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1 Introduction

The one-period portfolio selection problem, as formulated by Markowitz (1952), under certain as-

sumptions - the most common of which is the assumption of normally distributed asset returns,

R̄ ∼ Nd (μ,Σ) - reads

max
w

μ′w − λ

2
w′Σw s.t. w ∈ C. (1)

Here, μ = (μ1, . . . , μd)
′ denotes the mean vector of the asset returns, whereas

Σ := [σij ], i, j = 1, . . . , d, is the covariance matrix of asset returns, so that σij = cov(R̄i, R̄j).

The decision variable w ∈ R
d represents the fractions of wealth the investor allocates among the d

assets, and as above, w might be subject to some constraints given by the constraint set C. λ denotes

the investor-specific coefficient of risk aversion.

Besides being called the Markowitz model, (1) is often also referred to as the mean-variance

model. There exist numerous extensions to this model, especially when multi-period portfolio opti-

mization problems are considered. It is noteworthy to emphasize that in this paper, only one-period

portfolio optimization is studied.

In the mean-variance model, the portfolio return variance w′Σw is used as the penalizing factor

to downsize the expected portfolio return μ′w. This downsizing accounts for the investor’s dislike of

fluctuation of his portfolio return. In the theoretical case of λ = 0, the investor fully invests into only

one asset, which is the asset with the highest expected mean return. As this typically is not the case

whenever λ > 0, the penalization via the variance term can be seen to enforce diversification among

the available assets. This fact is the main finding of Markowitz (1952).

There exists a different strand of literature, called post-modern portfolio theory, that criticizes

the use of the variance as a means for measuring the dispersion of financial positions, see Ferguson

and Rom (1994) or Nawrocki (1999). An approach to measuring multi-period risk is given by Pflug

(2006), who uses a value-of-information approach to assess the risk of an investment process.

The variance aggregates upside as well as downside deviations of the portfolio in one number,

whereas financial risk measures - as to be defined in Section 3 - only take account of downside

deviations of a financial position. As the portfolio return μ′w of some portfolio w is such an uncertain

financial position, a natural approach is to apply downside risk measures. To this end, denote the

uncertain mean vector of the d risky asset returns by some random variable μ̃, the distribution of

which is not available to the investor.

For some downside risk measure ρ, a general formulation of the above can be cast in the following

way,

max
w

(
E(μ̃)

)′
w s.t. ρ(μ̃′w − μ̄) ≤ 0, w ∈ C. (2)

Here, μ̄ denotes some benchmark level of portfolio return.

In the context of portfolio optimization, (2) shall be called the mean-risk model within this paper,

as opposed to the mean-variance model (1). The name mean-risk model is used in the literature as
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well whenever “approaches are based on comparing two scalar characteristics (summary statistics),

the first of which [...] represents the expected outcome (reward), and the second [...] is some measure

of risk,” cp. Ogryczak and Ruszczynski (1999, p. 35).

When the risk measure ρ is given by the Conditional Value-at-Risk at some level α, denoted by

CVaRα, problem (2) can be reformulated as a linear program, as shown by Rockafellar and Uryasev

(2000) and Krokhmal et al. (2002). Given a time series (R1, . . . , RT ) of observed asset returns for the

d risky assets, with Rt ∈ R
d for t = 1, . . . , T , a solution of (2) is thus readily obtained for the risk

measure CVaRα.

In this paper, (2) is solved for the whole class of coherent distortion risk measures, which in turn

constitutes a sub-class of the important coherent risk measures. The key observation to the solution

is the fact that the mean-risk problem can be reformulated as a linear optimization problem with

uncertain data, where the latter is captured by a so-called uncertainty set U . An uncertainty set U is

a set in the space of the uncertain parameters, and its shape is determined solely by the data and the

risk measure ρ. It turns out that for the class of coherent distortion risk measures, this uncertainty set

has a convex shape.

In the literature these sets are sometimes called confidence regions. While the concepts of un-

certainty sets and confidence regions coincide, the name uncertainty set is chosen in this paper to

emphasize the absence of any distributional assumption for the construction of these sets. In the same

manner, the name ambiguity set is used in the literature. Pflug and Wozabal (2007) use the term ambi-

guity sets to describe collections of probability measures rather than collections of parameter values,

cp. Section 4 therein. To avoid any confusion, the name ambiguity set is thus not used throughout

this paper.

The paper by Bertsimas and Brown (2009) illustrates the connection between coherent risk mea-

sures and uncertainty sets, so this paper builds heavily on their work. In addition, Dyckerhoff and

Mosler (2010b) examine non-parametric descriptions of datasets of arbitrary dimensions by so-called

weighted-mean trimmed regions. With the advent of an exact algorithm for the calculation of these

regions, as given by Bazovkin and Mosler (2010), it is now possible to numerically construct un-

certainty sets corresponding to the risk constraint in (2). It is noteworthy that these regions, which

coincide with the above mentioned uncertainty sets, are not subject to any distributional assumption,

while including only historical data or expert knowledge.

Combining these works, a solution to the mean-risk portfolio problem (2) is given whenever the

risk constraint involves a coherent distortion risk measure. This includes the important case of the

measure CVaRα, but furthermore accomodates any measure that is obtained via scenario generation

techniques. Furthermore, it is shown that this solution is obtained via solving a finite number of linear

programs.

Optimization under input parameter uncertainty is also connected to a recently developed sub-field

of robust optimization, the so-called minimax portfolio optimization, cp. Halldórsson and Tütüncü

(2003) or Garlappi et al. (2007). On the other hand, the minimax criterion is also well known as a
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paradigm of decision theory, and both connections will be explored in more detail in the sequel.

The outline of this paper is as follows. The minimax methodology is examined in Section 2 in

more detail, and its connections to robust portfolio optimization as well as to decision theory are

presented. Section 3 provides an overview on coherent risk measures and coherent distortion risk

measures. The main Section 4 outlines the generation of uncertainty sets from a given coherent risk

measure, as well as its application to the portfolio problem and its solution. Finally, Section 5 applies

the methodology to both financial and simulated data, whereas Section 6 concludes this paper.

2 The Minimax Approach

While the minimax approach regarding portfolio optimization is often used in the context of robust

optimization, it is important to note that in the first line, the minimax criterion is a concept from

decision theory. Whenever a decision that has to be made today is influenced by the uncertain state

of nature prevailing in the future, a rational decision maker will apply some methodology to base his

decision on. The minimax criterion is such a methodology, and it says, roughly, that the decision

is made for the best among the worst scenarios. In other words, he identifies the most unfavorable

consequences of his decision in all possible future states of the world, and then makes the decision

for the best among these alternatives.

2.1 The Minimax Approach in Mean-Variance Analysis

Application of the minimax approach to the mean-variance model (1) means to identify the portfolio

w that is optimal for all, thus even the most unfavorable states of nature. These states of nature

are represented by all parameters that the investor has no influence on, but which in turn influence

the investor’s decision and payoff. In the mean-variance model, the states of nature are completely

described by the mean of the asset returns, μ, and the covariance structure of these asset returns, Σ.

