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Abstract

It has been frequently observed in the literature that manlivariate statistical methods
require the covariance or dispersion matrbof an elliptical distribution only up to some
scaling constant. If the topic of interest is not the scalednly the shape of the elliptical
distribution, it is not meaningful to focus on the asymptdatistribution of an estimator for
> or another matriX® o« X. In the present work, robust estimators for the shape matrix
and the associated scale are investigated. Explicit esiores for their joint asymptotic
distributions are derived. It turns out that if the joint amtotic distribution is normal, the
presented estimators are asymptotically independentfoaad only one specific choice of
the scale function. If it is non-normal (this holds for exdenif the estimators for the shape
matrix and scale are based on the minimum volume ellipsdichator) only the presented
scale function leads to asymptotically uncorrelated estiins. This is a generalization of a
result obtained by Paindaveine (2008) in the context ofl lasgmptotic normality theory.

Key words: local asymptotic normality, M-estimator, R-estimatohust covariance
matrix estimator, scale-invariant function, S-estimastiape matrix, Tyler's M-estimator.

1 Motivation

After the seminal paper by Maronna (1976), covariance mastimation has be-

come a popular branch of robust statistics. Several tedesihave been developed
for calculating the asymptotic distributions of robust @anance matrix estimators
such as the radial distribution approach of Tyler (1982) thvedapproach based on
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influence functions (Hampel et al., 1986). Moreover, in regeears deep insights
have been gained from the viewpoint of local asymptotic radityn(LAN) theory
(Hallin et al., 2006, Hallin and Paindaveine, 2006a,b).

Let X be ad-dimensional random vector possessing an ellipticallyrsgtnic dis-
tribution, i.e. it can be represented By= 1 + ARU, whereU is ak-dimensional
random vector, uniformly distributed on the unit hypersgh® is a nonnegative
random variable being stochastically independent/pf, € R¢, andA € Rk
(Cambanis et al., 1981, Fang et al., 1990, p. 42). It is asduhe@R andU are
unobservable quantities. The positive-semidefinite mairi:= AA’ is called the
dispersion matrixand R is the generating variateof X. If [E(R?) < oo, the
covariance matrix ofX is given byVar(X) = E(R?)/k - ¥, whereas in case
E(R?) = o, the linear dependence structureXttan be further described by the
dispersion matrix: althoughVar(X) is not defined.

In general | will assume that is positive-definite, i.ex(A) = d < k. In the robust
statistics literature (Tyler, 1982, Bilodeau and Brend&99, Ch. 13) and in the
context of LAN theory (Hallin and Paindaveine, 2006a, Paugine, 2008) it is
often supposed that the distribution®fis absolutely continuous. Then the density
of X can be written ag(z) = Vdet X1 g{(x — p)’S~ (x — p)}, where the so-
calleddensity generatoy : R* — RJ depends on: only through the quadratic
form (x — )Y~ (z — p). It can be shown (Frahm, 2004, p. 9) that the density
function of R is given by f(r) oc r~1g(r?).

Tatsuoka and Tyler (2000) wrote that ‘The assumption of Aptielally symmetric
distribution is often made simply because of its matherahtractability’. Never-
theless, the class of elliptically symmetric distribusas a natural extension of the
multivariate normal distribution. Moreover, the ellipidistribution assumption is
fundamental in multivariate analysis and the results prieskin this work gener-
ally require that the data are elliptically symmetric distited. However, there is
one exception where the data are only assumed @eberalized elliptically dis-
tributed (Frahm, 2004, Ch. 3). This will be treated in more detail aelo

Note thatX = 1+ ARU = u+ VSU with S :=R/7,V :=7A,andr > 0. That
means ifX possesses the dispersion maftix there always exists an equivalent
representation ok’ with dispersion matrix23 and so this can be only identified if
the distribution ofR is somehow restricted. However, many multivariate siatibt
methods like principal components analysis, canonicaketation analysis, linear
discriminant analysis, and multivariate regression neglie covariance or disper-
sion matrix only up to some scaling constant. This has besuéntly observed in
the literature (Croux and Haesbroeck, 1999, Hallin and dRaiaine, 2006a, Oja,
2003, Paindaveine, 2008, Taskinen et al., 2006). If thectopinterest is not the
scale but only theshapeof the distribution ofX, it is not meaningful to focus on
the asymptotic covariance matrix (ACM) of an estimatordqrVar(X') or another
matrixI' o 3 (i.e.T" = 723, wherer is aconstantand thus not determined ).



