppressed for the sake of transparency. This figure points out the concomitance
of extremes. If the extremes of each stock would occur independently then the number
of extremal events (no matter if losses or profits) should be small and more or less
constant over time. Obviously, this is not the case. In contrast one can see the October
crash of 1987 and several extremes which occur permanently since the beginning of
the bear market in 2000. Hence there is an increasing tendency of simultaneous losses.
The phenomenon of simultaneous extremes is often denoted byasymptotic depen-
dence, extremalor tail dependenceand is part of copula theory as well as multivariate
extreme value theory. We will avoid a formal definition of copulas or tail dependence.
A profound treatment of copula theory can be found, e.g., in Joe (1997) and Nelsen
(2006) whereas Mikosch (2003, Chapter 4) gives a nice overview on extreme value
theory. Our arguments are based on the fact that financial data exhibit tail dependence.
Indeed, this is indicated by many empirical studies (see, e.g., Breymann et al., 2003,
Junker and May, 2005).
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1.2 Generalized Elliptical Distributions

1.2.1 Elliptically Symmetric Distributions

It is well-known that the multivariate normal distributiondoes neither allow for heavy
tails nor for tail dependence. To overcome that problem members of the traditional
class of elliptically symmetric distributions (Cambanis et al., 1981, Fang et al., 1990,
Kelker, 1970) are often proposed for the modeling of financial data (cf., e.g., Bingham
and Kiesel, 2002, Eberlein and Keller, 1995).

In the following definition the termunit hypersphererefers to the manifold

Sk−1 :=
{
u ∈ IRk : ‖u‖ = 1

}

and‖ · ‖ denotes the Euclidean norm onIRk.

Definition 1 (Elliptical Distribution). A d-dimensional random vectorX is said to
be elliptically distributed if and only if there exist

1. a k-dimensional random vectorU , uniformly distributed on the unit hyper-
sphere,

2. a nonnegative random variableR being stochastically independent ofU ,

3. a vectorµ ∈ IRd, and a matrixΛ ∈ IRd×k such that

X
d
= µ+ ΛRU .

In the following discussion we will callΣ := ΛΛT the dispersion matrixof X and
R its generating variate. Many well-known multivariate distributions belong to the
class of elliptically contoured distributions. For instance, the multivariate Gaussian
distribution is elliptical since it can be represented by

X
d
= µ+ Λ

√
χ2

k U.

Further, the multivariate symmetricα-stable or, synonymously, thesub-Gaussian dis-
tribution is given by

X
d
= µ+ Λ

√
Sα/2χ

2
k U ,

where0 < α < 2 andSα/2 is a positiveα/2-stable distributed random variable with
skewness parameterβ = 1. Further,Sα/2 andχ2

k are stochastically independent. For
α = 1 we obtain the multivariate symmetric Cauchy distribution,i.e. the multivariate
t-distribution with one degree of freedom (see below).

The multivariatet-distribution withν > 0 degrees of freedom is given by

X
d
= µ+ Λ

√
νχ2

k/χ
2
ν U ,

whereχ2
k andχ2

ν are stochastically independent. Note thatν also corresponds to the
tail index or regular variation indexof X (Mikosch, 2003). Forν → ∞ we obtain
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the multivariate normal distribution as a special case of the multivariatet-distibution.
Moreover, the multivariate symmetric generalized hyperbolic distribution is given by

X
d
= µ+ Λ

√
ζχ2

k U ,

whereζ is generalized inverse Gaussian distributed. Again,ζ andχ2
k are stochastically

independent. Forζ = ν/χ2
ν (i.e. ζ is inverse gamma distributed) once again the mul-

tivariatet-distribution withν degrees of freedom occurs. The generalized hyperbolic
distribution also contains the hyperbolic, the normal-inverse Gaussian, and the gener-
alized Laplace distribution (or, synonymously, the variance-gamma distribution). For
a nice overview of the generalized hyperbolic distributionand its statistical properties
see e.g. McNeil et al. (2005, Section 3.2.3) and Prause (1999, Chapter 1).

The main fact that we would like to point out for the further discussion is that elliptical
distributions possess two sorts of dependencies, viz

1. linear dependencies, which can be expressed by the dispersion matrix Σ and

2. nonlineardependencies imposed by the generating variateR .

Hence, the generating variateR not only defines the particular elliptical distribution
family and – providedR is regularly varying – the heaviness of the tails but also that
part of the dependence structure which cannot be reduced to abasis transformation
caused by the matrixΛ . Particularly, that means that the components of an elliptically
distributed random vector can be highly dependent even if they are uncorrelated!