For the case of the vector μ of expected asset returns, this means that μ is located among a

collection of possible outcomes, the uncertainty set Uμ ⊂ R
d. In the same fashion, the covariance

matrix of the d risky assets is assumed to be located in a subset of Rd×d, yielding the uncertainty set

UΣ.

Then, the minimax approach applied to the mean-variance model (1) reads

max
w

{
min
μ,Σ

{
μ′w − λ

2
w′Σw

} }
s.t. μ ∈ Uμ, Σ ∈ UΣ, w ∈ C. (3)

As such, when solving the above problem, the investor chooses the portfolio w that stays optimal

for even the most disadvantageous values of μ and Σ captured by the respective uncertainty sets.

Halldórsson and Tütüncü (2003) study models of this type in more detail.
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As suggested by Chopra and Ziemba (1993), the ‘largest losses’ in data-driven portfolio allocation

can be associated with the estimation of the mean vector μ, whereas estimation of the covariance

matrix Σ by its sample counterpart Σ̂ or by some shrinkage estimator Σ̃ yields quite suitable results.

Thus, whenever a reliable estimator for the covariance structure is at hand, the application of the

minimax approach can be restricted to the uncertainty inherent in the mean vector of asset returns,

while using some point estimate Σ̄ for the covariance structure, viz.

max
w

{
min
μ

{
μ′w − λ

2
w′Σ̄w

} }
s.t. μ ∈ Uμ, w ∈ C,

which is equivalent to

max
w

{
min
μ

{
μ′w
}

− λ

2
w′Σ̄w

}
s.t. μ ∈ Uμ, w ∈ C. (4)

By carrying out the optimization over all values of μ in the uncertainty set Uμ, the usage of a

wrong point estimate of the parameter μ is avoided. As such, drawbacks from estimation error in μ

are mitigated, and the solution is less influenced by unexpected outcomes of μ.

When the uncertainty sets Uμ and UΣ are chosen to be convex and compact, and when the set

of feasible portfolio weight vectors C is convex, the Min-Max Theorem guarantees that the order of

minimization and maximization does not influence the solution of problem (3) or (4). Thus, due to

the combination of maximization and minimization, problem formulations like (3) or (4) are called

minimax problems, as described in the famous work of Savage (1972). The rationale behind the

minimax approach from a decision theoretic point of view is to avoid disappointment, i.e., to obtain a

solution wopt that is optimal for even the most disadvantageous market evolution that is captured by

the uncertainty set.

2.2 The Minimax Approach in Mean-Risk Analysis

As indicated in the introduction, the trade-off between portfolio return w ′μ and its variance w′Σw can

be replaced by analyzing the trade-off between portfolio return and some other measure of risk for

the portfolio return characteristics. When such a risk measure ρ is selected, and a certain threshold

return μ̄ is aimed at, the problem can be formulated as

max
w

{(
E(μ̃)

)′
w
}

s.t. ρ (μ̃w − μ̄) ≤ 0, w ∈ C. (5)

Note that the uncertain mean vector of asset returns is modeled as a random variable μ̃. In a recent

paper by Bertsimas and Brown (2009), it is shown that whenever ρ is a coherent measure of risk, the

above can be reformulated as

max
w

{
min
μ

{
μ′w
}}

s.t. μ ∈ Uρ(R), w ∈ (Wμ̄,ρ(R) ∩ C), (6)

6



with properly defined sets Uρ(R) and Wμ̄,ρ(R) that depend on the risk measure ρ, the threshold

return μ̄, and on the data R available. For brevity, these sets will only be denoted by Uρ and by Wμ̄,

but it should be kept in mind that they depend on the data of the problem, R, as well.

The exact definitions of the sets Uρ and Wμ̄ will be presented in detail in Section 4. Again, for

convex and compact Uρ and convex (Wμ̄ ∩ C), the Min-Max Theorem is applicable, justifying the

classification of the above problem as a minimax problem. The construction of uncertainty sets that

arise by the equivalence of (5) and (6) will also be investigated in Section 4.

3 Coherent Risk Measures

Let Ω be some set (of states of the world), and let F be a σ-algebra over Ω, so that (Ω,F) becomes

a measurable space. When (Ω,F) is endowed with a probability measure P, then the triple (Ω,F ,P)

defines a probability space. Furthermore, let X denote the set of all bounded random variables on

that space. A typical element X of X can be thought of as the difference of the known present value

of some financial position and the random future value of that position, or just as the unknown future

value of the position. Föllmer and Schied (2004) refer to X as the payoff profile. As such, negative

values of X are interpreted as losses, whereas positive values of X indicate gains in the financial

position.

A risk measure is now expected to assign a number to each financial position X , with riskier

positions being assigned a higher value. The number assigned to X by the risk measure can then be

interpreted as the amount of capital that must be reserved in order to limit the risk inherent in that

position to some predefined low level.

Definition 3.1 A functional ρ : X → R is called a coherent risk measure it fulfills the following

axioms for any X, Y ∈ X .

• Monotonicity:

Whenever X(ω) > Y (ω) ∀ω ∈ Ω, it holds that ρ(Y ) > ρ(X).

• Translation Equivariance:

For any constant c ∈ R, it holds that ρ(X + c) = ρ(X)− c.

• Convexity:

For λ ∈ [0, 1], it holds that ρ
(
λX + (1− λ)Y

) ≤ λρ (X) + (1− λ)ρ (Y ) .

• Positive Homogeneity:

For λ ≥ 0, it holds that ρ(λX) = λ ρ(X).

The axioms have the following, immediate interpretations. Monotonicity implies that, if the future

value of position one is larger than the future value of position two in any state, then position two is

more risky. The addition of a sure amount of capital c > 0 to a risky position lowers the risk of
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that position. For negative c, the risk grows, as a sure loss is added. Translation Equivariance, or

Cash Invariance, as referred to this axiom in Föllmer and Schied (2004), thus implies the previous

interpretation of ρ(X) as risk capital. While the axiom of Positive Homogeneity states that the risk of

a multiple of some position is the multiple of its risk, adding Convexity states that diversification of a

risky position will never increase the risk inherent in its components.

Whenever some risk measure ρ obeys the axioms of positive homogeneity and convexity, it also

fulfills Subadditivity, that is, for X and Y ∈ X , it follows that

ρ (X + Y ) ≤ ρ (X) + ρ (Y ) .

Example 3.2 For a random variable X ∈ X and a given confidence level α, the Conditional Value-

at-Risk of X at level α > 0, CVaRα(X), is defined as

CVaRα(X) =
1

α

∫ α

0

VaRξ(X) dξ = − 1

α

∫ α

0

q+X(ξ) dξ. (7)

Thus, the CVaRα of a random variable is the mean of X when restricted to values that exceed VaRα,

the Value-at-Risk at level α. Here, q+X : (0, 1) → (−∞,∞) denotes the quantile function of X , as

defined in Föllmer and Schied (2004).