Therefore | will concentrate on robust estimators for shape matrixof X (Oja,
2003, Paindaveine, 2008). The associated estimatorsdadhle are investigated
concomitantly. | will derive explicit expressions for thgoint asymptotic distri-
butions. The paper is organized as follows. Section 2 iniced the notation and
provides some helpful prerequisites about homogeneoutiéuns. The question of
how to choose an appropriate scale is investigated in $e8tidhis section also
contains the main results concerning the joint asymptasitidutions of estima-
tors for the shape matrix and scale. In Section 4 it is shown toocalculate the
asymptotic distributions of such estimators on the basseoofe well-known robust
covariance matrix estimators, namely M-, R-, and S-estinsat

2 Prerequisites
2.1 Notation

The following notation will be used in the sequel. Titex d? identity matrix is
symbolized byl ;. Lete;; be thed x d matrix with 1 in the;;th position and zeros
elsewhere. The? x d? matrix J,; is defined as/ := X% | e; ® e;;, where &’
denotes the Kronecker product (Schott, 1997, p. 253) nthe: matrix A’ denotes
the transpose of am x n matrix A. In contrast, iff is anR-valued function on
an open subset @& , then f’(z) stands for the derivative of atz € R. Further,
thecommutation matrix<,: is thed? x d* matrix given byK ;. := 2‘3,3:1 e;; @ €j;
(Schott, 1997, p. 277).

For any symmetriel x d matrix A, the d>-dimensional vectotec A is obtained
by stacking the columns ofl on top of each other, whereasch A denotes the
d (d+1)/2-dimensional vector obtained by stacking only the elemefiise lower
triangular part ofA . Further, theluplication matrixs thed® xd (d+1)/2 matrix Dy
such thatD vech A = vec A (Schott, 1997, p. 283). Then it holds thaf vec A =
vech A, where thel (d+ 1)/2 x d? matrix D} is the Moore-Penrose inverse bf;
(Schott, 1997, p. 284). Lek be defined as théd (d +1)/2 — 1} x d(d + 1)/2
matrix Iy := [0 Iq(a41)/2-1] and Ny := IyDy, so thatvechgA := Ngvec A is the
vech of A deprived of its first component;; (Hallin and Paindaveine, 2006a).

| will frequently calculate the differential of aR™-valued functionf, i.e.df =
Jr0x , whereJ; := 0f(z)/0x" € R™*™ denotes the Jacobi matrix ¢fatz € R™.
Suppose that represents the vec of a symmetric matrix. Then each offeshaly
element in the lower triangular part of that matrix représem implicit function

of the corresponding off-diagonal element in the uppemngidar part and vice
versa. However, | will not take the symmetry into considieratvhen calculating

the partial derivatives of . Otherwise, to adjust for the redundancies caused by the
symmetry it would be necessary to apply the operéigr+ J;2)/2 on the partial



differentialsox when calculating the total differentialf. Hence, to avoid addi-
tional notation and tedious calculations of implicit datives, the Jacobi matrix
Jy is understood to be the matrix of partial derivativesfofvhich are obtained
by ignoring the symmetry condition. In the present contbid poses no problem
sinceJ; is always used only in combination with:.

2.2 Homogeneous Functions

Consider a differentiabl&™-valued functiom: of z € R"™. The functiont is said

to be homogeneousf degreer € R if h(az) = o”h(x) for all x € R™ and

a > 0. Due to the Euler relation it holds thaf,= = vh(z). A function f is said

to bescale-invariantif it is homogeneous of degree 0, i.g(ax) = f(z) for all

a > 0. That meang/;z = 0 and if 2 is homogeneous of degree 1, it holds that
Jrx = h(x). In the following a homogeneous function is always undertm

be homogeneous of degree 1. Note that the partial derigativeny homogeneous
function are scale-invariant.