For instance, consider the 2-dimensional random vectorU = (U1, U2) uniformly dis-
tributed on the unit circle. Obviously, the components ofU are uncorrelated. Never-
theless, each component ofU heavily depends on the other component by the relation

U2 = ±
√

1 − U2
1 .

Of course, that sort of nonlinear dependence has nothing to do with tail dependence.
But if U is multiplied by aregularly varyingor sayheavy tailedgenerating variate
R then the tail index ofR carries over to the spherical random vectorRU and thus
to the elliptical random vectorX =d µ + ΛRU (Hult and Lindskog, 2002, Schmidt,
2002). Particularly, thetail-dependence coefficientsand also theextremal dependence
coefficientofX are essentially determined by the tail index ofR (Frahm, 2006, Frahm
et al., 2003, Hult and Lindskog, 2002, Schmidt, 2002).

1.2.2 Asymmetric Distributions

Elliptical distributions inherit many nice properties from the multivariate Gaussian
distribution. For instance, they are closed under affine transformations, the marginal
distributions are also elliptical, and even the conditional distributions remain ellipti-
cal. Especially, the distributions considered above areinfinitely divisiblewhich is an
appealing property for the modeling of financial data (Bingham and Kiesel, 2002).
Further, due to the simple stochastic representation of elliptical distributions they are
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Figure 4: Observed GARCH(1,1) residuals of NASDAQ and S&P 500 (left hand) and
simulated generalized elliptically distributed residuals (n = 1892) (right hand).

appropriate for modeling ofhigh-dimensionalfinancial data. However, elliptical distri-
butions suffer from the property of symmetry. The pictures above show that extremes
of financial data are not always symmetrically distributed.For that reason we will bear
on the class ofgeneralized elliptical distributions(Frahm, 2004, Chapter 3).

Definition 2 (Generalized Elliptical Distribution). A d-dimensional random vector
X is said to be generalized elliptically distributed if and only if there exist

1. a k-dimensional random vectorU , uniformly distributed on the unit hyper-
sphere,

2. a random variableR ,

3. a vectorµ ∈ IRd, and a matrixΛ ∈ IRd×k such that

X
d
= µ+ ΛRU .

Note that all the components of elliptical distributions, i.e. the location vectorµ, the
dispersion matrixΣ, and the generating variateR are preserved, but generallyR can
benegativeand even more it maydependonU . This fact allows for the modeling of
tail dependence and asymmetry. It is worth to point out that the class of generalized
elliptical distributions not only includes the traditional class of elliptically symmet-
ric distributions but also a relatively new class known asskew-elliptical distributions
(Branco and Dey, 2001, Liu and Dey, 2004). This can be obtained by a modeling
technique calledhidden truncation(Arnold and Beaver, 2004, Frahm, 2004, p. 47).
However, skew-elliptical distributions have been introduced especially for the model-
ing of skewness and heavy tails rather than tail dependence (Branco and Dey, 2001).

Figure 4 shows once again the joint distribution of the GARCHresiduals of NASDAQ
and S&P 500 log-returns from 1993-01-01 to 2000-06-30 whichare also given in Fig-
ure 2. The right hand side of Figure 4 containsn = 1892 simulated GARCH residuals
on the basis of a generalized elliptical distribution (where the green curves are the cor-
responding density contours). More precisely, the generating variateR corresponds
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to
√
νχ2

2/χ
2
ν but the number of degrees of freedomν depends on the 2-dimensional

random vectorU = (U1, U2) due to

ν = 4 + 996 · δ
(

ΛU

‖ΛU‖ , w
)3

,

whereδ(v,w) := ∠(v,w)/π = arccos(vTw)/π measures the ‘distance’ between

V :=
ΛU

‖ΛU‖ (1)

and areference vector

w := (− cos (π/4) ,− sin (π/4)) .

Note that GARCH residuals have zero mean and unit variance bydefinition. Hence,
for modeling the linear dependence structure we may concentrate on the correlation
coefficient of the observed GARCH residuals of NASDAQ and S&P500 which corre-
sponds toρ = 0.78. That means for the transformation matrixΛ we may choose the
Cholesky root √[

1 0.78
0.78 1

]
=

[
1 0

0.78 0.63

]
.