The main theorem for coherent risk measures shall be stated subsequently. While its mathematical

content has already been proven in Huber (1981, Chapter 10), its prominence is due to the paper by

Artzner et al. (1999). The formulation below coincides with the one given in Föllmer and Schied

(2004).

Theorem 3.3 A functional ρ : X −→ R is a coherent risk measure if and only if there exists a family

of probability measures Q on (Ω,F), such that

ρ(X) = sup
Q∈Q

EQ(−X), X ∈ X . (8)

EQ(−X) denotes the expectation of the random variable (−X) under the probability measure Q.

In fact, it suffices to choose Q as the set of all finitely additive set functions on (Ω,F), which

constitutes a subset of all probability measures on that measurable space, cp. Proposition 4.14 in

Föllmer and Schied (2004). In the discrete case, the interpretation of Q is given as a set of scenarios.

In each of these scenarios, probabilities are assigned to the states of nature. With this interpretation

at hand, it makes sense to define any risk measure as the amount of capital to be reserved for the

worst-case scenario contained in Q, which is exactly the statement of (8).

3.1 Coherent Distortion Risk Measures

For this paper, a subclass of the set of coherent risk measures is of special interest, introduced in the

next definition. Coherent distortion risk measures are studied in more detail by Acerbi (2002).
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Definition 3.4 Let X, Y ∈ X . A coherent risk measure ρ is called a coherent distortion risk measure

if it fulfills the following two axioms.

• Law Invariance:

Let FX , FY denote the respective distribution functions under P. It holds that

FX(x) = FY (x) ∀ x ∈ R =⇒ ρ(X) = ρ(Y ).

• Comonotonicity:

For all comonotone random variables X and Y , it holds that

ρ (X + Y ) = ρ(X) + ρ(Y ).

Note that for the axiom of Comonotonicity, the usual definition of comonotone random variables

applies. Two random variables X and Y ∈ X are said to be comonotone if

(
X(ω1) − X(ω2)

) (
Y (ω1) − Y (ω2)

) ≥ 0 ∀ (ω1, ω2) ∈ Ω× Ω.

Informally, a risk measure that obeys Law Invariance assigns the same risk to random variables

with the same distribution. A risk measure is thus said to be comonotone when the risk of the sum

of two comonotone random variables is strictly additive rather than subadditive. Both properties

are useful requirements for a risk measure, Law Invariance allows for consistent estimation of the

risk measure from data; for an example where this property is violated, see Bertsimas and Brown

(2009, p. 6). Comonotonicity penalizes non-diversified portfolios, and is a sensible postulation, as

comonotone risks can never be used as a hedge against each other.

The special structure of coherent distortion risk measures allows for a more concrete representa-

tion. In fact, every coherent distortion risk measure can be written as an expectation of the random

variable X with respect to distorted probabilities. Before turning to this representation, a proper

definition of distortion functions will be given.

Definition 3.5 A distortion function g : [0, 1] −→ [0, 1] is a non-decreasing function such that

g(0) = 0 and g(1) = 1.

The distortion function, that is, the function that reweighs the original probabilities of the out-

comes of X , must be concave in order for the risk measure to be coherent, cp. Föllmer and Schied

(2004, Theorem 4.88). Actually, the set function g ◦ P only must satisfy the weaker condition of sub-

modularity for the risk measure to be coherent. Whenever g is concave, then g ◦ P is submodular, cp.

Föllmer and Schied (2004, Proposition 4.69). The set function g ◦ P will be examined in Remark 3.7

in more detail. More general, any risk measure that can be calculated as the expectation with respect

to distorted probabilities is called a distortion risk measure. With this classification, also the VaR at
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some level α can be called a distortion risk measure. In this paper, only the coherent distortion risk

measures are of interest, so the distinction between distortion risk measures and coherent distortion

risk measures is seminal.

Now, a special representation theorem for coherent distortion risk measures is given. Theorem 3.3

applies, but can be stated in a more precise form.

Theorem 3.6 For X ∈ X , and a concave distortion function g, the functional ρg given by

ρg(X) :=

0∫
−∞

g
(
FX(x)

)
dx +

∞∫
0

(
g
(
FX(x)

) − 1
)
dx (9)

is a coherent distortion risk measure in the sense of Definition 3.4.

Remark 3.7 Let a - not necessarily concave - distortion function g be given, and define a set function

cg : F −→ [0, 1] via cg ≡ g ◦ P, that is,

cg(A) := g
(
P(A)

)
for all A ∈ F . (10)

Then cg obeys the properties cg(∅) = 0, cg(Ω) = 1, and

A ⊂ B =⇒ cg(A) ≤ cg(B) for all A,B ∈ F .

Clearly, cg is not a probability measure anymore, and is thus called a capacity, or a non-additive

measure. It holds that for any concave distortion function g, the coherent distortion risk measure ρg

equals the Choquet integral of (−X) with respect to the capacity cg, viz.

ρg(X) =

∫
(−X) dcg .

For a proof, see Föllmer and Schied (2004, Chapter 4.6). Whenever the capacity cg is a probability

measure, usual integration and Choquet integration coincide, and as such, the above expression is

well-defined.

The key issue about (coherent) distortion risk measures is the reweighing of the probabilities of

the outcomes, which is accomplished by application of some (concave) distortion function g. Typi-

cally, unfavorable outcomes, i.e., losses, are assigned a higher weight than favorable outcomes. This

type of reweighing is translated into concavity of g. For the special case of equally likely outcomes

of a random variable X with finite support, which is the case for empirical observations of prices,

calculation of the coherent distortion risk measure can as well be conducted by using the following

theorem.
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Theorem 3.8 (Bertsimas and Brown, 2009) A risk measure ρ is a coherent distortion risk measure

if and only if there exists q ∈ ΔT :=
{
p ∈ R

T
+ : 1′p = 1

}
with q1 ≥ . . . ≥ qT (the generator),

such that

ρ(X) := −
T∑

j=1

qj x(j), (11)

where x(j) denotes the j-th order statistic of the random variable X , that is,

x(1) ≤ . . . ≤ x(T ).

3.2 Application of Risk Measures in Portfolio Selection

Whenever an investor only cares about the downside deviation of his return from a certain threshold

return μ̄, measured by some risk measure ρ, his optimization problem reads

max
w

w′
E(μ̃) s.t. ρ(w′μ̃ − μ̄ ) ≤ 0, w ∈ C. (12)

As already mentioned in the introduction, the above problem (12) is referred to as the mean-risk

portfolio selection problem. A comparison of the mean-variance portfolio selection problem with the

introduced methodology of portfolio selection via VaR or CVaR is given by Alexander and Baptista

(2004).

Problem (12) with the measure ρ given by the CVaR at some level α has generated much interest

over the last decade, compare, for example, the primary works by Rockafellar and Uryasev (2000)

or Krokhmal et al. (2002). For the risk measure CVaR, the paper by Rockafellar and Uryasev (2000)

delivers a solutions to problem (12) by linearizing the risk constraint. The approach taken in this work

is different from their way of solving it, and is applicable to the whole set of coherent distortion risk

measures.

