
DISCUSSION PAPERS IN STATISTICS

AND ECONOMETRICS

SEMINAR OF ECONOMIC AND SOCIAL STATISTICS
UNIVERSITY OF COLOGNE

No. 7/07

Testing for the Best Alternative with an

Application to Performance Measurement

by

Gabriel Frahm

4th version
September 3, 2007

DISKUSSIONSBEITRÄGE ZUR
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Motivation

In many practical situations we cannot calculate some number analytically. Then
it is often possible to use Monte Carlo simulation for approximating the desired
quantity. Standard large sample theory can be applied for controlling such kind
of approximations. Now suppose that we are searching for the maximum of some
unknown and analytically untractable quantities. Thus we could choose the largest
outcome given by Monte Carlo simulation. However, since we take the best result
from a set of given outcomes there is some sort of selection bias and it is not evident
if our choice is significantly better or at least not worse than any other. The same
problem frequently occurs in statistical inference or decisions under uncertainty
when searching for the ‘best alternative’ such as portfolio optimization. In the
following I will derive a large sample test for the best alternative in a rather general
setting. The presented test is demonstrated by an application to financial data. It is
shown that the Jobson-Korkie test for the Sharpe ratios of two asset portfolios can be
generalized to ergodic stationary stochastic processes satisfying Gordin’s condition.
The resulting test for the best alternative accounts for conditional heteroscedasticity
and non-normality of asset returns in contrast to the Jobson-Korkie test.

1. Hypothesis Test for the Best Alternative

1.1. Basic Assumptions and Notation. Let µ = (µ1, . . . , µd) ∈ R
d be an un-

known vector of quantities and we are searching for the best alternative

i∗ := arg max
j

{
µj : j = 1, . . . , d

}
.

1
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It is worth to mention that i∗ does not need to be unique. That means there can
be several equivalent and optimal alternatives. In contrast, let i ∈ {1, . . . , d} be our
specific choice, i.e. we believe that there is no other alternative better than µi . We
will set i = 1 for notational convenience and without loss of generality. Hence, we
want to support the alternative hypothesis

H1 : µ1 ≥ µ2, . . . , µd

vs. the null hypothesis H0 : ¬H1 . If we can reject H0, our choice turns out to be
significantly optimal among all given alternatives.

Let (Xn) be a sequence of d-dimensional random vectors such that

an

(
Xn − µ

) d−→ ξ , n −→ ∞ ,

where (an) is some sequence of real numbers growing to infinity and ξ is a d-
dimensional random vector. It is supposed that the cumulative distribution function
(c.d.f.) of ξ does not depend on µ . By Cramér’s theorem (Davidson, 1994, p. 355)
it follows that Xn →p µ as n → ∞ . Hence, we can think of Xn as a convenient
approximation of µ if n is large. Due to the Central limit theorem (CLT) we will
typically encounter an =

√
n and ξ has a multivariate normal distribution with zero

mean and covariance matrix Σ .

1.2. Test Procedure. A crucial point of the following test is that i must be fixed
without examining Xn or say, more precisely, the choice must not depend on the data
which are used for testing the aforementioned hypothesis. Otherwise the presented
method would suffer from a selection bias. Indeed, this is not a serious drawback
of the procedure. For instance, consider a Monte Carlo simulation. In that case we
can simply run the process (Xn) a first time so as to choose the largest component
of Xn, that is

i = argmax
j

{
Xjn : j = 1, . . . , d

}
.

After that we start a new run of (Xn) and apply the following test with respect to
the choice made by the first run. In case of historical data we can simply divide
the overall sample into two sub-samples, i.e. a calibration and a validation sample.
Then the choice can be made by using the calibration sample, whereas the test has
to be applied to the validation sample.

Define the (d − 1) × d matrix

∆ :=





1 −1 0 · · · 0
1 0 −1 0
...

...
. . .

...
1 0 0 · · · −1





and note that due to the Continuous mapping theorem (Davidson, 1994, p. 355) we
obtain

an

(
∆Xn − ∆µ

) d−→ ∆ξ , n −→ ∞ .

Now the alternative hypothesis can be compactly written as H1 : ∆µ ≥ 0 . In case
d = 2 we will obtain a simple Gauss-type test for the null hypothesis H02 : µ1 < µ2 .
In the general multivariate case the global hypothesis H1 can be supported whenever
H1j : µ1 ≥ µj survives after each comparison with j = 2, . . . , d . This is an important
implication of the following theorem.

