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1 Introduction

Uncertainty in the coefficients of a linear program is often handled by prob-
ability constraints or, more general, bounds on a risk measure. The random
restrictions are then captured by imposing risk constraints on their violation.
Consider the linear program

cx — min st Ax>b, (1)

and assume that A is a stochastic m x d matrix and b € R™. This is a
stochastic linear optimization problem. To handle the stochastic side condi-
tions a joint risk constraint,

P"(Ax—b) <0, (2)

may be introduced, where p™ is an m-variate risk measure. KE.g. with
p"(Y) = Prob[Y < 0] — « the restriction (2)) becomes

Prob[Ax >b] >1—a, (3)

and a usual chance-constrained linear program is obtained. Alternatively, the
side conditions may be subjected to separate risk constraints,

pH(Ax—b)<0, j=1...m, (4)

with Aj denoting the j-th row of A. In each side condition is subject
to the same bound that limits the risk of violating the condition. A linear
program that minimizes ¢’x subject to one of the restrictions or is
called a risk-constrained stochastic linear program.

For stochastic linear programs (SLPs) in general and risk-constrained SLPs
in particular, the reader is e.g. referred to [Kall and Mayer (2010). What we
call a risk measure here is mentioned there as a quality measure, and useful
representations of the corresponding constraints are given. As most of the
literature, Kall and Mayer| (2010) focus on classes of SLPs with chance con-
straints that lead to convex programming problems, since these have obvious
computational advantages; see also Prékopal (1995)). Our choice of the qual-
ity measure, besides its generality, enjoys a meaningful interpretation and,
as will be seen later, enables the use of convex structures in the problem.



In the case of a single constraint (m = 1) notate

p(a'x —b) <0. (5)

A practically important example of an SLP with a single risk constraint
(5) is the portfolio selection problem. Let 7,...,7q be the return rates on
d assets and notate T = (7,...,74)’. A convex combination of the assets’
returns is sought, r'x = ijl rjx;, that has maximum expectation under a
risk constraint and an additional deterministic constraint,

max Er]'x, s.t. p(¥'x) < py, x€C, (6)
where p is a risk measure, py € R is a given upper bound of risk (a nonneg-
ative monetary value), and C € R? is a deterministic set which restricts the
coefficients xp in some way. For example, if short sales are excluded, C is
the positive orthant in R%. The solution x* is the optimal investment under
the given model. We will see that, if a solution exists, it is regularly finite
and unique. In our geometric approach such a solution corresponds to the
intersection of some line and a convex body that both contain the point E[t].

Regarding the choice of p, two special cases are well known. First, let p(¥'x) =
Prob[F'’x < —vg] and py = a. Then the optimization problem () says:
Maximize the mean return E[f'x] under the restrictions x € C and

V@R, (r'x) < vy .

That is, the value at risk VQR,, of the portfolio return must not exceed the
bound vy. Second, let

plEx) = / " Qunlt)dt, (7)

where () signifies the quantile function of a random variable Z. This means
that the expected shortfall of the portfolio return is employed in the risk
restriction.

In practice, a has to be estimated from data. If the solution of the SLP is
based on a sample of observed coefficient vectors a',...,a" € R?, that is, on
an external sample, the SLP is mentioned as an empirical risk-constrained
SLP. In other words, we assume that a follows an empirical distribution that
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gives equal mass % to some observed points a!,... a" € RY. Rockafellar
and Uryasev| (2000) investigate an empirical stochastic program that arises in
portfolio choice when the expected shortfall of a portfolio is minimized. They
convert the objective into a function that is convex in the decision vector x
and optimize it by standard methods. This approach is commonly used in
more recent works of these and other authors on portfolio optimization.

A more complex situation is investigated by Bertsimas and Brown/ (2009),
who discuss the risk-constrained SLP with arbitrary coherent distortion risk
measures, which also include expected shortfall. These allow for a sound
interpretation in terms of expected utility with distorted probabilities. For
the linear restriction a so called uncertainty set is constructed which consists
of all coefficients satisfying the risk constraint. Bertsimas and Brown| (2009)
discuss the uncertainty set that turns the SLP into a minimax problem, called
robust linear program; however they provide no optimal solution of this pro-
gram. The uncertainty set is a convex body and, as it will be made precise
below in this paper, comes out to equal a weighted-mean trimmed region.
Natarajan et al.| (2009), on the reverse, construct similar risk measures from
given polyhedral and conic uncertainty sets. Pflug| (2006) has proposed an
iterative algorithm for optimizing a portfolio using distortion functionals, on
each step adding a constraint to the problem and solving it by the simplex
method. Meanwhile, many other authors have recently contributed to the
development of robust linear programs related to risk-constrained optimiza-
tion problems, see, e.g. |Nemirovski and Shapiro (2006)), Ben-Tal et al.| (2009)
and |Chen et al| (2010) For a review of robust linear programs in portfolio
optimization the reader is referred to Fabozzi et al. (2010).