Let P be the set of all symmetric positive-definite d matrices angp: P? — R*

a scale-invariant function, i.ex(al’) = ¢(T") for all o > 0 andl" € P?. Especially,
consider a scale-invariant functién(T') = I'/o?(T"), whereo? : P¢ — R* is an
homogeneous function, i.e?(al') = ac?(T") > 0. Itis supposed that the so-called
scale functions? is differentiable at any point € P¢ and also that?(1,) = 1.
Theno?(T) is called thescaleof T'. The matrix(2(T") will be called theshape matrix
(with respect to the scale functiert) belonging tol'. | will write ¢* = ¢*(T") and

Q = Q(I") whenever these quantities cannot be confounded with tmesmonding
functions.

Note thato?(Q2) = 1 andp o Q = ¢, sincep{Q((T)} = ¢{T'/c*(T)} = ¢(T).
For instance, the correlation matrix producedbig scale-invariant and thus it can
be derived from any shape matfix. Hence, whenevel,, is an estimator fof?,
an estimator forp(I") is simply given byp(€2,). This is a formal justification of
directing one’s attention to shape matrices (Frahm andeJa2@07a, Hallin and
Paindaveine, 2006a, Oja, 2003, Paindaveine, 2008, Taskira., 2006). General
robustness and efficiency properties of scale-invariamttfans have been investi-
gated by Tyler (1983).



3 Asymptotic Distributions

3.1 The Choice of the Scale Function

In most cases asymptotic normality of robust estimatorandI’,, for the mean
vector and covariance matrix can be guaranteed by the usgallarity conditions
given in the robust statistics literature. Typically andIl",, are also asymptotically
independent. In the present work it is shown that the asytegtalependence of
an estimatof?,, for the shape matrix and an associated estimatdor the scale
can only be guaranteed for one and only one scale funetioA similar result in
the context of LAN theory has been obtained by Paindavei@@gp(see below).

Let I',, be some estimator far « ¥ wheren represents the sample size. The
corresponding shape matrix estimator is given{by := T',/c*(T,). At a first
glance the choice of the scale functiohmight be considered as arbitrary and the
following variants can be often observed in the literatiaifdaveine, 2008):

(S1) Frahm (2004, p. 64), Hallin et al. (2006), Hallin and Pawvelae (2006b),
Hettmansperger and Randles (2002) as well as Randles (200ply choose
UQ(F) =1T1; so thatﬂn =1.

(S2) Dumbgen (1998), Frahm and Jaekel (2007b) as well as Ty&&37@) take the
scale functionr?(T") = (trT")/d so thattr Q = d..

(S3) Dimbgen and Tyler (2005), Hallin and Paindaveine (20084&hindaveine
(2008), Salibian-Barrera et al. (2006), Taskinen et al0O@s well as Tat-
suoka and Tyler (2000) postulaté(I') = (det I')'/¢ so thatdet 2 = 1.

Paindaveine (2008) considers the latter normalizaticcaasnicalsince this is the
only one where the Fisher information matrix with respe¢htomean vector, shape
matrix and scale is block diagonal if the distributionfor, more precisely, the
corresponding experiment is LAN (van der Vaart, 1998, Ch. 7)

The scale functions defined 82 and S3 correspond to the arithmetic and geo-
metric means of the eigenvalueslofrespectively. Hence, another possible scale
function is given by the harmonic mean of the eigenvaluds, ak.

() o*(T)=d/(trT ') sothattr Q' =d.
It is worth to point out that shape matrices are not affine\eyiant, since

QVIV') = 02‘(/51‘“/{/’) B 02((71/(FF‘)/’) vamy’

for any nonsingular x d matrix V' and generally?(T") does not correspond to
o?(VIT'V"). This is not surprising because even after an affine-liraasformation



of the data, the shape matrix has to satisfy the scaling tiondi*(2) = 1 and so

the equalityQ(VI'V’") = VQ(I")V’ cannot be guaranteed in general. However, a
natural requirement is that the equivariance propertysatdeast for all transfor-
mationsV” with o2(V'V’) = 1. That means if not the scale but only the shape of the
distribution of X is affected byl/, the shape matrix should remain equivariant.

More generally, it can be required (Tyler, 2002) that

QVTV!) = 7Z§E§‘)/‘/) ,

i.e.a?(VIV') = o*(VV')o*(T). Interestingly, from the scale functions consid-
ered inS1-$4 only the canonical onesB) satisfies this kind of affine equivariance
property. This is another argument in favor of the determifased normalization
proposed by Paindaveine (2008).