Hence, ifV is closeto the reference vector (that means close to the ‘perfect loss sce-
nario’) then the corresponding random vector is supposed tobe t-distributed with al-
mostν = 4 degrees of freedom (sinceδ ≈ 0). In contrast, a random vector exposed to
theoppositedirection is assumed to be nearly Gaussian distributed (since δ ≈ 1 and
thusν is large). Admittedly, this specific parameterization is rather arbitrary. However,
by comparing the right hand side of Figure 4 (i.e. the simulated data) with its left hand
side (i.e. the observed GARCH residuals) we can see that the chosen model is able to
reproduce the stylized facts observed in Figure 2.

1.3 Conclusions

In virtue of the previous findings our conclusions are as follows:

1. The class of generalized elliptical distributions contains many well-known mul-
tivariate distributions. Specifically, it includes the class of elliptically symmetric
and skew-elliptical distributions.

2. High-dimensional time series reflecting the stylized facts of empirical finance
can be readily modeled by means of generalized elliptical distributions.

3. This class of distributions seems to be an appropriate model for financial data to
investigate standard methods of random matrix theory.
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The problem is that there is atremendousamount of generalized elliptical distribution
families which can be considered for the modeling of financial data. Later on we will
see that the results given by standard methods of random matrix theory heavily depend
on the underlying assumptions concerning the dependence structure of the data and this
is essentially determined by the particular generalized elliptical distribution family or,
more precisely, by the generating variateR . Thus we aim at finding an alternative
approach that isdistribution-freewithin the class of generalized elliptical distributions
such that standard methods of random matrix theory can be applied given the stylized
facts of empirical finance despite that we do not know the ‘true’ distribution family or
generating variate.

2 Random Matrix Theory

2.1 Principal Components Analysis

Recall that – by the Spectral Decomposition Theorem – every positive semi-definite
d× d matrix Σ can be decomposed by

Σ = ODOT,

whereO is an orthonormal matrix of eigenvectors ofΣ andD is a diagonal matrix
containing its eigenvaluesλ1, . . . , λd ≥ 0. So we obtain

Σ = O
√
D

(
O
√
D

)T

,

where
√
D is a diagonal matrix containing the roots of the main diagonal elements of

D and we may defineΛ := O
√
D .

Hence, any generalized elliptically distributed random vectorX with dispersion matrix
Σ can be represented by

X
d
= µ+ O

√
D Y ,

whereY := RU is ad-dimensional random vector of latent variables called thefactors
or principal componentsofX. We may assume for convenience that the main diagonal
elements ofD are given in decreasing order. That meansX is mainly driven by the
first principal componentY1 and its impact onX can be measured by the largest eigen-
value ofΣ . The next eigenvalue ofΣ quantifies the influence of the second principal
componentY2 and so on. Hence the eigenspectrum ofΣ contains useful information
about thelinear dependence structure ofX.

2.2 The Marčenko-Pastur Law

SinceΣ is an unknown parameter the dispersion matrix must be estimated. Of course,
this estimator will be a random matrix. Random matrix theory(RMT) has its origin
both in mathematical statistics by the results of John Wishart and in statistical physics
dealing with the distribution of eigenvalues ofhigh-dimensionalrandomly generated
matrices. RMT found its first application in nuclear physicswhen trying to model the
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energy levels of complex nuclei. It was mainly developed by Arnold (1967, 1971),
Grenander (1963), Marčenko and Pastur (1967), Pastur (1972, 1973), and Wigner
(1955, 1958). A review of the state of the art of RMT can be found in Bai (1999)
and Mehta (1991).

Since we are interested in the eigenspectrum of covariance or dispersion matrices we
will only consider symmetric random matrices. Thus the corresponding eigenvalues
are always real. The empirical distribution function of theeigenvalues of a random
matrix is defined as follows.

Definition 3 (Empirical Distribution Function of Eigenvalu es). LetM be ad × d
symmetric random matrix with eigenvaluesλ1, . . . , λd . Then the function

Fd : λ 7−→ 1

d
·

d∑

i=1

11λi≤λ

is called the empirical distribution function of the eigenvalues ofM .

However, note that each eigenvalue of a random matrix is not arandom variablein
the formal sense since there is no single-valued mappingM 7→ λi (i ∈ {1, . . . , d})
but ratherM 7→ λ(M) whereλ(M) denotes the set of all eigenvalues ofM . This
can be simply fixed by assuming that the eigenvaluesλ1, . . . , λd are sorted either in an
increasing or decreasing order.