In this paper we contribute to this discussion in three respects:

1. The uncertainty set of an SLP under a general coherent distortion risk
constraint is shown to be a weighted-mean region, which provides a
useful visual and computable characterization of the set.

2. An algorithm is constructed that solves the minimax problem over the
uncertainty set, hence the SLP.

3. If the external sample is i.i.d. from a general probability distribution,
the uncertainty set and the solution of the SLP are shown to be con-
sistent estimators of the uncertainty set and the SLP solution.



The paper is organized as follows: In Section [2| constraints on distortion risk
measures and their equivalence to uncertainty sets in the parameter space are
discussed; further these uncertainty sets are shown to be so called weighted-
mean trimmed regions that satisfy a coherency property. In Section (3] a
robust linear program is investigated by which the SLP with a distortion risk
constraint is solved. Section [4] introduces an algorithm for this program and
discusses sensitivity issues of its solution. In Section [5| we address the SLP
and its solution for generally distributed coefficients and investigate the limit
behavior of our algorithm if based on an independent sample of coefficients.
Section [6] contains first computational results and concludes.

2 Distortion risk constraints and weighted-
mean regions

Let us consider a probability space (€2, F, P) and a set R of random variables
(e.g. returns of portfolios). A function p : R — R is a law invariant risk
measure if for Y, Z € R it holds:

1. Monotonicity: If Y is pointwise larger than Z then it has less risk,
p(Y) < p(Z).

2. Translation invariance: p(Y + ) = p(Y) —~ for all v € R.

3. Law invariance: If Y and Z have the same distribution, Py = Pz, then

p(Y) = p(2).

p is a coherent risk measure if it is, in addition, positive homogeneous and
subadditive,

4. Positive homogeneity: p(AY) = Ap(Y) forall A >0,
5. Subadditivity: p(Y + Z) < p(Y)+p(Z) forall Y,Z eR.
The last two restrictions imply that diversification is encouraged - a crucial

property for the risk management. Distortion risk measures are essentially
the same as spectral risk measures. For the theory of such risk measures,



see e.g. Follmer and Schied| (2004). A function p : R — R is said to satisfy
the Fatou property if liminf, ...p(Y,) > p(Y) for any bounded sequence
converging pointwise to Y. With the notion of coherent risk measures, we
reformulate a fundamental representation result of [Huber| (1981):

Proposition 1. p is a coherent risk measure satisfying the Fatou property if
and only if there exists a family Q of probability measures that are dominated
by P (i.e. P(S)=0= Q(S) =0 forany S € F and Q € Q) such that

p(Y) = sup Eg(-Y).
QeQ

We say that the family Q generates p. In particular, let (2, A) = (R¢, BY)
and P be the probability distribution of a random vector a. Huber’s Theorem
implies that for any coherent risk measure p there exists a family G of P-
dominated probabilities on B? so that

p(@x—-0b) <0 & p@x)<-b
o inf Eg(@x) > b
)>b

& Eg(a'x forall GeG.

Let us denote by A™ the unit simplex in R,

A" ={x e R"| Zxkzl,xkzo VE} .
k=1

Then, if a has an empirical distribution on n given points in R?, any subset
Q of A™ corresponds to a family of P-dominated probabilities, and thus
defines a coherent risk measure p. As an immediate consequence of Huber’s
theorem an equivalent characterization of the risk constraint is obtained (see
also Bertsimas and Brown| (2009)):

Proposition 2. Let p: R — R be a coherent risk measure and let a have an
empirical distribution on a',...,a" € R%. Then there exists some Q, C A"
such that

p(@x—0b) <0 < ax>b forall

a€lU,:= conv{a € R*|a=[a'

,...,a"lq|q € 9Q,}.



Here, conv(W) denotes the convex closure of a set W. Proposition [2] says
that a deterministic side condition a’x > b holding uniformly for all a in
the uncertainty set U, is equivalent to the above risk constraint on the
stochastic side condition. This will be used below in providing an algorithmic
solution of the risk-constrained SLP.

2.1 Distortion risk measures

A large and versatile subclass of risk measures is the class of distortion risk
measures (Acerbi, 2002). Again, let QQy denote the quantile function of a
random variable Y.

Definition 1 (Distortion risk measure). Let r be an increasing function
[0,1] — [0,1]. The risk measure p given by

1
o) = [ @y vrtt) ®)
0
1s a distortion risk measure with weight generating function r.