The previous arguments as well as a thorough discussionlimldad Paindaveine
(2006a) show that the choice of the scale function must besdrby statistical
considerations and should be handled carefully.

Lemmal LetQ(T) = I'/o?(T') be ad x d shape matrix and* a scale function.

Then Dvec ) 1
vec

= e —vec Qe

where

d0*(T)  00°(Q)

O(vecT) — O(vecQ)

To2 =

Proof. By the product rule it follows that

1 OvecT vee I’ 1

Jo=" O(vecT)  of ot =

ﬁ {]dQ — VGCQJGQ} .
Since the partial derivatives of an homogeneous functiensaale-invariant, it
holds that7,: = 9o?(£2)/0(vec ). ]

In the following | will write W := I — vec ) J,» for notational convenience.
3.2 Main Results

Let Q be a symmetric randomh x d matrix. A symmetric randomi x d matrix M

is said to possessradial distributionif OMO’" ~ M for any orthogonat! x d
matrix O (Tyler, 1982). In the following lef\" be a symmetric randomx d matrix
with finite second moments. It is supposed thais of the radial type with respect
to a symmetric positive-definité x d matrix I'. That means’N'T” has a radial



distribution whenever thé x d matrix 7' is such that”T = T'""!. Further, letT,,)
be a sequence of symmetric positive-definite randormd matrices ando?) an
associated sequence witf) := ¢*(T',,), wheres? is a scale function. Moreover,
consider the sequen¢@,,) of symmetric positive-definite randothx d matrices
with Q,, :=T,/02.

Theorem 1 Leto? be a scale function an@d = Q(T") = I'/o*(T") the shape matrix
belonging td". Further, let(a,,) be a sequence of real numbers increasing to infinity
such thata,, (vecT',, — vec ') —4 vec Q asn — oo with [E(vec Q) = 0 and

Var(vec Q) = v (Ige + Kg2)(T' @ T) + yo(vec T) (vec T, (1)

wherey; > 0 and~y, > —2v;/d. Then it follows that

|

whereo? = ¢2(T"), € is a(d* + 1)-dimensional random vector wiffi(¢) = 0, and

2

Op

0.2

vece ()

d
5’ n OO7
vec €,

V(en)  V(og, )

n

V(e2,2,) V(Q,)

n

Var(€) =

More specifically,
V(on) = o* {21702 (Q @ )Ty + 72
with 7,2 = 90%(Q)/d(vec Q) ando? = {02(I')}2,
V(o2,0,) = 210* ¥ (QR V)T,
with ¥ = ;2 — vec) 7,2, and

V(Qn) = ’71111(]d2 + Kd2)(Q ® Q)\Iﬂ .

Proof. The vector{o?(T"), vec (")} is differentiable atec I" and thus

y

where 7,2 o is defined a®{o?(T"), vec Q(T")}/9(vecI')'. FromE(vec Q) = 0 it
follows thatlE(£) = 0 and the variance of the first elementsds given byV(o0?2) =
J,2Var(vec Q) J!.. Sinces? is a homogeneous function it holds thatvec I' =
0. Note also that7,» (1,2 + Kz) = 27,2 and thus

2

On

0.2

vec €2, vec €2

d
)—>§ZIJO-QVQV€CQ, n — 0o,

V(02) = 21T (T @ T) T2 + 120" = 0" {21T,2(2 @ Q T} + 72} -



Similarly, the covariances between the first elemeng ahd its residual elements
are given by(c2,Q,,) = J,2Var(vec Q)¥’/a?. Since(} is a scale-invariant func-
tion of I', due to Euler’s relation it holds théatec I')’ U’ = 0 and thus

V(Uz Qn) = ”yljaz([dz + Kdz)(r X F)\I///Uz = 2’}/1(72 UZ(Q (029 Q)\I// (2)

n’

The expression for the variances and covariances of thduastlements of , I.e.
V(12,,) follows by a straightforward application of the argumeriteg above. =

The next proposition ensures that the preceding theoremppiscable to any case
wherel’,, represents an affine equivariant covariance matrix estingeid the data
stem from an elliptically symmetric distribution.

Proposition 1 Let 0% be a scale function anf = Q(T") = I'/o*(T") the shape
matrix belonging td". Further, let(a,,) be a sequence of real numbers increasing
to infinity such thati,, (vec T',, — vec ') —4 vec N asn — oo . Here[E(vec ) = 0
and \ is of the radial type with respect to the matiix Then the conditions of
Theorem 1 are satisfied.