Theorem 1.2.1. Let ζ = (ζ1, . . . , ζk) be a random vector and consider Z = η + ζ
where η ∈ R

k but not η ≥ 0 . Let λj be the β-quantile of ζj for j = 1, . . . , k and

0 < β < 1 . Then IP
(
Z > λ

)
≤ 1 − β with λ = (λ1, . . . , λk) ∈ R

k.

Proof. At least one component of η must be negative, say ηj < 0 . Now the assertion
follows immediately by noting that IP(Z > λ) ≤ IP(Zj > λj) ≤ 1 − β . �
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In our case η represents ∆µ , k = d − 1, β = 1 − α with 0 < α < 1, ζ = ∆ξ/an,
and Z = ∆Xn . Hence, we can reject H0 if ∆Xn > λ or, following the usual notation
of large sample theory, T := an∆Xn > τ , where τ = (τ1, . . . , τd−1) := anλ . The
(d−1)×1 vector τ contains the (1−α)-quantiles of ∆ξ . Theorem 1.2.1 guarantees
that our choice is significantly optimal among all given alternatives whenever it
is significantly better or not worse than every other candidate on the same level
α . That means if each pairwise test H0 : µ1 < µj vs. H1 : µ1 ≥ µj possesses a
significance level of α then the overall test H1 : µ1 ≥ µ2, . . . , µd vs. H0 : ¬H1 works
on the same level.

In many practical situations we do not know the exact c.d.f. of ∆ξ . However,
we can often calculate or simulate the c.d.f. of ξn, where (ξn) is some sequence of
d-dimensional random vectors such that ξn →d ξ as n → ∞ . This can be used for
a large sample approximation of the critical thresholds τ1, . . . , τd−1 . For instance,
suppose that X1, . . . , Xn is a sample of independent copies of a random vector X
with mean vector µ and positive definite covariance matrix Σ . We assume that µ
and Σ are unknown. From the CLT we know that

√
n ·

(
1

n
·

n∑

i=1

Xi − µ

)
d−→ N

(
0, Σ

)
, n −→ ∞ .

For brevity we may denote the sample mean vector by Xn =
(
X1n, . . . , Xdn

)
. Now

we try to reject H0j : µ1 < µj by applying the one-sided Gauss test

Tj−1 :=
√

n ·
(
X1n − Xjn

)
> τj−1 ,

for j = 2, . . . , d , where

τj−1 :=
√

σ2
1 + σ2

j − 2σ1j · Φ−1(1 − α) .

Here σ2
j represents the variance of the jth component of X (j = 1, . . . , d), σ1j is the

covariance between its first and jth component (j = 2, . . . , d), and Φ−1 denotes the
quantile function of the standard normal distribution. Note that the parameters of
Σ are unknown but we can substitute Σ by the sample covariance matrix

Σ̂n =
1

n
·

n∑

i=1

(
Xi − Xn

)(
Xi − Xn

)
′

because – due to the i.i.d. assumption – the sample covariance matrix is strongly
consistent for Σ . Hence, by the Cramér-Wold device (Davidson, 1994, p. 405) it
follows that

Σ̂
1

2

nY
d−→ Σ

1

2 Y ∼ N (0, Σ) , n −→ ∞ ,

where Y ∼ N (0, Id) and Σ
1

2 denotes a d × d matrix such that Σ
1

2 Σ
1

2
′ = Σ . That

means the critical thresholds τ1, . . . , τd−1 can be readily approximated by using the
sample variances and covariances and we obtain the usual one-sided Gauss test for
a joint sample, viz

X1n − Xjn√(
σ̂2

1 + σ̂2
j − 2σ̂1j

)
/n

> Φ−1(1 − α) .

If this inequality is satisfied for every j = 2, . . . , d , the first alternative is signifi-
cantly optimal among all given alternatives.

2. Application to Financial Data

2.1. General Conditions. Let Pt

a.s.
> 0 be the price of an asset at time t ∈ Z

so that Rt := Pt/Pt−1 − 1 represents the corresponding asset return from t − 1 to
t . It is assumed that (Rt) is strongly stationary and ergodic with IE(Rt) = η and
Var(Rt) = σ2 < ∞ . Ergodicity means that any existing and finite moment of Rt
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can be consistently estimated by the corresponding sample moment of (Rt). This
is guaranteed if (Rt, . . . , Rt+k) is asymptotically independent of (Rt−n, . . . , Rt−n+l)
as n → ∞ for all k, l ∈ N, whilst the components of the considered random vectors
generally depend on each other (Hayashi, 2000, p. 101). For the CLT we need some
additional restrictions. More precisely, the CLT holds for the sample mean of (Rt) if
the centered process (Rt − η) satisfies Gordin’s condition. Let Ht := (Rt, Rt−1, . . .)
be the history of (Rt) at time t ∈ Z . Roughly speaking, Gordin’s condition implies
that the impact of Ht−n on the conditional expectation of Rt vanishes as n → ∞
and also that the conditional expectations of Rt do not vary too much in time
(Hayashi, 2000, p. 403). In that case it is guaranteed that the CLT holds with an
asymptotic or, say, long-run variance σ2