A distortion risk measure is coherent if and only if r is concave. For ex-
ample, with r(¢) = 0if t < o and r(t) = 1 if ¢ > «, the value at risk
VAR, (Y) = —Qy(«) is obtained, which is a non-coherent distortion risk
measure. A prominent example of a coherent distortion risk measure is the
expected shortfall, which is yielded by r(t) = t/a if t < « and r(t) = 1 oth-
erwise. Note that with r(¢) = ¢, the risk measure becomes the expectation
of =Y. A general distortion risk measure p(Y’) can thus be interpreted as
the expectation of —Y with respect to a probability distribution that has
been distorted by the function r. In particular, a concave function r distorts
the probabilities of lower outcomes of Y in positive direction (the lower the
more) and conversely for higher outcomes (the higher the less). In empirical
applications, coherent distortion risk measures other than expected shortfall
have been recently used by many authors; see, e.g., |Adam et al. (2008) for a
comparison of various such measures in portfolio choice.

An equivalent characterization of a coherent distortion risk measure is that
it is coherent and comonotonic (Acerbi (2002))). p is comonotonic if

pY +7)=p(Y)+ p(Z) for all Y and Z that are comonotonic,
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i.e., that satisfy (Y (w) — Y (w'))(Z(w) — Z(w')) > 0 for every w,w’ € Q.
If Y has an empirical distribution on yq,...,y, € R, the definition of a
distortion risk measure specializes to

p(Y)=— Z qiY[i) 9)

where y}; are the values ordered from above and ¢; are nonnegative weights
adding up to 1. (Observe that ¢; = r(y[W]) - T(y[nT—i]>.) Then, the distor-
tion risk measure @D is coherent if and only if the weights are ordered, i.e.
qeAL:={qeA"|0<q < - < g}

2.2 Weighted-mean regions as uncertainty sets

If p is a coherent distortion risk measure, the uncertainty set ¢, has a special
geometric structure, which will be explored now in order to visualize the
optimization problem and to provide the basis for an algorithm. We will
demonstrate that U, equals a so called weighted-mean (WM) region of the
distribution of a.

Given the probability distribution Fy of a random vector Y in R?, weighted-
mean regions form a nested family of convex compact sets, { Do (Fy)}acio,1]s
that are affine equivariant (that is D, (Fax1p) = A Do(Fy)+0 for any regular
matrix A and b € R?). By this, the regions describe the distribution with
respect to its location, dispersion and shape. Weighted-mean regions have
been introduced in |Dyckerhoff and Mosler (2011)) for empirical distributions,
and in Dyckerhoft and Mosler| (2012)) for general ones.

For an empirical distribution on a',...,a" € R% a weighted-mean region is
a polytope in R? and defined as

Dy, (a',...,a") = conv {Zwayja”(j) 7 permutation of {1,...,n} } )
j=1

(10)

Here W, = [Wa1, ..., Wan]|" is a vector of ordered weights, i.e. w, € AZ,
indexed by 0 < a < 1 that for o < [ satisfies

k k
d way <Y wgy, VE=1,...,n. (11)
j=1 j=1
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Any such family of weight vectors {w,}o<a<1 specifies a particular notion
of weighted-mean regions. There are many types of weighted-mean regions.
They contain well known trimmed regions like the zonoid regions, the ex-
pected convex hull regions and several others. For example,

L if j >n— |nal,
na—|na]

0 if j <n—|nal,

We,j = if j =n—[nal,

0 < a < 1, defines the zonoid regions. However some popular types of
trimmed regions, such as Mahalanobis or halfspace regions, are no weighted-
mean regions.

A WM region is characterized by its projections on lines. Note that each
p € S where S9! is a (d — 1)-variate unit sphere, yields a projection of
the data al, ..., a" on the line generated by p and thus induces a permutation
mp of the data,

p/aﬂ'p(l) < p/aﬂ'p(Q) <. < p’a”p(n) )

The permutation is not necessarily unique, and let H(a',...,a") denote the
set of all directions p € S¢7! that induce a non-unique permutation 7.
Dyckerhoff and Mosler| (2011)) have shown that the support function h, of
Dy, = Dy, (al,...,a") amounts to

ha(p) =) wa;pa™?, pesit, (12)
j=1

It follows that, whenever m, is unique, the polytope Dy, has an extremal
point in direction p, which is given by

Zwa,jaﬁp(j) = Zwam;l(i)ai, pc ST\ H(a,... a"). (13)
j=1 i=1

Now we are moving to the main result of this section, which will be the
Theo?em . From @ and 1} it is seen that, with ¢; = W n=1(3) and y) =
—p'a’, the extreme point of the projection of Dy, on the p-line is obtained



by applying a g-distortion risk measure to the projected data points. Now,
setting

QP = {q €A” ‘ q= (waﬂrgl(l)7 e 'wa,wgl(n))7p € Sd_l \ H(a17 s 7an)}

and U, = conv{ala=> " ga’'.q € Q,} we obtain that all extreme points
of Dy, are in U,, hence Dy, C U,. On the other hand, for every q € Q,
it holds that >  ¢;a’ € Dy, which implies U4, C D, . We conclude
U, = Dy, .