Proof. It is only necessary to show that the second moment conditiprs sat-
isfied. SinceV is of the radial type, this follows immediately from Coralfal of
Tyler (1982). |

In the followingI’,, can be interpreted as a covariance matrix estimator. Dueeto t
central limit theorem, in most practical situations it canfbund thatz,, = /n
and the random vectarec N is multivariate normally distributed. A well-known
exception is theninimum volume ellipsoiMVE) estimator (Rousseeuw, 1985).
This is only /n -consistent and its asymptotic distribution is non-nor(avies,
1992). Nonetheless, whenevey is affine equivariant and the data stem from an
elliptically symmetric distribution, the limiting randommatrix A/ is of the radial
type (Tyler, 1982). Hence, Proposition 1 is applicable tadewange of covariance
matrix estimators.

An important consequence of Theorem 1 is that the asympdtiabution of(2,,

is only driven by the numbey; . That meansy, has no impact on the asymptotic
distribution of(2,, . Hence, the asymptotic relative efficiency of some shapeixnat
estimatoK?,,, compared to another shape matrix estim&gy (i.e. both estimators
are based on theamescale functiorv? but different covariance matrix estimators)
can be simply calculated by the ratjg,/v,1, wherey,; is thev,; of 23, and~» is
the~, of Q,, (Tyler, 1983).

Corollary 1 Suppose that the conditions of Theorem 1 are satisfiecdramdrre-

sponds to the scale function given$8: Then it holds that

2
V(o}) = 04(% ¥ 72) L Ve =0,



and

V) = 71 (T + K2)(Q 0 Q) — 2%1 - (vee Q) (vec Q' @3)

In particular, if vec Q is multivariate normally distributed, the quantitie§ and
Q,, are asymptotically independent.

Proof. Note that

o? ddetT’ o2
= . = — F_l ! — Q_l ! d .
o ddetI" O(vecl') d (vee ™)' = (vec )/

Due to Theorem 1 the asymptotic varianger?) is given by
V(o7) = o* {21 T,2(2® Q) T}z + 7

and note thatQ? ® )7/, = vec Q/d . Moreover,7,zvec 2 = 1, which means that
V(c?) = 0*(2v1/d + 72). Further,

V(o2,0,) = 2710* U (Q @ Q) T2 = 27,0% UvecQ/d .
Due to Euler’s relation it holds thakvec Q = 0 and thusV(¢2,Q,,)’ = 0. That
meanss? and(),, are asymptotically uncorrelated or even independentdfQ is
multivariate normally distributed. Finally, the expressifor V(€2,,) follows by a
straightforward calculation after noting thdg (2 ® )7/, = 1/d. n

Theorem 2 Suppose that the conditions of Theorem 1 are satisfiedwith 0.
Then the scale function given Bg is the only one where? and(2,, are asymptot-
ically uncorrelated.

Proof. Paindaveine (2008) shows that the determinant-based fsedgon given
by S3is the only one where the Fisher informatibn , is a block diagonal matrix
if the considered family of elliptically symmetric disttbons is LAN. Suppose
that the data are multivariate normally distributed. Théedrem 1 applies to the
sample covariance matrix and it is clear that the family oftivariate normal dis-
tributions is LAN. The Fisher information is the inverse b&tACM of o2 and(2,,
(which can be obtained after re-shapiig to avoid singularity (Hallin and Pain-
daveine, 2006a,b)). Hence, there is no other scale funstioh that (2) vanishes.
Since the latter is only an algebraic statement, the samé ol for any other
distribution under the conditions of Theorem 2. ]

Theorem 2 extends the main result of Paindaveine (2008)wias been obtained
in the context of LAN theory. Similarly, it can be shown thhetcanonical scale
function is the only one which admits the simple represemadf the ACM of a
shape matrix estimator given by Eq. 3. In fact, this ACM exisithe same desirable
form as the ACM of any affine equivariant covariance matrittneator according
to Theorem 2 and Eq. 1. The operatdr&and . 7,- corresponding to the remaining



scale functions defined W¥1, S2, and$4 are now given for convenience without
an explicit derivation.

ad S1. J,. = €], wheree, is thed? x 1 vector with 1 in the first position and zeros
elsewhere, so thalt = I, — vecQ €]

ad S2. J,2 = (vec Iy)’/dand thusl = I —(vec Q)(vec I,)'/d (see also Theorem
5in Sirkia et al., 2007).

ad $4. It can be shown thaf,: = d/(trT=1)? - (vec T 2)" = (vec Q72)'/d , where
I2:=r"'"T'andQ2:=Q'Q " ie.V=1p— (vecQ)(vecQ?)/d.