This does not only open the investment decision to a much broader set of risk measures than

only the CVaR. Coherent distortion risk measures are broadly applied in the investment and insurance

industry, especially because of their simple structure and their economic justification.

4 Uncertainty Sets Generated by Risk Measures

When avoiding assumptions about the assets’ return distribution, the only source of information for

the investor is historical data or analysts’ forecasts. Both can be coded in a series (R1, . . . , RT ),

Rt ∈ R
d for each t, which in this section shall be the only information that is available to the investor.

To be consistent with the literature, let the matrix R := [R1 · · · RT ] or the set

R := {R1, . . . , RT} be defined as the data of the problem. Furthermore, as the mean vector of asset

returns μ is the uncertain quantity in the portfolio optimization problem, about which the only source

of information is R, let μ̃ be a d-variate random variable on the finite probability space
(
Ω, 2Ω,P

)
.

Let Q∗ describe the set of all probability measures on (Ω, 2Ω). In this setting, the cardinality of Ω
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is T , written #Ω = T , and μ̃(ωi) = Ri for each ωi ∈ Ω, so that the support of μ̃ is R. Moreover,

let P(ωt) =
1
T

for t = 1, . . . , T . Consequently, the random variable μ̃ attains the values R1, . . . , RT ,

each with probability 1
T

. As #Ω = T , it follows that each element of Q∗ is fully described by a vector

q ∈ ΔT . Let Q ⊂ ΔT denote the set of all such q. In this setting, all theorems from the section about

coherent (distortion) risk measures are applicable.

4.1 Shape of the Uncertainty Set Uρ

A recently introduced idea for the construction of uncertainty sets for optimization problems of the

type (5) can be found in Bertsimas and Brown (2009). In that paper, a main deficiency of previous

studies is seen in the circumstance that uncertainty sets are often chosen “ad hoc, with emphasis

usually placed on sets that preserve computational tractability.” According to the authors, the primary

reason for using uncertainty sets in the context of optimization with uncertain input parameters should

be to draw a precise picture of the underlying data, though.

Consequently, some coherent measure of risk ρ is taken as a starting point, which at this point is

not necessarily a coherent distortion risk measure, and then it is shown that this risk measure induces

a convex uncertainty set Uρ.

To be more precise, Bertsimas and Brown (2009) state the following central result.

Theorem 4.1 (Bertsimas and Brown, 2009) Let the random return μ̃ of d risky assets be modeled

as above, and let ρ be a coherent risk measure. It holds that

{
w ∈ R

d : ρ(μ̃′w − μ̄) ≤ 0
}

=
{
w ∈ R

d : μ′w ≥ μ̄ for all μ ∈ Uρ

}
, (13)

where Uρ = conv
({

Rq : q ∈ Q}). Q ⊂ ΔT is the family of generating measures for ρ, as

introduced in Theorem 3.3.

Conversely, if U ⊂ conv(R), then (13) holds with the coherent risk measure generated by the

family of probability measures given by Q =
{
q ∈ ΔT : ∃μ ∈ U s.t. R q = μ

}
.

To apply this approach in the context of portfolio optimization, let there be an investor who is

uncertain about the estimated asset returns μ. Thus, he wants to conduct an optimization over a set Uρ

of possible values for μ, such that the solution wopt stays optimal even for the worst-case scenario μ∗.

This means that the risk of the worst-case return (μ∗)′w falling short of the threshold μ̄ is controlled

for.

Let ρ be a coherent risk measure that corresponds to the investor’s risk preferences. Then, Theo-

rem 4.1 ensures that the solutions to the following problems coincide.

argmax
w

{ E(μ̃)′w } s.t. ρ
(
μ̃′w − μ̄

) ≤ 0, w ∈ C, (14)

argmax
w

{ μ′w } s.t. μ′w ≥ μ̄ for all μ ∈ Uρ, w ∈ C, (15)

12



where Uρ is the uncertainty set defined in Theorem 4.1.

For a chance constraint, i.e., a constraint on the probability of the threshold return being failed, it

holds that

{w ∈ R
d : P(μ̃′w ≤ μ̄) ≤ α} = {w ∈ R

d : VaRα(μ̃
′w) ≤ −μ̄}

⊃ {w ∈ R
d : CVaRα(μ̃

′w) ≤ −μ̄},

and as such, a solution w∗ to problem (14) with the coherent distortion risk measure ρ ≡ CVaRα at

threshold return μ̄ will also satisfy the chance constraint P(μ̃′w ≤ μ̄). Clearly, though, w∗ will not

necessarily be a solution to the chance constrained maximization problem

argmax
w

{ μ′w } s.t. P(μ̃′w ≤ μ̄) ≤ α.

Obviously, when Uρ is compact, any solutionwopt to problem (15) is also a solution to the problem

argmax
w

{
{ μ′w } s.t. min

μ∈Uρ

{ μ′w } ≥ μ̄

}
, w ∈ C, (16)

which again shows the minimax character of these problems.

For the special class of coherent distortion risk measures, it holds that each one is generated by a

family of probability distributions

Q =
{
q̃ ∈ ΔT : q̃t = qσ(t), σ ∈ S(T )

}
(17)

for some generator q ∈ ΔT such that q1 ≥ . . . ≥ qT , cp. Theorem 3.8.

Example 4.2 The coherent distortion risk measure CVaRα is generated by q ∈ ΔT with the following

entries:

qj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Tα

for j < T − �T (1− α)�+ 1

�T (1−α)�−T (1−α)
Tα

for j = T − �T (1− α)�+ 1

0 for j > T − �T (1− α)�+ 1,

(18)

where �x� denotes the smallest integer larger than or equal to x. It is noteworthy that these weights

come out as the increments of the distortion function gCVaRα , defined by

gCVaRα(u) :=

⎧⎨
⎩

u
α

for u ≤ α

1 for u > α ,
(19)

when evaluated at the points 0, 1
T
, 2
T
, . . . , T−1

T
, 1.

First, the theorem connecting coherent distortion risk measures and their uncertainty sets is given,

and afterwards the link towards the concept of weighted-mean trimmed regions is explained.

13



Theorem 4.3 (Bertsimas and Brown, 2009) If a risk measure ρ is a coherent distortion risk mea-

sure with generator q, the following equality holds:

{
w ∈ R

d : ρ (μ̃′w − μ̄) ≤ 0
}

=
{
w ∈ R

d : μ′w ≥ μ̄ for all μ ∈ Uρ

}
, (20)

where the uncertainty set Uρ takes the form

Uρ := conv

({
T∑
t=1

qσ(t) Rt : σ ∈ S(T )

})
. (21)

Definition 4.7 in Bertsimas and Brown (2009) calls Uρ as above the q-permutohull generated by the

data R and the coherent distortion risk measure ρ. The interpretation of the linkage between the

generator q of ρ and the size of Uρ is as follows.