L :=
∑

∞

k=−∞
γ(k) (Hayashi, 2000, p. 401),

where γ is the autocovariance function of (Rt). This can be easily extended to any
d-dimensional stochastic process (Hayashi, 2000, p. 405) and applied to a broad
class of standard time series models. There exist several alternative criteria for the
CLT in the context of time series analysis which can be found, e.g., in Brockwell
and Davis (1991, p. 213) and Hamilton (1994, p. 195). However, to my knowledge
Gordin’s condition represents the most unrestrictive set of assumptions concerning
the serial dependence structure of a stochastic process (Eagleson, 1975).

It is worth to note that the number of dimensions d is supposed to be fixed
or at least n, d → ∞ such that n/d → ∞ . If n/d tends to a finite number, the
CLT may become invalid and other interesting issues arise from Random matrix

theory (Bai, 1999). However, if the number of observations relative to the number
of assets is large enough, the sample mean is approximately normally distributed
under the aforementioned conditions. We additionally assume that the asset return
Rt possesses a finite fourth moment and that Gordin’s condition is satisfied not only
for (Rt − η) but also for {(Rt − η)2 − σ2}. Consider the random variable X := R/σ
and suppose that the risk-free interest rate is constant and zero without loss of
generality. The Sharpe ratio µ := η/σ (see, e.g., Campbell et al., 1997, p. 188) is
frequently used as a performance measure in finance literature.

2.2. Asymptotic Distributions. Concerning the sample mean η̂ we obtain
√

n ·
(
η̂ − η

) d−→ N
(
0, σ2

L

)
, n −→ ∞ .

The sample variance σ̂2 represents a consistent estimator for the stationary variance
σ2 but for estimating the long-run variance σ2

L we need to estimate the autocovari-
ance function γ of (Rt). Actually, there are many alternative estimation procedures
for long-run variances and covariances (see, e.g., Ogaki et al., 2007, Ch. 6). This is
not the primary concern of the present work and for the sake of simplicity we can
choose a simple box-kernel type estimator, viz

σ̂2
L := σ̂2 + 2

l∑

k=1

γ̂(k) ,

where γ̂ is the sample autocovariance function of (Rt) (Hayashi, 2000, p. 142) and
l < n . However, many empirical studies confirm that γ(k) ≈ γ̂(k) ≈ 0 for k 6= 0 and
so we can expect that σ̂2

L ≈ σ̂2. The standard error of η̂ is given by ǫ(η̂) = σL/
√

n
and this can be estimated by ǫ̂(η̂) = σ̂L/

√
n .

Since {(Rt−η)2−σ2} satisfies Gordin’s condition, the sample variance σ̂2 is also
asymptotically normally distributed, viz

√
n ·

(
σ̂2 − σ2

) d−→ N
(
0, υL

)
, n −→ ∞ .

The long-run variance υL of the squared centered asset returns can be estimated by

υ̂L := κ̂(0) + 2

l∑

k=1

κ̂(k) ,
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Canada France Germany Italy Japan UK USA

σ̂2
L/σ̂2 1.1334 1.3834 1.2356 1.9596 2.1995 0.9883 1.0505

υ̂L/κ̂(0) 2.1004 1.8611 2.3553 1.8195 2.0844 2.5268 2.0429

Table 1. Estimated long-run variances divided by sample variances.

where κ̂ denotes the sample autocovariance function of {(Rt−η)2}. Typically, asset
returns are conditionally heteroscedastic and thus υL can become relatively large.
This is also confirmed by the following empirical study. We consider monthly excess
returns of the MSCI stock indices for the G7 countries Canada, France, Germany,
Italy, Japan, UK and USA from January 1970 to September 2006. The sample size
corresponds to n = 456 and the risk-free interest rate is calculated by the secondary
market 3-month US treasury bill rate. Further, the considered indices are adjusted
by dividends, splits, etc. and are calculated on the basis of USD stock prices.