If a shape matrix estimatdét,,, defined via a scale functior? is re-normalizedby
applying some other scale functief) to ;,,, its ACM simply corresponds to

V(Qa) = Vs(Ie + Kg2)(2 @ Q)W) (4)

where¥, = 12 —vec () J,2 and(2, is the shape matrix belonging fowith respect
to the scale functiom? . That means the first normalization has no impact on the
asymptotic distribution of2,,, .

4 Robust Covariance M atrix Estimation

In the following | will present some well-known robust colarce matrix estima-
tors (i.e. M-, R-, and S-estimators) which satisfy the afoeationed conditions and
calculate the joint asymptotic distributions of the cop@sding estimators for the
shape matrix and scale. It is neither possible nor reasertaldtudy here all ex-
isting robust covariance matrix estimators (for some aopiarary overviews see,
e.g., Zuo, 2006, Maronna et al., 2006, Ch. 6), but the esdazgdncept might be-
come clear from the subsequent discussion.

Let I, be an affine equivariant estimator which is consistentlfoDue to the
general result of Tyler (1982), in most practical situatidh, is asymptotically
normally distributed with ACMV(T',,) = 71 (12 + Kg2) (T QT) +72(vec T') (vec T,
where~; > 0 and~, > —2v;/d usually depend on the generating vari&e In
the following | will only present the numberg and~, . The/n -convergence to
the normal law is implicitly assumed. Hence, Theorem 2 iegthat the canonical
scale function is the only one where the estimators for tlagshmatrix and scale
are asymptotically independent. As a counterexample dentie MVE-estimator.
This is not,/n -consistent and asymptotically normally distributed ([2ay1992).
However, since the MVE-estimator is affine equivariant dredraite of convergence
does not matter, the corresponding MVE-estimators for liagpe matrix and scale
remain asymptotically uncorrelated (under the elliptaiatribution assumption).

Throughout this section it is supposed that the unknowntimeavectory, € R¢

10



can be substituted by somgén -consistent estimate (here, too, it has been already
demonstrated by Rousseeuw (1985) that the MVE-estimattinédocation is only

v/n -consistent and its asymptotic distribution is non-nojmalmost cases — under
mild regularity conditions concerning the distribution &f (see, e.g., Hallin and
Paindaveine, 2006b, Tyler, 1987a, Bilodeau and Brenné&9,16h. 13) — it can

be shown that the resulting covariance matrix estimatosysmtotically normally
distributed possessing an ACM of that form which is requiretheorem 1. Hence,

in the following X1, ..., X,, will representcenteredi.i.d. random vectors for the
sake of simplicity and without loss of generality.

4.1 M-Estimation

An M-estimatorfor I' (Maronna, 1976) is defined as a solution of

T, = % > w(X(T, X)X, X
t=1
wherew: Rt — R{ satisfies a set of general conditions (Maronna, 1976, Biode
and Brenner, 1999, Section 13.4.1). The estimBfois strongly consistent for the
matrixI' = E{w(X'T~'X)X X'} which is related to the dispersion matrix &f
byl = 723, wherer > (is such thatE{«(R?/7%)} = d with ¢ (¢) := tw(t). The
numbersy; andy, can be calculated by, = (d + 2)%*,/(d + 21,)* and

vy = (1 = 1) =2 (g = D)o {d + (d +4) Yo} /(d + 2¢)2)?
2 — w% )

where, = E{¢?(R?*/73)}/{d(d + 2)} and, := E{¢'(R?*/7?) R*}/(dT?)
(Tyler, 1982, Bilodeau and Brenner, 1999, p. 223).