First of all consider a sample ofn independent copies of ad-dimensional random vec-
tor U which is uniformly distributed on the unit hypersphereSd−1 and thus possesses
the covariance matrixId/d (see, e.g., Fang et al., 1990, p. 34). Multiplying the sample
covariance matrix by the number of dimensionsd should give an appropriate estimator
for the true and normalized eigenspectrumλ1 = . . . = λd = 1. Indeed, ifn grows to
infinity such thatn/d→ ∞ then the empirical distribution of the eigenvalues given by
the normalized sample covariance matrix converges to a Dirac mass at point 1. This
holds especially ifd remains fixed. In contrast, forn → ∞ andn/d → q < ∞ the
number of eigenvalues grows to infinity with the same rate as the sample size. In that
case the empirical distribution of the eigenvalues doesnot converge to the Dirac mass
and there can be large fluctuations of eigenvalues around 1 even if n is large. This can
be seen as a curse of dimensionality problem which prevents adirect application of
principal components analysis tohigh-dimensionaldata. This holds even if the distri-
butional assumption concerning the data (e.g. the Gaussiandistribution hypothesis) is
fulfilled.

Theorem 1 (Marčenko and Pastur (1967)).LetU (d)
1 , . . . , U

(d)
n be a sample of mu-

tually independentd-dimensional random vectors uniformly distributed on the unit
hypersphere (n, d = 1, 2, . . .). Consider the random matrix

Q :=
d

n
·

n∑

t=1

U
(d)
t U

(d)T
t

and the empirical distribution functionFd of its eigenvalues. Suppose thatn, d→ ∞,
but n/d → q where0 < q < ∞. Then there exists a distribution functionFMP such
that

Fd
p−→ FMP (· ; q) ,

9



at all points whereFMP is continuous. Moreover, it holds

FMP (λ ; q) = FDir
MP (λ ; q) + FLeb

MP (λ ; q) , ∀λ ∈ IR ,

where the Dirac part is given by

FDir
MP (· ; q) : λ 7−→

{
1 − q, λ ≥ 0, 0 < q < 1,

0, else,

and the Lebesgue part byFLeb
MP (· ; q) : λ 7→

∫ λ+

0 fLeb
MP (x ; q) dx with

fLeb
MP (· ; q) : λ 7−→ q

2π
·

√
(λmax − λ)+ (λ− λmin)

+

λ

for all λ > 0 where

λmin,max :=

(
1 ± 1√

q

)2

.

Proof. Marčenko and Pastur (1967).

In the followingQwill be calledMarčenko-Pastur operator. The next theorem implies
that the Mařcenko-Pastur law (MPL)FMP does not only hold for the Marčenko-Pastur
operator but also for Pearson’s correlation or, synonymously, cross correlation matrix
if the data are mutually independent.

Theorem 2 (Yin (1986)). LetX(d)
1 , . . . ,X

(d)
n be a sample of mutually independentd-

dimensional random vectors whose components are also mutually independent, have
zero mean and unit variance. Then the empirical distribution function of the eigenval-
ues of

S :=
1

n
·

n∑

t=1

X
(d)
t X

(d)T
t

converges almost surely to the distribution functionFMP given by Theorem 1 asn, d→
∞, butn/d→ q where0 < q <∞.

Proof. Yin (1986).

Now the superscript ‘(d)’ in ‘ U (d)
t ’ and ‘X(d)

t ’ will be dropped for notational conve-
nience. However, we should bear in mind thatUt andXt ared-dimensional random
vectors and the dimension grows withn→ ∞ such thatn/d→ q .

10



2.3 Application to Principal Components Analysis

Note that in the preceding theorem it is assumed that the dataare already standardized.
Thus, for applying the MPL we can calculate the cross correlation matrix

R̂ :=

[
1

n
·

n∑

t=1

(
Xit − µ̂i

σ̂i

)(
Xjt − µ̂j

σ̂j

)T
]

,

whereµ̂k denotes the sample mean andσ̂k the standard deviation ofXk1, . . . ,Xkn

(k = 1, . . . , d ). Indeed, the eigenspectrum of the cross correlation matrix converges to
the MPL provided the data are mutually independent. However, it should be noted that
by standardizing the data not the dispersion matrixΣ but rather the so-calledpseudo-
correlation matrixρ is investigated. This matrix is defined by the equationΣ = σρσ,
whereσ is a diagonal matrix containing the roots of the main diagonal elements ofΣ
andρ is a square matrix whose main diagonal elements are equal to 1.