Thus we have proven the equality between the distortion risk constraint
feasible set and a properly chosen WM region, which is a reformulation of
Theorem 4.3 from Bertsimas and Brown| (2009):

Theorem 1.

{xeR¥p(@x —b) <0} ={xecRa'x>bVac Dy, (a",...,a")}, (14)

n

where al, ..., a" is an external sample of the parameter vector a.

Recall that D, (a',...,a") is a d-dimensional conver polytope, and thus
the convex hull of a finite number of points (its vertices) or, equivalently,
a bounded nonempty intersection of a finite number of closed halfspaces
(that contain its facets). By this the calculation and representation of such a
polytope can be done in two ways: either by its vertices or by its facets. Recall
that a nonempty intersection of the polytope’s boundary with a hyperplane
is a facet if it has an affine dimension d — 1, and a ridge if it has an affine
dimension d — 2. It is called an edge if it is a line segment, and a wvertex
if it is a single point. In general, each facet of a polytope in R? is itself a
polytope of dimension d — 1 and has at least d vertices. With WM regions
the number of a facet’s vertices can vary considerably; it ranges between d
and d! (Bazovkin and Mosler} |2012). That is why in calculating WM regions
a representation by facets is preferable.

The vertices of a polytope are its extreme points. From above we know that
the directions p € S¢"1\ H(al,..., a") belong to vertices, while the directions
p € H(a',...,a") belong to parts of the boundary that have affine dimension
> 1.

In the context of risk measurement it is crucial that the WM regions pos-
sess two properties that enable them to generate coherent risk measures:
monotonicity and subadditivity.
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Proposition 3. (Coherency properties of WM regions)

1. Monotonicity: If z, < yy holds for all k (in the componentwise ordering
of R?), then

Dyw. (¥1,---,Yn) C Dy, (21,...,2,) @Ri, and
Dy (z1,...,2,) C Dy (¥1,--,¥n) dRY .

2. Subadditivity:

Dwa(yl +Z17~~-7Yn+zn) C Dw(x(ylv'-wYN) @Dwa(zlv"'7zn)'

In this Proposition the symbol & is the Minkowski addition, A ® B = {a +
bla € A,b € B} for A and B C R?. For a proof, see |[Dyckerhoff and Mosler
(2011)).

The subadditivity property of WM regions is an immediate extension of
the subadditivity restriction usually imposed on univariate risk measures.
In dimensions two and more it has an interpretation as a dilation of one
trimmed region by the other. To understand this better let us consider the
simple example of Minkowski addition given in Figure[l] The figure exhibits
a solid triangle with one vertex at the origin and a dotted-border quadrangle.
Now move the triangle in a way that its lower left corner passes all points
of the quadrangle. At each point of the quadrangle we get a copy of the
initial triangle (with a dashed border) shifted by coordinate of the point.
The union of all these triangles gives us the Minkowski sum of the initial two
sets, which is the big heptagon in the picture. Observe that, if the rectangle
is moved around the triangle, the same sum is obtained. The subadditivity
states that if, e.g., these two figures are WM regions Dy, (y1,-..,¥») and
Dy (z1,...,2,) respectively, the Dy (y1 + Z1,...,¥n + 2,) is contained by
the heptagon.
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Figure 1: An illustration of the subadditivity property.

3 Solving the SLP with distortion risk con-
straint

3.1 Calculating the uncertainty set

In the previous section we have shown that the uncertainty set U/, equals the
weighted-mean (WM) region Dy, for a properly chosen weight vector w,,.
Bazovkin and Mosler| (2012) provide an algorithm by which this WM region
can be exactly calculated in any dimension d. The results can be visualized
in dimensions two and three; for examples see Figure [2]

It has been also shown in Bazovkin and Mosler| (2012) that the number of
vertices of a facet can be as much as d! . Therefore the representation of a
WM region by its vertices appears to be less efficient than that by its facets.
In the sequel, we will use the facet representation for solving the SLP.