If X possesses a continuous elliptical distribution &nds the correspondiniylL-
estimatorfor the dispersion matriX , it holds thaty, = {d (d+2)/4}/IE{h*(R?)}
andvy, = —2v, (1 —71)/{2+ d (1 — 1)}, whereh(t) := tdlogg(t)/0t. If X ~
N (0,3) andX, represents the sample covariance matrix, it holdsthat 1 and
v2 = 0. Otherwise the sample covariance matrix is an M-estimakares)(t) = ¢ .
That meandE(R?/7%) = E{v(R?*/m?)} = d, ¢y = d/(d + 2) - E(R?Y)/E?(R?),
andiy, = 1 so thaty; = ¢, andvy, = v, — 1 if R has a finite fourth moment.

Now special attention is devoted to Tyler's M-estimatorl€fy1983, 1987a)
d & XXy d & 5SS

T,=—-Y ——t _— -y =t 5
n ; X(T'Xy n ; SiT 1S, )
whereS; := X, /|| X:||, ||-|| denotes the Euclidean norm, and it is only supposed that

IP(R > 0) = 1. Note thatT,, is not affected by the realizations of the generating
variateR , sinceS = X/|| X|| = RAU/||RAU|| = AU/||AU|| (a.s.).
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That means Tyler's M-estimator gistribution-freein the context of elliptically
symmetric distributions. This has been already observetytsr (1987b). Frahm
and Jaekel (2007a,b) pointed out that the distribution-foeoperty even holds
within the class of generalized elliptical distributioAscandom vector is said to be
generalized elliptically distributed if its generatingriede R can be negative and
might depend o/ (Frahm, 2004, p. 46). This feature allows for the modeling of
various kinds of asymmetries (Kring et al., 2007, Frahm,£®ection 3.4). For
instance it can be shown that aslew-elliptical distributior(Liu and Dey, 2004)
belongs to the class of generalized elliptical distribagi¢Frahm, 2004, p. 47).

Tyler's M-estimator (5) is unique up to a scaling constargnkk, in fact’;, is a
genuineshape matrestimator since it can be only calculated with some suitable
scale functions? such thato?(7,,) = 1. Originally, Tyler (1987a,b) applied the
trace-based scale function given 8%, whereas in Tatsuoka and Tyler (2000) the
authors prefer to use the canonical normalizag8nFor the purpose of calculating
the asymptotic distribution, Tyler (1987a,b) focusesion:= d/(tr X7'T,) - T;,,

that means he defines the scaldplia > by 02(T},) = tr ©~1T,,/d . This leads to
0?(T,) = 0?(X) = 1 for any positive-definite/ x d matrix ¥ .

Note that in contrast to some normalization accordin§te4, the shape matrix
estimatorT’,, indeed is affine equivariant and consequently its ACM (Tyl&87b)
exhibits the simple structure suggested by Eq. 1, viz

V(T,) = d%Q e+ Ke)(B@X) -

w < (vecX)(vec X) . (6)
SinceX represents a shape matrix with respect to Tyler’s scaldiumahis ACM

in fact corresponds to the ACM given by Eq. 3 with= (d + 2)/d . Furthermore,
the Jacobian of Tyler's scale function is given iy = (vecX~')'/d and this
actually corresponds to the Jacobian of th@onicalscale function (see the proof
of Corollary 1). That means by using Tyler’s scale functioassociation with some
other affine equivariant covariance matrix estimator, theesponding estimators
for the shape matrix and scale become asymptotically ueleded. This seems to
contradict Theorem 2. However, note that Tyler’sin general does not meet the
natural requirement?(/;) = 1 and unfortunately’,, cannot be applied in practical
situations, since? is determined by the unknown parameter

An alternative way for obtaining the desired ACM of Tyler's@étimator is given
as follows. Note thafl}, is simply an M-estimator with)(t) = d. That means
Y = d/(d+ 2) andy, = 0 so thaty; = (d + 2)/d and~, is not defined (since
o2 cannot be estimated ,). Hence, due to Theorem 1, the ACMBf generally

corresponds ta/(7},) = (d +2)/d - V(12 + Kgz2)(Q @ Q)V’'. Moreover, due to
Corollary 1 the ACM of Tyler’'s M-estimator, based on ttenonicalscale function,
corresponds to (6) whete has to be substituted Ly .