An investor who is uncertain about the mean of the parameter μ̃ wishes to control for the underper-

formance of his portfolio return μ̄ by the application of a risk measure ρ. In the equivalent formulation

with the risk constraint, i.e., ρ(μ̃′w ≤ μ̄) ≤ 0, the risk measure can be chosen such that a large set of

possible outcomes of μ̃ is covered. In the case of ρ being a coherent distortion risk measure, this is

indicated by choosing the generator q in such a way that it puts large probability masses on few data

records only.

Conversly, let the investor be rather confident in the sample estimate μ̂ of μ̃. This implies the

choice of an investor-specific coherent distortion risk measure ρ such that the associated uncertainty

set is smaller. In this case, the generator of ρ should not put too much emphasis on single observations

from the past, but rather smooth out the historical observations via similar probability masses for all

entries of q. In the case of ρ ≡ CVaRα, the first case is expressed by choosing a small α, while in the

latter case, the investor chooses larger values for α. A visualization of the connection between a risk

measure for an uncertain investor and a risk measure for a more confident investor with the respective

uncertainty sets is presented in Figures 1(a) and 1(b), respectively. While Figure 1(a) includes nearly

all historical return observations, Figure 1(b) excludes some of them, yielding a smaller set.

The uncertainty sets Uρ, generated via (21) from a coherent distortion risk measure with generator

q and data R, take a special form of the recently introduced weighted-mean trimmed regions, denoted

Dβ (R), as defined by Dyckerhoff and Mosler (2010b). For Dβ, the trimming parameter β ∈ ]0, 1]

defines the depth of the region, and is connected to the generator q in the case of ρ being a coherent

distortion risk measure. The definition of weighted-mean trimmed regions allows for all types of

weights that a generator of a coherent distortion risk measure might consist of, cp. Dyckerhoff and

Mosler (2010b, Definition 2). A more practical expression for the calculation of its extreme points

is given in their Proposition 2, while an algorithm for the calculation of these points is already made

available by Bazovkin and Mosler (2010).

14
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(a) Uncertainty set UCVaR corresponding to CVaR1%
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(b) Uncertainty set UCVaR corresponding to CVaR10%

Figure 1: Uncertainty sets Uρ for ρ ≡ CVaRα with different levels of α. The data for both uncertainty sets consists of
T = 120 data points, representing the monthly excess returns of the Exxon Mobil Corp. and the Coca Cola Enterprises.
With growing parameter α, the uncertainty set UCVaR decreases.

Remark 4.4 It is noteworthy that nestedness of the respective regions is a property common to all

uncertainty sets generated by coherent distortion risk measures. In fact, Proposition 3 in Dyckerhoff

and Mosler (2010b) implies that whenever the generators q1 and q2 of two coherent distortion risk

measures ρ1 and ρ2 are such that

k∑
j=1

q1j ≤
k∑

j=1

q2j for all k = 1, . . . , T,

then the respective uncertainty sets of the form (21) are nested, that is,

Uρ1 ⊂ Uρ2 .
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Several other important analytical features are presented in Dyckerhoff and Mosler (2010b) as well,

along with examples for different kinds of such regions. The connection of weighted-mean trimmed

regions and probability distributions is explored in Dyckerhoff and Mosler (2010a). It is noteworthy

that the q-permutohulls from Theorem 4.3 are equivalent to the special case where the weighted-mean

trimmed regions take the form of zonoid regions, introduced earlier by Koshevoy and Mosler (1997).

Formalizing (14) for some coherent distortion risk measure ρ, and leaving the set of constraints C
aside for the moment, one obtains the expression

max μ′w s.t. w ∈ Wμ̄, μ ∈ Uρ, (22)

where

Wμ̄ :=
{
w ∈ R

d : w′μ ≥ μ̄ for all μ ∈ Uρ

}
, and (23)

Uρ = conv

({
T∑
t=1

qσ(t) Rt : σ ∈ S(T )

})
. (24)

Here, q denotes the generator for ρ, so Uρ is generated by q and Rt, with

t = 1, . . . , T , wich are the data available to the investor.

The uncertainty set Uρ is convex by definition. In the case of a coherent distortion risk measure ρ,

(24) indicates that Uρ is given as the convex hull of a finite set of points. As such, the set of extreme

points of Uρ, denoted by U e
ρ , must be finite and contained in the set of points generated by q and R,

viz.

Ue
ρ ⊂

{
T∑
i=1

qσ(t) Rt : σ ∈ S(T )

}
. (25)

Problem (22) is a nonlinear problem, as μ and w are entangled with each other. In the sequel, a

way of solving this problem is presented, making use of the special forms of the uncertainty set Uρ

and the set Wμ̄.

4.2 Shape of the Set Wμ̄

Before turning to the set Wμ̄, the following concepts from the geometry of convex sets shall be

reviewed, as they turn out to be closely connected to the sets Uρ and Wμ̄. A standard textbook about

convex analysis is Rockafellar (1970).

Let C ∈ R
d be a closed, convex set. If C is bounded (and thus compact), C is given as the convex

hull of its extreme points C e, that is, C = conv (Ce) .

Definition 4.5 For any closed set K ⊂ R
d, the polar set K∗ is defined as

K∗ := {y ∈ R
d : y′x ≤ 1 for all x ∈ K}. (26)
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The polar set K∗ of some set K is thus the intersection of all halfspaces generated by the elements

of K. Note that for a particular element k ∈ R
d, the boundary of the halfspace

{k}∗ = {y ∈ R
d : y′k ≤ 1}

is orthogonal to k, and 0 is contained in {k}∗.

A characterization of the polar set of some closed, convex set is given now.

Proposition 4.6 Let K ⊂ R
d be closed and convex.

1. K∗ is bounded if and only if 0 ∈ int(K).

2. K is bounded if and only if 0 ∈ int(K ∗).

Moreover, as any compact and convex set K is given by the convex hull of its extreme points,

K = conv(Ke), it holds that K∗ is given as the polar set of the set Ke of extreme points of K, viz.

K∗ = {y ∈ R
d : y′xe ≤ 1 for all xe ∈ Ke} =

⋂
xe∈Ke

{xe}∗. (27)

Clearly, if the set of extreme points is finite, i.e., #K e = n < ∞, then the intersection of the

halfspaces given by the polars of the n extreme points entirely describes K ∗. Burdet (1973) gives a

generalization of polar sets along with some results.

Definition 4.7 (Burdet 1973) Let P denote a closed set in R
d. For a given paramter κ ∈ R, define

the polaroid P ∗(κ) by

P ∗(κ) = { y ∈ R
d : x′y ≤ κ for all x ∈ P }.

For any closed set K ⊂ R
d, it holds that its polar set coincides with the polaroid at κ = 1,

i.e., K∗ = K∗(1).