Under the null hypothesisρ = Id the eigenspectrum of a high-dimensional cross-
correlation matrix should be consistent with the MPL. More precisely, empirical eigen-
value distributions close to the MPL indicate that the components of the considered
random vector areuncorrelatedand all apparent correlations are due to ‘random noise’.
In contrast, the moreρ diverges from the identity matrix, the more eigenvalues areex-
pected to exceed theMarčenko-Pastur upper boundλmax given in Theorem 1 and vice
versa. The exceeding eigenvalues are considered as ‘signals’ or ‘information’. This
argument is used by many authors for rejecting the null hypothesis and quantifying the
number of principal components which are essentially responsible for the total vari-
ation of financial data, say the ‘driving risk factors’ of financial markets (see, e.g.,
Bouchaud and Potters, 2000, Laloux et al., 1999, Plerou et al., 1999, 2002). Indeed,
since Theorem 2 does not require any specific distribution (only the second moments
must be finite) and the data even do not have to be identically distributed but only
stochastically independent, it seems to be a perfect justification for applying the MPL
to heavy tailed financial data. We will see that this is a fallacy in the context of ellipti-
cally contoured and even more for generalized ellipticallydistributed data.

Note that for principal components analysis we are usually interested in analyzing the
dispersion matrixΣ rather than the pseudo-correlation matrixρ and the null hypothesis
corresponds toΣ = σ2Id whereσ2 is a positive number. Hence, the MPL can be
applied to the empirical distribution function of the eigenvalues of

Ŝ :=
1

n
·

n∑

t=1

(
Xt − µ̂

σ̂

)(
Xt − µ̂

σ̂

)
T

= Σ̂/σ̂2,

whereΣ̂ denotes the sample covariance matrix and

σ̂2 :=
tr(Σ̂)

d
=

1

d
·

d∑

i=1

λi =: λ̄ ,

andλ1, . . . , λd are the eigenvalues of̂Σ . Note thattr(Ŝ) = d and the MPL can be
simply applied to the empirical distribution function of the normalized eigenvalues
λ∗1, . . . , λ

∗
d whereλ∗i := λi/λ̄ (i = 1, . . . , d ). We will only consider this kind of

normalization in the subsequent discussion.
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Figure 5: Eigenspectra obtained by the sample covariance matrix of univariate (left)
and multivariate (right) uncorrelatedt-distributed data (n = 1000, d = 500) with five
degrees of freedom.

3 Pitfall and Alternative

3.1 Sample Covariance Matrix

Consider a sample (n = 1000) of 500-dimensional random vectors where the vector
components are standardizedt-distributed withν = 5 degrees of freedom and mu-
tually independent. Indeed, several empirical studies show that daily log-returns of
stocks typically possess between three and seven degrees offreedom after fitting a
multivariatet-distribution (see, e.g., McNeil et al., 2005, p. 85). On theleft hand side
of Figure 5 we see that the eigenspectrum obtained by the sample covariance matrix is
consistent with the MPL. In contrast, let the data bejointly t-distributed possessing the
same parameters and each vector component being uncorrelated. Now – as indicated
by the right hand side of Figure 5 – the eigenspectrum obtained by the sample covari-
ance matrix doesnot correspond to the MPL. Actually, there are 26spuriouseigenval-
ues exceeding the Marčenko-Pastur upper boundλmax = (1+1/

√
2 )2 = 2.91 and the

largest eigenvalue even corresponds to15.69. That means over5% of the eigenvalues
are erroneously considered as signals or information! Moreover, the sum of the eigen-
values larger thanλmax divided by the number of dimensions, i.e. the contribution of
the large eigenvalues to the total variation of the simulated data considered in Figure 5
corresponds to24%.

Note that in the former case (i.e. mutually independence ofall data) the considered
random vector isnot generalized elliptically distributed and although the vector com-
ponents are heavy tailed they are not tail-dependent. It is well-known that the multi-
variate Gaussian distribution is the only elliptical distribution where uncorrelatedness
and stochastical independence are equivalent. That means that the components of a
random vector possessing any other elliptical distribution cannot be stochastically in-
dependent even if they are uncorrelated. Hence, in the latter case (where the random
vectors are multivariatet-distributed) tail dependence is present and the principalas-
sumption of Theorem 2 is violated. This is the reason why the MPL generally does not
work for generalized elliptically distributed random vectors.
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Figure 6: Normalized sample covariance matrix for multivariate t-distributed data
(n = 1000, d = 500) with three degrees of freedom (left) and the corresponding
true dispersion matrix (right).

Since the sample covariance matrix corresponds to theML-estimatorfor multivariate
Gaussian distributed random vectors but correlation and dependence are equivalent in
the Gaussian case any sort ofnonlineardependence is confounded with linear depen-
dence. Especially, tail dependence may lead to observations where the vector com-
ponents seem to be highly correlated and the smaller the tailindex of the generating
variateR, i.e. the heavier the tails ofX, the more spurious eigenvalues occur.