3.2 The robust linear program

The robust linear program to be solved is

¢’x — min st a'x>b forallaceld, (15)
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% ReadyTR: Scatterplot (current)
File Edges Options

Figure 2: Visualization of WM regions by the R package WM Tregions. Left
panel: Facets of a three-dimensional region in R3. Right panel: Vertices of a
four-dimensional region projected on a subspace of R3.

where the subscript p has been dropped for convenience. The side condition
is rewritten as
x€X=()Xa, Xa={xla'x>0b}. (16)
acl
Note that X', as a weighted-mean region, is a convex polyhedron. So, a
linear goal function is to be minimized on a convex polyhedron. Obviously,
any optimal solution will lie on the surface of X'.

3.3 Finding the optimum on the uncertainty set

In constructing an algorithm for the robust linear program, we will explore
the set X of feasible solutions and relate it to the uncertainty set U/ in the
parameter space. It will come out that the space of solutions x and the space
of coefficients a are, in some sense, dual to each other. The following two
lemmas provide the connection between X and U. First we demonstrate that
X is the intersection of those halfspaces whose normals are extreme points

ofU.
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Lemma 1. [t holds that

X = ﬂ{x\a’be}: ﬂ {x|a'x >0b}.

acl acextU

Proof. We show that [,. .y Xa C Xu for all u € U; then (¢ oy Xa C
Nacy Xa - The opposite inclusion is obvious. Assume u € Y. Then, as U is
convex and compact, u is a convex combination of some points a',...,a’ €
extU, ie. u = Zle Mal with \; > 0 and Zle A; = 1, and for any x €
Nac exts Xa holds x € X,; and a’’x > b for all j, hence u'x = Zle Nal'x >
b, that is, x € X,,. O

Lemma [1] says that each facet of the set A of feasible solutions corresponds
to a vertex of the uncertainty set ¢/. Hence it is sufficient to consider the
extreme points of the uncertainty set.

As a generalization of Lemma [I] we may prove by recursion on k: Each
k-dimensional face of the feasible set corresponds to a (d — k)-dimensional
face of the uncertainty set in the solution space. This resembles the dual
correspondence between convex sets and their polars (cf. e.g. Rockafellar
(1997)). However, in contrast to polars, in our case the correspondence is
not reflexive.

From Lemma |1} it is immediately seen, how the robust optimization problem
contrasts with a deterministic problem, where the empirical distribution of
a concentrates at some u € Y. Observe that the deterministic feasible set
X is just a halfspace, &, = {x|u'x > b}. In the general robust case a
halfspace is obtained for each a € exti/, and the robust feasible set X is
their intersection. The halfspaces are bounded by hyperplanes with normals
equal to a € extU, and their intercepts are all the same and equal to b.
Consequently, the robust feasible set X is always included in the deterministic
feasible set A,
XCX, forany uell.

Moreover, the two feasible sets cannot be equal unless each element of i/ is a
scalar multiple of u with a factor greater than one, Y C {a|a = Au, A > 1}.
Consequently, the minimum value of the robust stochastic LP cannot be
smaller than the value of an LP with any deterministic parameter u chosen
from the uncertainty set. Figure|3|(left panel) illustrates how a deterministic
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robust X

deterministic X

x-space a-space
(Solution space) (Parameter space)

Figure 3: Deterministic and robust cases: feasible set (left panel), uncertainty
set (right panel).

feasible set in dimension two compares to a general robust one: The line that
bounds the halfspace X, ‘folds’ into a piecewise linear curve delimiting X’.

Let
Ug={acRia'x >b}, xcR?.

Lemma 2. It holds that

Uc (YUxc [\ Uk

xeX x€Eext X

Moreover, each vertex x € ext X corresponds to a facet of U.

Proof. By Lemma |ljwe have x € X <& a'x>bforall a e . Now let
a € U; then for any x € X it holds that a’x > b, hence a € U,. Conclude
U C (\xex Ux. Further, it is clear that an extreme point x € ext X' yields a
facet of U. m

Remark. While U/ is always compact, X is in general not. Therefore neither
inclusion holds with equality.

The ordinary simplex algorithm, operating on the vertices of X, constructs
a chain of adjacent facets in the space of parameters. The chain ends at
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Solution space Parameter space

Figure 4: Duality between spaces.

the solution of the optimization task. Notice that this chain corresponds
to a chain of facets of the uncertainty set. So, in principle we could try to
calculate this chain of facets in the parameter set. However, in our algorithm,
another way is pursued to find the optimal solution.