Theorem 4.8 (Burdet 1973) For any closed sets P and Q in R
d, one has the following implications:

1. If Q ⊂ P , then Q∗(κ) ⊃ P ∗(κ).

2. If κ1 ≥ κ2, then P ∗(κ1) ⊃ P ∗(κ2).

For κ ≤ 1, Theorem 4.8 ensures that P ∗(κ) ⊂ P ∗(1) = P ∗, and using the assertion from Propo-

sition 4.6 it is immediate to obtain

Lemma 4.9 Let P ∈ R
d be closed and convex, and let κ ∈ R such that κ ≤ 1.

P ∗(κ) is bounded if and only if 0 ∈ int(P ).
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These general observations and concepts are now directly applicable to the portfolio optimization

problem as given by (22). The connection between Uρ and Wμ̄ is formalized by

Lemma 4.10 It holds that Wμ̄ = − (U∗
ρ (−μ̄)

)
,

which is easily proved by noting that

Wμ̄ = { w ∈ R
d : w′μ ≥ μ̄ for all μ ∈ Uρ }

= { − w ∈ R
d : w′μ ≤ −μ̄ for all μ ∈ Uρ }

= −{ w ∈ R
d : w′μ ≤ −μ̄ for all μ ∈ Uρ } = − (U∗

ρ (−μ̄)
)
.

With the connection of Uρ and Wμ̄ at hand it is immediate to obtain the following result in the

light of portfolio optimization with risk constraints given by a coherent distortion risk measure ρ from

the previous statements.

Proposition 4.11 Given a compact and convex uncertainty set Uρ, the set of feasible portfolio weight

vectors Wμ̄ has the following properties:

1. Wμ̄ is convex and closed.

2. For μ̄ ≥ −1, Wμ̄ is bounded, and as such, compact, if and only if 0 ∈ intUρ.

3. For μ̄1 ≥ μ̄2, it holds that Wμ̄2 ⊃ Wμ̄1 .

4. For the uncertainty sets U 1
ρ and U2

ρ , let W1
μ̄ and W2

μ̄ denote the respective sets of feasible port-

folio weight vectors for threshold return μ̄. It holds that

U1
ρ ⊂ U2

ρ =⇒ W1
μ̄ ⊃ W2

μ̄.

From a practical point of view, Statement 3 in the above proposition can be made more precise.

When the threshold return μ̄ is multiplied by some constant number c > 0, then the new set of feasible

portfolio weight vectors Wcμ̄ is a multiple of the original set, Wμ̄. Leaving other constraints on the

set of feasible portfolio weight vectors aside for the moment, it is an immediate consequence that the

the new optimal portfolio will thus be a multiple of the old portfolio. This observation is formalized

in

Lemma 4.12 Let Wμ̄ be the set of feasible portfolio weight vectors associated with the uncertainty

set Uρ, and let c > 0. Then

Wcμ̄ = cWμ̄.

Clearly, for practical portfolio applications, this observation will be of use only in most excep-

tional cases. Whenever additional constraints are in place, optimal portfolios cannot easily be in- or

deflated by some scalar.
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Figure 2: For the shape of the uncertainty set Uρ in the upper figure, the convex set W μ̄ of feasible portfolio weight
vectors becomes unbounded.

Note that Lemma 4.10 already yields the a way of constructing Wμ̄. It holds that

− (U∗
ρ (−μ̄)

)
= −{ w ∈ R

d : w′μ ≤ −μ̄ for all μ ∈ Uρ }
= { w ∈ R

d : w′(−μe) ≤ −μ̄ for all μe ∈ Ue
ρ }

=
n⋂

j=1

({−μe,j})∗ (−μ̄),

indicating that Wμ̄ is the intersection of halfspaces generated by the n extreme points of Uρ and the

threshold return μ̄. By slight abuse of notation, let −U e
ρ also denote the (n×d)-matrix that contains

the negative of these n extreme points as rows, so it holds that

Wμ̄ = { w ∈ R
d : − Ue

ρ w ≤ −μ̄1 }. (28)

The set Wμ̄ is convex, but not necessarily bounded, as indicated by Proposition 4.11. Note that

the structure of Wμ̄ depends on the given uncertainty set Uρ and on μ̄, the threshold return. Of course,

for an unbounded set Wμ̄, there does not necessarily exist a solution to the portfolio optimization

problem (22).

An example for an unbounded set of feasible portfolio weight vectors, Wμ̄, along with the re-

spective uncertainty set Uρ with the risk measure ρ given as the CVaR at level 0.25, is given in

Figure 2.
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In practical situations, though, the set of feasible portfolio weight vectors is always bounded by

some constraints C. Most prominently, it is bounded below by the prohibition of short sales, which

means w ≥ 0. An upper bound is frequently given by wi ≤ 1, or more general, by wi ≤ ζi, ζi ∈ R,

for each i = 1, . . . , d. The budget constraints, i.e., the requirement that all of the capital is invested

among the assets, reads w′1 ≤ 1.

For the following discussion, C is assumed to be compact and convex, and that the number of

restrictions in C is finite, which is a realistic assumption.

As such, the intersection (Wμ̄∩C) constitutes the set of all weight vectors that fulfill all constraints

for the portfolio optimization problem (22). To distinguish the sets W μ̄ and (Wμ̄∩C) in the sequel, the

latter is called the set of all practically feasible portfolio weight vectors. As an intersection of closed

and convex sets, (Wμ̄ ∩ C) is closed and convex, and its boundedness follows from the boundedness

of C.

Figure 3 demonstrates the effect of adding a a compact constraint set to Wμ̄, yielding a compact

and convex set of all practically feasible portfolio weight vectors.

The set Wμ̄ of feasible portfolio weight vectors is given as the intersection of a finite number n of

halfspaces, as described by (28). Note that by the above assumptions, the set C of constraints can as

well be written as the intersection of a finite number of halfspaces, so

C = { w ∈ R
d : Cw ≤ γ } (29)

for some appropriate (M × d)-matrix C, and a vector γ ∈ R
M . Then, the set

(Wμ̄ ∩ C) of all practically feasible portfolio weight vectors is given by

(Wμ̄ ∩ C) = { w ∈ R
d : Aw ≤ b }, (30)

where

A :=

[
−Ue

ρ

C

]
∈ R

(n+M)×d and b :=

[
−μ̄1

γ

]
∈ R

(n+M). (31)

4.3 Methodology for the Portfolio Optimization Problem

With the descriptions of the uncertainty set Uρ and the set of all practically feasible portfolio weight

vectors, (Wμ̄ ∩ C), it is now straightforward to find the solution to the portfolio optimization problem

(14).

To this end, let V denote the set of all scalar products of elements of Uρ and elements of (Wμ̄∩C),
i.e.

V := { μ′w : μ ∈ Uρ, w ∈ (Wμ̄ ∩ C) } ⊂ R. (32)
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Figure 3: The set of all feasible portfolio weight vectors is always bounded by some constraints C, which, in this case,
are given by { w ∈ R

2 : w ≥ 0, w ≤ 1 }. The convex set generated by intersection of C and W μ̄ is the set of all
practically feasible portfolio weight vectors, (W μ̄ ∩ C).