For estimating the long-run variances we have to choose an appropriate lag length
l ∈ N. Figure 1 shows the empirical autocorrelations for the squared centered excess
returns of the MSCI indices and the equally weighted portfolio (EWP) up to l = 12.
The Ljung-Box test leads to a rejection of the null hypothesis H0 : ρ(1) = . . . =
ρ(12) = 0 in every case except for the EWP, France, and Italy. That means there is
a strong evidence of conditional heteroscedasticity for monthly asset returns and we
may choose l = 12 as an appropriate lag length. Now, Table 1 contains the estimated
long-run variances divided by the corresponding sample variances. In most cases
the long-run variances of the asset returns roughly correspond to the stationary
variances, whereas the long-run variances of the squared asset returns are quite
twice as large as the stationary ones. Hence, it is not appropriate to ignore the
effect of heteroscedasticity when analyzing the volatility of monthly asset returns.

By applying the well-known ‘delta method’ we obtain

√
n ·

(
σ̂ − σ

) d−→ N
(

0,
υL

4σ2

)
, n −→ ∞ .

The standard error of σ̂ is given by

ǫ(σ̂) :=

√
υL/n

2σ

and its estimator can be denoted by ǫ̂(σ̂) :=
√

υ̂L/n/2σ̂.
The Sharpe ratio can be estimated by µ̂ := η̂/σ̂ which is also asymptotically

normally distributed since

√
n ·

([
η̂
σ̂2

]
−

[
η
σ2

])
d−→ N

(
0,

[
σ2

L ̺L

̺L υL

])
, n −→ ∞ ,

where ̺L represents the long-run covariance between Rt and (Rt − η)2. After ap-
plying once again the delta method we obtain

√
n ·

(
µ̂ − µ

) d−→ N
(

0,
σ2

L

σ2
− µ̺L

σ3
+

µ2υL

4σ4

)
, n −→ ∞ ,

and the standard error of µ̂ can be estimated in the same manner as ǫ(η̂) or ǫ(σ̂).
Schmid and Schmidt (2007) obtain the same asymptotic variance under the assump-
tion of an ‘α-mixing process’. As already mentioned this assumption is somewhat
more restrictive than Gordin’s condition. Schmid and Schmidt (2007) also provide
closed-form expressions for the asymptotic variance of the Sharpe ratio in case of a
stochastic volatility and a GARCH model.

Table 2 contains the estimated means, standard deviations, and Sharpe ratios
for the monthly excess returns of the G7 MSCI indices and the EWP. The corre-
sponding standard error estimates ǫ̂(η̂), ǫ̂(σ̂), and ǫ̂(µ̂) are given in the parentheses.
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EWP Canada France Germany Italy Japan UK USA
η̂ .0051

(.0026)
.0048
(.0027)

.0062
(.0035)

.0053
(.0031)

.0036
(.0047)

.0058
(.0044)

.0061
(.0030)

.0042
(.0021)

σ̂ .0437
(.0025)

.0545
(.0038)

.0640
(.0040)

.0603
(.0042)

.0718
(.0039)

.0633
(.0035)

.0638
(.0091)

.0436
(.0029)

µ̂ .1177
(.0620)

.0886
(.0509)

.0967
(.0550)

.0880
(.0523)

.0507
(.0646)

.0909
(.0696)

.0955
(.0479)

.0959
(.0503)

Table 2. Means, standard deviations, and Sharpe ratios for the
monthly excess returns of the G7 MSCI indices and the EWP.

Obviously, the standard errors for the Sharpe ratios are big despite of the large
number of observations. This is a common problem in performance measurement.
Now we want to derive an appropriate hypothesis test for the best alternative, i.e.
the best performing asset. Without any previous look at the data we may expect
that the EWP possesses the largest Sharpe ratio due to the effect of international

diversification (see, e.g., Jorion, 1985). That means the variance of the EWP return
should be relatively small. Indeed, this can be verified in Table 2. Hence, the EWP
may serve as the benchmark portfolio and we want to know if its estimated Sharpe
ratio µ̂1 = 0.1177 is significantly larger (or at least not smaller) than any other
Sharpe ratio.

Also the 2-dimensional random vector (µ̂1, µ̂j) (j = 2, . . . , d) is asymptotically
normally distributed, i.e.

√
n ·

([
µ̂1

µ̂j

]
−

[
µ1

µj

])
d−→ N

(
0,

[
ϑ2

1 ϑ1j

ϑj1 ϑ2
j

])
, n −→ ∞ .

After some calculation we obtain

ϑ1j =
ωL1j

σ1σj

− µjσ1ωL2j + µ1σjωL3j

2σ2
1σ

2
j

+
µ1µjωL4j

4σ2
1σ

2
j

for j = 2, . . . , d . Here ωL1j represents the long-run covariance between R1t and Rjt,
ωL2j is the long-run covariance between R1t and (Rjt − ηj)

2, ωL3j is the long-run
covariance between (R1t − η1)

2 and Rjt, whereas ωL4j is the long-run covariance
between (R1t − η1)

2 and (Rjt − ηj)
2. Now it follows that

√
n ·

{
(µ̂1 − µ̂j) − (µ1 − µj)

} d−→ N
(
0, ϑ2

1 + ϑ2
j − 2ϑ1j

)
, n −→ ∞ .