To manage this task let us consider the goal function ¢’x. In the parameter
space ¢ corresponds to a point or a direction. In the solution space it corre-
sponds to all hyperplanes that have c as their normal. To produce all these
hyperplanes in the parameter space, ¢ has to be multiplied with some scaling
factor. Hence the hyperplanes are obtained by passing through a straight
ray ¢ starting at the origin and containing c.

Next we search the intersection of U with the ray ¢. Note that finding
the intersection of a line and a polyhedron in R? is an important problem
in computer graphics (cf. Kay and Kajiya (1986])). The same principle is
employed for a general dimension d. The uncertainty set U is the finite
intersection of halfspaces H;, j = 1...J, each being defined by a hyperplane
H; with normal n; pointing into H; and an intercept d;.

d

Consider some point u on the ray ¢ that is not in &. Compute —Z- for all

J
halfspaces ‘H; that do not include u, i.e. where (u'n; — d;) < 0 holds. (In
other words, H; is visible from u.) Find j, at which this value is the largest.
Recall that moving a point u along ¢ is equivalent to multiplying u by some
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constant. The furthest move is given by the biggest constant. The optimal
solution x* of the robust SLP has to satisfy a’x* > b, which is equivalent to

d.
a’ <%x*) > d;, .

Hence, to obtain x*, the normal n;, has to be scaled with the constant %,
J

X* = —l’lj* . (17)

Besides the regular situation described above, two special cases can arise:

1. There is no facet visible from the origin. This means that no solution
is obtained.

2. ¢ does not intersect U. Then the whole procedure is repeated with the
opposite ray —yp. If this still gives no intersection, an infinite solution
exists.

Finally, we like to point out that not the whole polytope U needs to be
calculated but only a part of it which intersects the ray ¢. In searching
for the optimum not all F' facets need to be checked, but only a subset of
the surface where the intersection will happen. Such a filtration makes the
procedure more efficient. The search for a proper subset can be driven by
geometrical considerations. Let x* be an optimal solution of the robust SLP.
A subset Ueg of U will be mentioned as an efficient parameter set if

o X' €y 1x[@x>b} C A and

e adcly ax>b, dx>b implies a=d.

That is to say, Ueg is the minimal subset of U containing all facets that can
be optimal for some c.

Proposition 4. U.g is the union of all facets of U for which d; > 0 holds.
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In other words, an efficient parameter set U.g consists of that part of the
surface of U that is visible from the origin 0. The proof is obvious.

To visualize the efficient parameter set we will use the augmented uncertainty
set, which is defined as

{ala=Xa", A > 1,a" € U} .

It includes all parameters that are dominated by U.g; see the shaded area in
the right panel of Figure [f

So far we have assumed that b > 0. It is easy to show, that with b < 0
we have to construct the intersection of ¢ with the part of the surface of U
that is invisible from the origin 0, which is U.g in this case. In the sense of
Proposition , U.¢ contains all facets of U with d; < 0. Obviously, Ung is
always non-empty in this case, which, in turn, means that the existence of
a solution is guaranteed. However, the solution can be infinite if ¢ does not
intersect L?eﬂ‘.

The situation of b < 0 is common in the maximizing SLPs. Really, if we have
the model
c’x — max st a'x<b forallacl, (18)

it is possible to rewrite it as follows:

(—¢)x — min  s.t. (—a)x > —b forallael. (19)

Clearly, is equivalent to (15]) except of the negativity of the coefficient b.

4 The algorithm

In this part an accurate procedure of obtaining the optimal solution is given.

Input:

e a vector ¢ € R? of coefficients of the goal function,

e an external sample {a',... a"} C R? of coefficient vectors of the re-
striction,
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e a right-hand side b € R of the restriction,

e a distortion risk measure p (defined either by name or by a weight
vector).

Output:

e the uncertainty set U of parameters given by

— facets (i.e. normals and intercepts),

— vertices,

e the optimal solution x* of the robust LP and its value ¢’x*.
Steps:

A. Calculate the subset Uex C U consisting of facets {(n;,d;)} e
B. Create a line ¢ passing through the origin 0 and c.
C. Search for a facet Hj, of Ueqx that is intersected by ¢:

a. Select a subset U, C U.g of facets: This may be either U itself
or its part where the intersection is expected; Use; = {(n;,d;) | j €
Jse1}- For example, we can search the best solution on a pre-given
subset of parameters. The other possible filtration is iterative
transition to a facet with better criterion value.

b. Take a point u = Ac, A > 0, outside the augmented uncertainty
set. Find the j, = argmax{)\; = uc,l—flj\)\j > 0}jeg..,cs- For the
j

case b < 0 just replace arg max with arg min.

[. If ¢ does not intersect Ueg, then the solution is infinite. If
b > 0, then repeat [C.b] for the opposite ray —¢p; else stop.