As (Wμ̄ ∩ C) and Uρ are convex sets, they are connected. The scalar product is a continuous

function of elements of both sets, and as such, the set V is connected, and as a connected subset of R,

V is convex. Compactness of V follows from compactness of both (Wμ̄ ∩ C) and Uρ.

As a convex and compact set in R, V possesses a maximum, denoted by m, and the following

holds true by the property Uρ = conv
(Ue

ρ

)
and by convexity of (Wμ̄ ∩ C):

m = max
{
μ′w : μ ∈ Uρ, w ∈ (Wμ̄ ∩ C)}

= max
{
(μe)′w : μe ∈ Ue

ρ , w ∈ (Wμ̄ ∩ C)}
= max

{
(μe)′w : μe ∈ Ue

ρ , Aw ≤ b
}

= max
{

max
w

{
(μe,j)′w s.t. Aw ≤ b

}
︸ ︷︷ ︸

linear optimization problem for each j

for μe,j ∈ Ue
ρ , j = 1, . . . ,#Ue

ρ

}
.

Denoting by μopt and wopt the elements from U e
ρ and (Wμ̄ ∩ C), respectively, such that

(μopt)′wopt = m, it follows that wopt is the solution to (14).

Thus, the portfolio optimization problem with a risk constraint given by a coherent distortion risk

measure can always be written as a set of linear optimization problems. Of course, the number of

constraints described by Aw ≤ b grows rapidly with the dimensionality of the problem and with the

number of data collected. For given dimensionality d and data size T , it depends heavily on the risk

measure chosen for the risk constraint, which in turn induces the uncertainty set and the number of its

extreme points.

However, with the advent of an exact and efficient algorithm for the construction of weighted-

mean trimmed regions, see Bazovkin and Mosler (2010), the problem of optimizing some linear

objective function with respect to a risk constraint is solved by this procedure for the entire class of

coherent distortion risk measures.
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Moreover, for the real-life situation where short sales are prohibited, the number of extreme points

to be examined can be drastically reduced. Note that when w ≥ 0 is enforced, all extreme points μe
l of

Uρ that fulfill the componentwise comparison μe
l ≥ μe for any other μe ∈ Ue

ρ need not be accounted

for. Rough introspection of Figures 1(a) and (b) give rise to the general presumption that when short

sales are prohibited, only 2−d(#Ue
ρ) of the extreme points of Uρ ⊂ R

d need to be visited. Moreover,

in this case the number of restrictions defining Wμ̄ is reduced by the same factor. Applications of this

methodology to the problem of portfolio optimization with respect to observed financial data as well

as simulated data are given in the empirical section.

5 Empirical Study

In this section, the above developed methodology is applied to both financial and simulated data.

As the CVaR is the most commonly used coherent risk measure for decision makers in the financial

industry, it serves as the starting point for the construction of the uncertainty sets with empirical data.

In the section with simulated data, the compatibility of the approach with any coherent distortion risk

measure is demonstrated by using the risk measures arising via the Proportional Hazard Transform

and the Wang Transform, see Section 3.1.

5.1 Mean-Risk Portfolio Optimization on Financial Data

In the last decade, investments in the so-called BRIC countries have gained interest. The BRIC

countries are Brazil, Russia, India and China, and the growth of their respective economies is deemed

to outperform the developed countries’ growth.

Let a Euroland investor consider to hold a portfolio of the BRIC currencies, that are, the Brazilian

Real, the Russian Ruble, the Indian Rupee and the Chinese Yuan. The object of interest is the re-

turns of the respective Euro exchange rates of these currencies. They are retrieved from the European

Central Bank (2010), and as such, T = 60 bilateral monthly exchange rates are obtained and their re-

spective monthly returns are calculated, yielding a series (R1, . . . , R60) of 4-dimensional data points.

Summary statistics for the BRIC data set are given in Table 1.

As the mean return of the exchange rates is negative for two of the currencies, the Brazilian Real

and the Indian Rupee, the investor cannot necessarily expect a solution for his portfolio optimization

problem whenever the benchmark return is set to a positive number. He can rather impose a risk

constraint in order to establish a lower bound which the currency portfolio should not underperform,

as assured by the CVaR at a level of his choice.

Let the investor impose the constraint that his loss should be at most 2.8%, as measured by CVaRα,

where α takes the values 1%, 2%, . . . , 10%. The respective uncertainty sets UCVaR are calculated using

Mosler et al. (2009), and Lemma 4.10 gives the construction of the respective set of feasible portfolio

weight vectors Wμ̄.
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Brazilian Real Russian Ruble Indian Rupee Chinese Yuan

mean (%) −0.1880 0.3761 −0.2585 0.0450

minimum (%) −6.2997 −3.1845 −4.7214 −7.3088

maximum (%) 13.2234 11.6842 6.6472 6.0437

std. dev. (%) 3.5554 2.6577 2.5184 2.6369

Table 1: Summary statistics of monthly returns of the exchange rates for the respective BRIC currencies to the Euro.
The dataset consists of the exchange rate returns ranging from November 2005 through October 2010, yielding T = 60
data points of dimension d = 4.

In addition, the portfolio weight restrictions are given by the short sale constraint and the budget

constaint, yielding 4+2 additional inequality constraints on the set of all practically feasible portfolio

weight vectors. For each α, the portfolio optimization problem to be solved thus reads

max
w

{ (
E(μ̃)

)′
w
}

s.t. CVaRα

(
μ̃w
) ≤ 0.028, w ≥ 0, w′1 = 1.

For each level of α between 1% and 10%, the extreme points of the uncertainty sets UCVaR are

obtained. In this setting, with T = 60 and d = 4, the number of extreme points for each value of α

is shown in Table 2. It is noteworthy that whenever αT is an integer, the number of extreme points

is substantially smaller than for non-integer values of αT . In Table 2, this can be seen for α =5%

and α =10%. This observation is in line with the theory of weighted-mean trimmed regions, cp.

Bazovkin and Mosler (2010).

In the equivalent formulation as a set of linear optimization problems, not all extreme points of

the respective uncertainty sets need to be checked for optimality. As short sales are not allowed,

all extreme points of UCVaR that are greater (by componentwise comparison) than some other ex-

treme point can be discarded. As a result, the numbers of extreme points to be checked vary bet-

ween 9 (for α =1%) and 324 (for α =9%).

The set of all practically feasible portfolio weight vectors, (Wμ̄ ∩ C), given by the matrix A and

the vector b as described by (31), completes the setup for the optimization. Thus, the number of

constraints is given by the number of rows of A, which in this case equals at most 324+ 4+ 2 = 330,

and the number of optimizations subject to these constraints is at most 324.

The optimal investment policies for the investments in the currencies of Brazil, Russia, India and

China, respectively, are presented in Figure 4. For each level of α, the optimal portfolio subject to

the CVaRα risk constraint is dominated by the investment into the Russian Ruble. It is interesting to

observe, though, that for the smallest values of α, a good portion of the portfolio weights goes into the

Chinese Yuan and the Brazilian Real. An explanation for this phenomenon can be traced back to the

fact that the set of all practically feasible portfolio weight vectors is bounded also by the constraint

set C.
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α 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

#Ue
CVaR 24 244 244 853 357 2 099 6 954 6 932 6 897 3 153

Table 2: For the BRIC dataset with T = 60 data points of dimension d = 4, and each of the given levels of α, the
number of extreme points of the respective uncertainty set UCVaR is shown.