12



4.2 R-Estimation

The R-estimator for the shape matrix has been introducedabyniet al. (2006).
Consider Tyler's M-estimatdf,, which is normalized according &1, i.e. the upper
left element corresponds to 1. The R-estimator is baseddisceetized versioof
T, . Suppose that is an element of’,, . Then the discretization can be made by
% = sgnx/\/n[v/n|z|] (Hallin et al., 2006), wheréy] denotes the smallest
integer not smaller thap € R . The corresponding discretized version of Tyler’s
M-estimator is denoted by#. Hallin and Paindaveine (2006b) also defiiie:=
(T2 X, /|(T#)~'/2X,||. Here A~'/2 denotes a positive-definité x d matrix
such thatd=1/24-1/2" = A1 whereA~! is the inverse of a symmetric positive-
definited x d matrix A. Further, R, represents the rank df 77)~1/2X;| with
respect to the sampl§,,..., X, .

Let fs: Rt — R{ be the density function of some imaginary generating vafat
whereasfr refers to the true generating varid®e Consider the cumulative distri-
bution functionFs(z) = [ fs(r) dr and Fr respectively. Here botR andS are
absolutely continuous and satisfy some weak regularitgitimms which guarantee
local asymptotic normality (Hallin and Paindaveine, 200&{s already mentioned
before, the density function d is given by fs(r) o r?1gs(r?), wheregs is the
density generator of. However, in the following consider the functigi§(r) :=
r=@ D fs(r) = gs(r?) and for0 < p < 1 defineKs(p) := vs{Fs'(p)} F5'(p),
where F5 ' is the quantile function of andvs(z) := — ¥ (z)/f&(x) . Now, the
so-calledcross-information coefficierfHallin et al., 2006) is given by

Irs = /01 Kr(p) Ks(p)dp. (7

Also define

A= My (TF@TH) " f:{KS< ?1) vee (UU7) — % .Vecld}

=1 n

with K5 := 1/n Y7, Ks(t/(n +1)). The{d (d + 1)/2 — 1} x d* matrix M,
symbolizes the Moore-Penrose inverseNjf (where N, is such thatV,vec A =
vechoA). Further, lety,, := I — vec T €] andQ,, := NyU,, (I;2 + K )(T# @
T#)¥! N). Now the R-estimatof,, is defined in terms of theech, operator, viz

d(d+2)

vecho),, = Vechon +
2n

71
: :Z.R7S7n QTLATL )

whereZr, s, represents some consistent estimator for the cross-iatiwmcoeffi-
cient (7) (Hallin et al., 2006). The upper left elementbfis setto 1.

Thereafter, following the arguments of Hallin and Paindlae€2006a) and Pain-
daveine (2008), one can apply a re-normalization by usimegcdmnonical scale
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function and the ACM of the resulting R-estimator readilyidars by applying
Eq. 4 withn, = d(d + 2)Zs s/T% » - Especially, ifS ~ R it holds thaty, =
d(d+2)/Tnr With Tng = Jo K3(p)dp = B3 (R)R?). Fromip(r)r =
—2r2g'(r?)/g(r?) it follows thaty% (r) r? = 4h?(r?), whereh has been already
defined in Section 4.1. Recall that the functioms used for calculating the ACM
of an ML-estimator. That means# ~ R, the R-estimator has the same limiting
distribution as the corresponding ML-estimator and thbgedomes asymptotically
efficient.

4.3 S-Estimation

The S-estimator for the dispersion matrix (Davies, 198T) loa defined a§,, =
arg minycpa det T subject to

3oV ) = ap(o),

t=1

where0 < o < 1 andp: R* — R{ has to be bounded, increasing, and sufficiently
smooth (Croux and Haesbroeck, 1999, Tyler, 2002, BilodemuBrenner, 1999,
Section 13.4.2). The chosen constraint guaranteesltha consistent fol® =
723, wherer > 0 is such thalE{p(R/7)} = ap(x).

Let ¢ be the first and)’ the second derivative o¢f. It is assumed that
E{Y/(R/7)} >0 and  E{Y'(R/7)R*/7+ (d+1)(R/T)R} >0.
Then the numbers; and~, are given by

L AW+ ERAR/DRY
E(/(R/1) R [ + (d+ 1) bR/ R

4!

and
_ArVar{p(R/7)}  2m

2T EOR/MRY  d
(Davies, 1987, Lopuhaé, 1989, Bilodeau and Brenner, 1992%).
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