II. If in the case b > 0 the inner part of & contains the origin,
then no solution exists; stop.

c. X" = dLnj* is the optimal solution of the robust LP.
I*
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Solution space Parameter space

Figure 5: Finding the optimal solution on the uncertainty set.

In fact, the line ¢ consists of points that correspond to hyperplanes whose
normal is the vector ¢ in the dual space. One part of ¢ is dominated by
points from Ueg, while the other is not (which results from Proposition .
The crossing point a* defines the hyperplane that touches the feasible set at
the optimum as its dual.

Moreover, a typical nonnegativity side constraint x > 0 can be easily ac-
counted for in the algorithm. In considering this, the search for facets has
just to be restricted to those having nonnegative normals.

To solve the portfolio selection problem @ with the algorithm, we treat the
realizations of the vector —T of losses rates as {a',... a"}, and minimize
c¢'x with ¢ = %Z?:l a’. This corresponds to transforming the maximizing
SLP by and running the above outlined procedure. Note that both ¢
and U contain the point %Z?Zl a’, that is, they always intersect, which, in
turn, guarantees the existence of a finite solution. To meet a unit budget
constraint, the solution x* is finally scaled down by Z;l:l x; = 1. Recall that
the risk measure is, by definition, scale equivariant.
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4.1 Sensitivity and complexity issues

Next we like to discuss how the robust SLP and its optimal solution behave
when the data {a', ..., a"} on the coefficients are slightly changed. From ([12))
it is immediately seen that the support function hy, of the uncertainty set is
continuous in the data a’ as well as in the weight vector w,. (Note that the
support function hy, is even uniformly continuous in a', ..., a" and w,, which
is tantamount saying that the uncertainty set U is Hausdorff continuous in
the data and the risk weights.) Consequently, a slight perturbation of the
data will only slightly change the value of the support function of ¢, which
is a practically useful result regarding the sensitivity of the uncertainty set
with respect to the data. The same is true for a small change in the weights
of the risk measure.

We conclude that the point a’* where the line through the origin and c cuts
U depends continuously on the data and the weights. However this is not
true for the optimal solution x*, which may ‘jump’ when the cutting point
moves from one facet of U to a neighboring one.

The theoretical complexity in time of finding the solution is compounded
from the complexity of one transition to the next facet and by the whole
number of such transitions until the sought-for facet is achieved. |Bazovkin
and Mosler| (2012) have shown that the transition has a complexity of O(d*n).
In turn, in the same paper the number of facets N(n,d) of an WM region is
shown to lie between O(n?) and O(n??) depending on the type of the WM
region. Thus, it is easily seen, that an average number of facets in a facets
chain of a fixed length is defined by the density of facets on the region’s
surface, {/N(n,d), and is estimated by a function between O(n) and O(n?).
The overall complexity is then O(d?n?) up to O(d?n?). Notice, that the
lower complexity is achieved for zonoid regions, namely when the expected
shortfall is used for the risk measure.

4.2 Ordered sensitivity analysis

Also alternative uncertainty sets may be compared that are ordered by inclu-
sion. From Lemma [1]it is clear that the respective sets of feasible solutions
are then ordered in the reverse direction; see e.g. Figure [ In particular

we may consider the robust LP for two alternative distortion risk measures
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Figure 6: Example of the ‘reversed’ central regions in the dimension 2.

which are based on weight vectors w, and wg, respectively, that satisfy the
monotonicity restriction . Then the resulting uncertainty sets are nested,
Uz C U, and so are, reversely, the feasible sets, X3 D A&,. This is a useful
approach for visualizing the sensitivity of the robust LP against changes in
risk evaluation.

5 Robust SLP for generally distributed coef-
ficients

So far an SLP has been considered where the coefficient vector a follows
an empirical distribution. It has been solved on the basis of an external sam-
ple {a',... a"}. In this section the SLP will be addressed with a general
probability distribution P of a. We formulate the robust SLP in the gen-
eral case and demonstrate that the solution of this SLP can be consistently
estimated by random sampling from P.

Consider a distortion risk measure p that measures the risk of a general
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random variable Y and has weight generating function r, p(Y) = — fol Qy (t)dr(t).
Similarly as in Section [2.2 a convex compact U in R? is constructed through
its support function hy,

hu(p) = / Qura(t)dr(t)

Now, let a sequence (8"),en of independent random vectors be given that
are identically distributed with P, and consider the sequence of random un-
certainty sets U, based on a!,... a". Dyckerhoff and Mosler| (2011) have
shown:

Proposition 5 (Dyckerhoff and Mosler| (2011)). U, converges to U almost
surely in the Hausdorff sense.