3.2 Spectral Estimator

As mentioned before, the true linear dependence structure i.e. the dispersion matrix of
a generalized elliptically distributed random vectorX in general cannot be estimated
efficiently (in the statistical sense) by the sample covariance matrix. If the data stem
from a leptokurtic or even regularly varying elliptically distributed random vector both
the finite sample and asymptotic (co-)variances of the sample covariance or cross cor-
relation matrix can be very large (see, e.g., Lindskog et al., 2003, Oja, 2003, van Praag
and Wesselman, 1989). For example, Figure 6 contains a realization of the (normal-
ized) sample covariance matrix for multivariatet-distributed data (n = 1000, d = 500)
with three degrees of freedom (left hand side) and the corresponding true dispersion
matrix (right hand side).

Large perturbations of the sample covariance matrix can be due to extreme values (e.g.
in the case of regular variation) orcontaminationof the data which is typically caused
by measurement errors. It is worth to point out that these phenomena can even occur in
low dimensions. Actually, this is a well-established branch ofrobust statistics and one
can find a large number of robust covariance matrix estimators in the literature such as
M-estimators (Maronna, 1976), S-estimators (Lopuhaä, 1989), the MVE- and MCD-
estimators proposed by?, estimation procedures based on trimming (Gnanadesikan
and Kettenring, 1972) and orthogonal projections of the data (Stahel, 1981), etc.

Further, suppose that the data aregeneralizedelliptically distributed such thatR and
U depend on each other. If the true covariance matrix ofX is not a linear function of
Σ the sample covariance matrix even will be abiasedestimator forΣ, generally. In
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the following it is shown that there exists a distribution-free alternative to the sample
covariance matrix for the class of generalized elliptical distributions. Note that we do
not focus on robust butdistribution-freeestimation ofΣ and therefore we will not go
into the details of robust statistics.

For the following discussion it is assumed thatX is ad-dimensional generalized ellip-
tically distributed random vector whereµ is supposed to be known,Λ ∈ IRd×k with
r(Λ) = d, andP (R = 0) = 0 (that isX has no atom atµ). Further, the random vector
V defined by Eq. 1 is referred to as theunit random vectorgenerated byΛ .

Due to the stochastic representation ofX given by Definition 2 the following relations
hold:

X − µ

‖X − µ‖
d
=

RΛU

‖RΛU‖
a.s.
= ± ΛU

‖ΛU‖ = ±V, (2)

where± := sgn(R). Note that the random vector±V does not depend on the absolute
value ofR. Especially, it is completely invariant against extreme outcomes of the
generating variate. However, the sign ofR still remains and indeed this may depend
onU , anymore.

Suppose for the moment that± is known for each realization ofR so that we can
easily calculate any realization ofV . Then the dispersion matrix ofX can be es-
timated via the method ofmaximum likelihood(ML) but without any distributional
assumption concerningR . Even the dependence structure ofR andU is not relevant
since the distribution ofV depends only onΛ. Hence, the resulting estimator will be
distribution-free. That is we have to calculate the densityfunction ofV , sayv 7→ ψ(v)
and search forT := ΓΓT with

Γ := arg max
Λ

n∏

t=1

ψ (vt ; Λ) .

Theorem 3. Let Λ be ad× k matrix withr(Λ) = d . The density function of the unit
random vector generated byΛ corresponds to

v 7−→ ψ (v) =
Γ(d/2)

2πd/2
·
√

det(Σ−1) ·
√
vTΣ−1v

−d
, ∀ v ∈ Sd−1,

whereΣ = ΛΛT.

Proof. See, e.g., Frahm (2004, pp. 59–60).

This distribution is sometimes referred to as theangular central Gaussian distribution
on the sphere(Tyler, 1987b, Kent and Tyler, 1988) but we will call it simply ‘spectral
density function’. This is justified by the next two corollaries.

Corollary 1. Consider Theorem 3. The extremal positions ofψ are given by the space
of normalized eigenvectors ofΣ , i.e. for anyv ∈ Sd−1 satisfyingΣv = λv the value
ψ(v) is a local extremum ofψ and vice versa.
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Figure 7: Spectral density of a 2-dimensional unit random vector generated byΣ11 =
Σ22 = 1 andΣ12 = Σ21 = 0.7.

Proof. Define the Lagrangian

L := −2

d
· logψ(v) − ℓ

(
vTv − 1

)
.