Table 3 contains the values of the test statistic, i.e. Tj−1 =
√

n · (µ̂1 − µ̂j) for
j = 2, . . . , 8, the standard errors calculated on the basis of the long-run variances
and covariances, and the corresponding ‘p -values’. There exists no country with a
Sharpe ratio being significantly smaller than the Sharpe ratio of the EWP.

The Jobson-Korkie test (Jobson and Korkie, 1981, Memmel, 2003) is frequently
used in the finance literature for comparing the Sharpe ratios of two asset portfo-
lios. For applying this test we have to assume that the asset returns are serially
independent and multivariate normally distributed. In that case there is no need
to distinguish between long-run, stationary, and conditional variances and covari-
ances of asset returns since these quantities simply coincide. That means σ2

L1 = σ2
1 ,

σ2
Lj = σ2

j , and ωL1j = σ1j (j = 2, . . . , d). Further, by applying some standard results

of multivariate analysis (see, e.g., Muirhead, 1982, p. 43) we obtain ̺L1 = ̺Lj = 0,
υL1 = 2σ4

1 , υLj = 2σ4
j , ωL2j = ωL3j = 0, and ωL4j = 2σ2

1j (j = 2, . . . , d) so that

√
n ·

(
(µ̂1 − µ̂j) − (µ1 − µj)

) d−→ N
(

0, 2 (1 − ρ1j) +
µ2

1 + µ2
j − 2µ1µjρ

2
1j

2

)

as n → ∞ , where ρ1j := σ1j/(σ1σj) for j = 2, . . . , d . The latter expression for the
asymptotic variance can be found also in Memmel (2003).
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Canada France Germany Italy Japan UK USA
T .6214

(.9305)
.4478
(.5473)

.6355
(.7453)

1.4320
(.9452)

0.5729
(1.0180)

.4739
(.7208)

.4661
(.8499)

p .2521 .2066 .1969 .0649 .2868 .2554 .2917

Table 3. Performance test based on long-run variances and covariances.

Canada France Germany Italy Japan UK USA
T .6214

(.7413)
.4478
(.6058)

.6355
(.6972)

1.4320∗
(.7915)

0.5729
(.8599)

.4739
(.7066)

.4661
(.7614)

p .2009 .2299 .1810 .0352 .2526 .2512 .2702

Table 4. Jobson-Korkie performance test.

Table 4 once again contains the values of the test statistic Tj−1 and the corre-
sponding standard errors, but now calculated on the basis of sample variances and
covariances according to the Jobson-Korkie test. The star indicates that the cor-
responding Sharpe ratio difference is significantly nonnegative on a 5% level. We
conclude that the MSCI index ‘Italy’ appears to be significantly worse than the
EWP of all MSCI indices. However, this result is based on the wrong assumption
of normality and serial independence of monthly asset returns. All in all it seems to
be very difficult to validate portfolio strategies only by historical data. Instead, the
strategies should be extensively validated by the application of Monte Carlo meth-
ods (see, e.g., Memmel, 2004, Section 5.2) rather than historical simulation. We can
use the presented hypothesis test to judge whether a suggested portfolio strategy
dominates some other strategies significantly, as already mentioned in Section 1.2.

3. Conclusion

In many practical situations we are searching for the best alternative among
several candidates. If our decision is based on historical or simulated data there is
some sort of selection bias and it is not evident if our choice is significantly optimal
over all given alternatives. This problem frequently occurs in statistical inference
or decisions under uncertainty such as portfolio optimization. Of course, such kind
of decisions have to be reliable and thus we need a strong statistical fundament to
justify our choice. In the present work a large sample test for the best alternative
has been derived in a rather general setting and it has been demonstrated by an
application to financial data. It was shown that the traditional Jobson-Korkie test
can be generalized to ergodic stationary stochastic processes satisfying Gordin’s
condition. The presented hypothesis test accounts for conditional heteroscedasticity
and non-normality of asset returns. We find that ignoring these kinds of stylized
facts of empirical finance can lead to false rejections of the null hypothesis and
misleading decisions.
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Figure 1. Correlograms for the squared centered excess returns of
the G7 MSCI indices and the EWP. The critical thresholds for the
null hypothesis H0 : ρ(k) = 0 (k 6= 0) on the 5% level are indicated
by the horizontal lines.