For growing α, the uncertainty set UCVaRα shrinks towards the singleton given by the sample

mean, {μ̂}. As the set of feasible portfolio weight vectors, Wμ̄, is the negative of the polaroid of

UCVaRα at threshold return (−μ̄), cp. Lemma 4.10, it grows for larger values of α, as ensured by

Proposition 4.11.

Clearly, a solution wopt for the mean-risk portfolio optimization problem is always found on the

boundary of (Wμ̄ ∩ C), and once the set Wμ̄ grows larger than the set C in some direction, a corner

of C is attained as solution. This transition towards a corner value for the investment decision can be

seen to happen for the investment into the Brazilian Real and the Russian Ruble in the above example.

For values of α greater than 4%, the portfolio weight for the Brazilian Real declines from 15% to only

2%, and it is clear that for even larger values of α, the portfolio will entirely consist of the Russian

Ruble.

This observation leads to the conclusion that a higher aversion against risk leads - at least to some

extent - to a diversified portfolio, which is a well-documented fact in the finance literature.

5.2 Mean-Risk Portfolio Optimization on Simulated Data

The optimization methodology for the portfolio optimization problem with a risk constraint given by

a coherent distortion risk measure is now illustrated on simulated data. More exactly, T = 12 data

points from a 3-variate t-distribution with mean vector μ = 0.03, a prespecified covariance structure

Σ, and 3.6 degrees of freedom are simulated.

In a first step, the coherent distortion risk measures ρPHT arising by applying the Proportional

Hazard Transform, defined by

gλ(u) := u
1
λ . (33)

with parameter λ = 2 is used. In contrast to the CVaR risk measure used in the preceding paragraph,

all T = 12 entries of the generator q are non-zero. In this setting, even for these small numbers of

T and especially d, as many as #U e
ρPHT

= 3 850 extreme points constitute the respective uncertainty

set. With the set C of additional constraints given again as {w ∈ R
3 : w ≥ 0, w′1 = 1}, only 125

of the original extreme points need to be considered in the optimization. For a benchmark return of

μ̄ ≤ 0.0257, the optimal portfolio is found as the corner solution wopt = (1 0 0)′, whereas for

values of μ̄ > 0.0257, there is no solution to the portfolio optimization problem.
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Figure 4: Portfolio weights for the investments in the respective BRIC countries’ currencies. The respective risk
constraint is given by the CVaR for different levels of α, as given on the horizontal axis. Note that the Indian Rupee is not
invested into at any level of α, whereas the Russian Ruble dominates each of the portfolios.

When using the Proportional Hazard Transform with parameter λ = 4, the resulting uncertainty

set is given by the convex hull of 4 615 extreme points, of which only 137 need to be included in

the optimization. For μ̄ ≤ 0.021, the resulting optimal portfolio is given by the corner solution

wopt = (1 0 0)′, whereas for μ̄ > 0.021, no feasible point is found.

This effect is in line with the theory for coherent distortion risk measures from Section 3. A

larger λ induces a generator q that puts larger probability mass on the worst observed scenario,

cp. Theorem 3.8. To provide some intuition, for λ = 4, the first 3 entries of that generator are

(q1 q2 q3)
′ = (0.54 0.1 0.07)′, whereas for λ = 2, these entries amount to (0.29 0.12 0.09)′.

As the condition given in Remark 4.4 is met when comparing the generators for λ = 2 and λ = 4,

the uncertainty set grows in the parameter λ. By Proposition 4.11, the set of all practically feasible

portfolio weight vectors therefore shrinks.

The second coherent distortion risk measure considered on the above data is ρWT, for which the

Wang Transform (34) with γ = 1 is used for distorting the original probabilities, viz.

gγ(u) := Φ
(
Φ−1(u) + γ

)
, (34)

where Φ denotes the cumulative distribution function of the standard normal distribution. Again, the

generator q has 12 non-zero entries, and as such, the calculated uncertainty set is given as the convex

hull of #U e
ρWT

= 3 852 extreme points. As above, by the additional constraint, only 151 of these

points need to be considered, and again, the corner solution wopt = (1 0 0)′ is obtained for every

μ̄ ≤ 0.0225. Larger threshold values imply infeasibility of the linear program.
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6 Conclusion

Downside risk measures are of central interest in the financial industry, and thus have become a stan-

dard tool for risk management. The reason is twofold, as not only the investor wishes to control the

risk of downside deviations in his portfolio’s value, but also because regulating authorities require the

financial institutions to provide guard against risk. Among these downside risk measures, the class of

coherent distortion risk measures plays a special role, as of its economic relevance and simple struc-

ture. For the portfolio optimization problem, risk constraints given by such measures are suitable and

vividly applied. For the CVaR risk measure, Rockafellar and Uryasev (2000) shows the equivalence

of CVaRα constrained portfolio optimization to a linear program.

This paper extends their results. It is shown that for any portfolio optimization problem under

risk constraints given by a coherent distortion risk measure ρ, there exists an equivalent formulation

as a linear program. The key reference is Bertsimas and Brown (2009), connecting optimization

under a specific risk constraint to linear optimization with parameters given in an uncertainty set Uρ.

As it turns out, these uncertainty sets have the same structure as the recently introduced weighted-

mean trimmed regions, see Dyckerhoff and Mosler (2010b). Combining both results, the portfolio

optimization problem with a risk constraint given by a coherent distortion risk measure can always be

solved by means of linear optimization. Furthermore, the uncertainty set Uρ generated by observed

data and by the coherent distortion risk measure ρ receives a geometric interpretation as a collection

of scenarios. As this uncertainty set is convex, only its extreme points, which can be interpreted as

unique scenarios, must be examined for the optimization problem. All other points in the uncertainty

set can be seen as mixtures of these unique scenarios, and as such they do not generate extreme

portfolio returns. Once the uncertainty set is constructed, the set of all feasible portfolio weight

vectors is established, and due to the work Bertsimas and Brown (2009) it can be represented as a

scaled version of the polaroid of the uncertainty set. As the set of all (practically) feasible portfolio

weight vectors is also convex and finitely generated, a linear program gives the optimal portfolio.

The fact that the uncertainty set is constructed without any distributional assumption on the data-

generating process should underline the usefulness of the introduced method.

Computational issues prohibit large-scale application of the given methodology at this point in

time, especially because the computation of the uncertainty sets is time-consuming. Algorithms that

compute the weighted-mean trimmed regions within a prespecified tolerance of precision, but there-

fore faster and with fewer extreme points, might be of enormous interest for the kind of application

presented in this work. However, with the exact algorithm introduced in Bazovkin and Mosler (2010),

small portfolios can be optimized for decent sizes of historical return data.
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