The derivative ofL with respect tov corresponds to

∂L
∂v

=
2Σ−1v

vTΣ−1v
− 2ℓv .

Setting∂L/∂v = 0 leads to the relation

Σ−1v =
(
vTΣ−1v

)
ℓv = ℓλ−1v ,

whereλ−1 is an eigenvalue ofΣ−1 andℓ = 1. Note that due tor(Λ) = d the matrixΣ
is positive definite,λ > 0 is an eigenvalue ofΣ, andv is the corresponding normalized
eigenvector. We have shown thatψ(v) is a stationary point. SinceΣ−1 is also positive
definite bothϕ : v 7→ vTΣ−1v andψ ∝ ϕ−d/2 cannot possess saddle points. That
meansψ(v) is a local extremum ofψ .

Corollary 2. Consider Theorem 3. The local extrema ofψ can be calculated by

ψ (v) =
Γ(d/2)

2πd/2
·
√

det(λΣ−1) ,

whereλ is an eigenvalue ofΣ andv is the corresponding normalized eigenvector.

Proof. This is a direct consequence of Corollary 1.

Figure 7 exemplifies the spectral density of a unit random vector distributed on the
unit circle. Note thatψ is symmetric and thus the sign ofR does not matter at all.
That means we do not have to know± for calculating the ML-estimator based on the
spectral density function. Suppose thatX1, . . . ,Xn aren independent copies ofX. It

15



can be shown that the desired ML-estimator, say the ‘spectral estimator’, is given by
the following fixed-point equation (Frahm, 2004, Section 4.2.2):

T :=
d

n
·

n∑

t=1

VtV
T
t

V T
t T

−1Vt
, (3)

whereVt := (Xt − µ)/‖Xt − µ‖ for t = 1, . . . , n . Actually, the spectral estimator
corresponds toTyler’s M-estimator(Tyler, 1983, 1987a), i.e.

T =
d

n
·

n∑

t=1

(Xt − µ)(Xt − µ)T

(Xt − µ)TT−1(Xt − µ)
. (4)

Note that the solution of that fixed-point equation is only unique up to a scaling con-
stant and thus we will requiretr(T ) = d in the subsequent discussion. We also could
have considered other constraints like, e.g.,det(T ) = 1 or fixed the upper left element
of T to 1 (Frahm, 2004, p. 64). However, in the context of RMT the first restriction
has the advantage that we do not need to normalize the eigenvalues ofT in an extra
step for applying the MPL.

The spectral estimator possesses several nice properties.For instance, it is strongly
consistent, asymptotically normally distributed, and asymptotically efficient among
all distribution-free estimators (Tyler, 1987a, Frahm, 2004, Chapter 5). Note that for
obtaining these asymptotic properties it is implicitly assumed that the dimensiond is
fixed. We have found only one exception in the literature. Dümbgen(1998) inves-
tigated the asymptotic behavior of Tyler’s M-estimator ford → ∞ but n/d → ∞.
However, this is not the topic of RMT wheren/d→ q <∞ is assumed.

Further properties concerning both the existence and convergence of Tyler’s M-estima-
tor by applying fixed-point iteration algorithms were derived by Tyler (1987a) as well
as Kent and Tyler (1988, 1991). Particularly, Kent and Tyler(1988) proved that for
any given samplex1, . . . , xn the fixed-point solutionT exists and the sequence(Ti)
defined by the simple fixed-point iteration scheme

Ti+1 =
d

n
·

n∑

t=1

(xt − µ)(xt − µ)T

(xt − µ)TT−1
i (xt − µ)

, i = 0, 1, . . . , (5)

converges toσ2T provided the data stem from a continuous distribution inIRd and
n > d . Here the initial valueT0 can be any positive definited× d matrix andσ2 > 0
is a scaling constant depending on the initial valueT0 . We can see by Eq. 3 that for
the existence ofT and convergence of(Ti) it is only required that the distribution of
the projecteddataV1, . . . , Vn defined by Eq. 1 are continuously distributed and note
that

V
d
= ‖ΛU‖−1ΛU

is generalized elliptically distributed with generating variateR = ‖ΛU‖−1. Hence,
Tyler’s proof holds for the class of generalized ellipticaldistributions, too, given the
rather weak conditions mentioned at the beginning of this section.