The proposition implies that by drawing an independent sample of a and
solving the robust LP based on the observed empirical distribution a con-
sistent estimate of the uncertainty set U is obtained. Moreover, the cutting
point a’*, where the line through the origin and c hits the uncertainty set, is
consistently estimated by our algorithm. But, in particular for a discretely
distributed a, the optimal solution x* need not be a consistent estimate, as
it may perform a jump when a’* moves from one facet of I to neighboring
one.

6 Concluding remarks

A stochastic linear program (SLP) has been investigated, where the coeffi-
cients of the linear restrictions are random. Risk constraints are imposed
on the random side conditions and an equivalent robust SLP is modeled,
whose worst-case solution is searched over an uncertainty set of coefficients.
If the risk is measured by a general coherent distortion risk measure, the
uncertainty set of a side condition has been shown to be a weighted-mean
region. This provides a comprehensive visual and computable characteriza-
tion of the uncertainty set. An algorithm has been developed that solves the
robust SLP under a single stochastic constraint, given an external sample. It
is available as an R-package StochaTR (Bazovkin and Mosler, 2011). More-
over, if the data are generated by an infinite i.i.d. sample, the limit behavior
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of the solution has been investigated. The algorithm allows the introduc-
tion of additional deterministic constraints, in particular, those regarding
nonnegativity.

d\n | 1000 | 2000 | 3000 | 4000 | 5000 | 10000 | 15000 | 20000 | 25000
3 03 | 1.14 | 1.76 | 292 | 341 | 6.18 | 12.61 | 15.06 | 47.54
4 0.66 | 2.21 | 347 | 448 | 427 | 7.68 | 16.97 | 20.04

) 1.85 | 3.09 | 5.68 | 9.28 | 11.03 | 13.52 | 27.34 | 54.86

6 2.08 | 441 | 5.62 | 14.99 | 18.73 | 25.07 | 46.88

7 2.16 | 6.22 | 13.3 | 25.44 | 28.56 | 52.33

8 4.18 | 9.78 | 20.18 | 31.82 | 34.23

9 0.18 | 14.75 | 24.11 | 35.94 | 61.14

10 || 6.17 | 16.97 | 33.82 | 42.11 | 67.06

Table 1: Running times of StochaTR for different n and d (in seconds).

Table|l|reports simulated running times (in seconds) of the R-package for the
5%-level expected shortfall and different d and n. The data are simulated
by mixing the uniform distribution on a d-dimensional parallelogram with
a multivariate Gaussian distribution. In light of the table the complexity
seems to grow with d and n slower than O(d?n?).

Besides this, we contrast our new procedure with the seminal approach of
Rockafellar and Uryasev| (2000)), who solve the portfolio problem by optimiz-
ing the expected shortfall with a simplex-based method. In illustrating their
method, they simulate three-dimensional normal returns having specified ex-
pectations and covariance matrices. We have applied our package to likewise
simulated data. The results are exhibited in Table[2 For a comparison, some
cells contain also a second value, which corresponds to the Rockafellar and
Uryasev] (2000) procedure and is taken from Table 5 there.

a\n || 1000 5000 10000 | 15000 | 20000 | 25000
0.10 || 1.1 (<B) | 7.2 (6) | 23.7 (20) | 46 |56.3 (45) | 74.4
0.05 | 0.5 (<5) | 4.7 (6) | 14.0 (12) | 20.0 | 39.8 (40) | 53.2
0.01 ]| 0.3 (<5) | 2.3 (6) | 3.8 (6) | 7.9 |221 (50) | 385

Table 2: Running times of StochaTR for different n and « (in seconds); in
parentheses running times of Rockafellar and Uryasev] (2000)).
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As we see from Table[2] the computational times of the two approaches do not
much differ. However, our algorithm usually needs some dozens of iterations
only, which is substantially less than the algorithm of Rockatfellar and Uryasev
(2000). Also, in contrast to the latter, where the resulting portfolio can vary
between (0.42,0.13,0.45) for n = 1000 and (0.64,0.04,0.32) for n = 5000,
we get a stable optimal portfolio. Our solution averages at (0.36,0.15,0.49),
which has approximately the same V@R and expected shortfall as that in
the compared study but yields a better value of the expected return.

Finally, our approach turns out to be very flexible. In particular, non-sample
information can be introduced into the procedure in an interactive way by ex-
plicitly changing and modifying the uncertainty set. More research is needed
in extending the algorithm to solve SLPs with multiple constraints ([2)). Also
procedures that allow for a stochastic right-hand side in the constraints and
a random coefficients in the goal function have still to be explored.
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