It is worth to point out that the spectral estimator is a robust estimator and its robust-
ness properties (i.e. breakdown point, maximum bias and variance) were already in-
vestigated by Adrover (1998), Dümbgen and Tyler (2005), Maronna and Yohai (1990),
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Figure 8: Spectral estimator for multivariatet-distributed data (n = 1000, d = 500)
with three degrees of freedom (left) and the corresponding true dispersion matrix
(right).

and Tyler (1983, 1987a). In particular it has been shown thatthe Dirac contamination
breakdown point ofT corresponds to1/d (Maronna and Yohai, 1990) whereas forany
kind of contamination it is between1/(d + 1) and1/d (Adrover, 1998) if the data are
elliptically distributed. Due to the arguments given abovethe same holds for general-
ized elliptical distributions and the spectral estimator breaks down ford → ∞ if the
data are contaminated. Thus when working with financial datait is important to elim-
inate clusters such as null-returns before applying Tyler’s M-estimator in the context
of RMT.

The left hand side of Figure 8 contains a realization of the spectral estimator for the
multivariatet-distributed data already used for calculating the sample covariance ma-
trix in Figure 6. This can be compared with the correspondingtrue dispersion matrix
on the right hand side of Figure 8 and the sample covariance matrix in Figure 6. Ob-
viously, the spectral estimator provides a robust alternative to the sample covariance
matrix. Note that we do not need to investigate the spectral estimator under a ‘true’
generalized elliptical distribution such as the model proposed at the end of Section
1.2.2. By the relations (2) it was already proved thatT depends only on the dispersion
matrix Σ and not on the generating variateR or the relationship betweenR andU .
That means under generalized elliptically distributed data the spectral estimator would
perform as well as e.g. under the multivariatet-distributed data considered in Figure 8
provided the dispersion matrices are equal.

The following arguments are based on the distribution freeness rather than the robust-
ness ofT . Consider once again the Marčenko-Pastur operatorQ given in Theorem 1
and note that under the null hypothesisΣ ∝ Id the spectral estimator corresponds to

T =
d

n
·

n∑

t=1

UtU
T
t

UT
t T

−1Ut
.

Due to the strong consistency ofT we know thatUT
t T

−1Ut → 1 almost surely (where
d is fixed andn → ∞) for everyt = 1, 2, . . . . Thus our intuition tells us thatT ∼ Q
for n → ∞ though we have to bear in mind that in the context of RMT alsod grows
to infinity. Thus it is not clear whetherT is strongly consistent forn, d → ∞ but
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Figure 9: Eigenspectra obtained by the spectral estimator for univariate (left) and mul-
tivariate (right) uncorrelatedt-distributed data (n = 1000, d = 500) with five degrees
of freedom.

n/d → q < ∞. However, we expect that the empirical distribution functions of the
eigenvalues ofT andQ are asymptotically equivalent.

What if the data are not generalized elliptically distributed but – as described in Theo-
rem 2 – standardized and mutually independent? Now considerthe random matrixS
given by Theorem 2 and Eq. 4 withµ = 0, i.e.

T =
1

n
·

n∑

t=1

XtX
T
t

XT
t T

−1Xt/d
.

If T is strongly consistent in the strict sense of RMT we obtainXT
t T

−1Xt/d → 1 al-
most surely (n, d→ ∞, n/d→ q <∞) for everyt = 1, 2, . . . (due to the Strong Law
of Large Numbers). Hence, the empirical distribution functions of the eigenvalues of
T andS might be asymptotically equivalent, too, provided the conditions of Theorem
2 are fulfilled. Unfortunately, the authors did not resolve the difficulties to prove these
two conjectures, yet.

Usually, the true location vectorµ is unknown. It can be substituted by a consistent es-
timator like, e.g., the sample mean or some other robust alternative (Tyler, 1987a). An-
other possibility is to estimateµ andΣ simultaneouslyas described by Tyler (1987a).
However, for applying RMT our simulation studies indicate that the particular choice
of the location estimator does not matter at all. For the nextsimulation studyµ was
simply substituted by the sample meanµ̂ .

Consider once again the sample of500-dimensional random vectors with sample size
n = 1000 where the vector components are standardizedt-distributed withν = 5
degrees of freedom and mutually independent. On the left hand side of Figure 9 we
can see that the eigenspectrum obtained by the spectral estimator is consistent with the
MPL. Indeed, this is also true for the sample covariance matrix (see the left hand side
of Figure 5). Now, if the data are jointlyt-distributed possessing the same parameters
but the vector components are only uncorrelated, the eigenspectrum obtained by the
spectral estimatoragain is consistent with the MPL as indicated by the right hand side
of Figure 9. Remember that this is not true for the sample covariance matrix (see the
right hand side of Figure 5).
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