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Abstract

Pearson’s correlation coefficient is typically used for measuring the depen-
dence structure of stock returns. Nevertheless, it has manyshortcomings often
documented in the literature. We suggest to use a conditional version of Spear-
man’s rho as an alternative dependence measure. Our approach is purely non-
parametric and we avoid any kind of model misspecification. We derive hypoth-
esis tests for the conditional Spearman’s rho in bull and bear markets and verify
the tests by Monte Carlo simulation. Further, we study the daily returns of stocks
contained in the German stock index DAX 30. We find some significant differ-
ences in dependence of stock returns in bull and bear markets. On the other hand
the differences are not so strong as one might expect.

Keywords:Bear market, bootstrapping, bull market, conditional Spearman’s rho, cop-
ulas, Monte Carlo simulation, stock returns.

JEL Subject Classification:Primary C14, Secondary C12.

1 Introduction

The linear correlation coefficient according to Karl Pearson still seems to be the most
commonly used measure of dependence of two random variablesX andY though its
many shortcomings have been often documented (see, e.g., Embrechts et al., 2002).
Pearson’s correlation coefficient is strongly affected by the marginal distributions of
X andY and its estimates are sensitive to outliers (Lindskog, 2000). Further, the linear
correlation coefficient quantifies only linear dependence thoughmonotone dependence
is often much more relevant. The random variablesX andY possess a strong mono-
tone dependence if we can find two real-valued and strictly increasing functionsf and
g such that|Corr{f(X), g(Y )}| is large. It is easy to construct dependence structures

∗Phone: +49 221 7212556, email: jaddob@web.de.
†Phone: +49 221 470-4267, email: frahm@statistik.uni-koeln.de.
‡Phone: +49 221 470-2813, email: schmid@wiso.uni-koeln.de.
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where the linear correlation coefficient ofX andY is close to 0 but, however, cor-
responds to 1 after some monotone transformations of the random variables (McNeil
et al., 2005, p. 205).

Copula theory and the dependence measures derived thereof are a convincing alterna-
tive. Due to Sklar’s theorem (Sklar, 1959) it is known that a joint distribution function
can be split up into itscopula(i.e. its dependence structure) and its marginal distribu-
tions. A meaningful dependence measure should be invariantunder monotone trans-
formations of the components of the random vector. Examplesof such measures are
Spearman’s rho, Kendall’s tau, Gini’s gamma, and Blomquist’s beta. In this paper we
confine ourselves to therank correlation coefficient, i.e. Spearman’s rho. For surveys
on copulas and dependence measures see, e.g., Cherubini et al. (2004), Joe (1997), and
Nelsen (2006).

We investigate the contemporaneous dependence of two stockreturnsX andY . In
particular, we concentrate on the question whether dependence is significantly different
in bull and bear markets, i.e. in case of a joint upswing or downswing. This question
and related problems have been already investigated in finance literature (see, e.g., Ang
and Chen, 2002, Erb et al., 1994, Fortin and Kuzmics, 2002, Junker and May, 2005,
Patton, 2004, Silvapulle and Granger, 2001, Vaz de Melo Mendes, 2005). But we think
that the statistical methods, in particular the use of Pearson’s correlation coefficient is
unsatisfactory. Hence, there is space for further contributions.

Bear and bull markets are characterized as follows. There isa bear marketif the two
stock returnsX andY contemporaneously fall short of the100p% quantiles of their
corresponding cumulative distribution functions. Analogously, a bull market is present
whenever both−X and−Y fall short of the corresponding100q% quantiles. Herep
andq have to be pre-determined. A quantile of the cumulative distribution function
of a stock return is commonly known as thevalue-at-riskunder the specified shortfall
probability. This measure is frequently used in finance literature and risk management.
So it seems to be a natural choice for characterizing bull andbear markets.

Our approach is purely nonparametric. Contrary to Patton (2004) and Vaz de Melo
Mendes (2005) we do not fit specific copulas to the data. Specifying the copula
by some parametric model can lead to erroneous conclusions if the chosen model is
wrong. From our point of view it is not necessary to rely on theparametric approach
if the sample size is large enough. We are interested in financial data analysis and
in that context it is easy to access many thousands of observations. By following the
nonparametric approach we avoid any kind of model misspecification.

In this work we develop conditional versions of Spearman’s rho to assess the depen-
dence structure of stock returns in bull and bear markets. Incontrast, some authors
analyze the dependence structure of outliers in financial data by using the so-called
tail-dependence coefficient(Fortin and Kuzmics, 2002, Junker and May, 2005). After
applying parametric methods these authors come to the conclusion that ‘the empiri-
cal joint distribution of return pairs on stock indices displays high tail-dependence in
the lower tail and low tail-dependence in the upper tail’ (Fortin and Kuzmics, 2002).
Dobrić and Schmid (2005) as well as Frahm et al. (2005) found that estimating the
tail-dependence coefficient bynonparametric methodscan lead to very large estima-
tion errors even if there are many observations. Hence the tail-dependence coefficient

2



is not an appropriate alternative.

Though we focus on computational statistics and the empirical analysis of stock re-
turns we have to introduce some statistical theory in order to have a formal basis for
our testing procedures. This is done in section 2.1, where some copula theory is pre-
sented. It allows a precise formulation of the null hypotheses to be tested. The testing
procedures are described in section 2.2. A Monte Carlo (MC) simulation is presented
in Section 2.3 which shows that the procedures work well for sample sizes which are
typically available in practice. In particular the procedures keep the prescribed error
probabilities of the first kind and have sufficient power to detect violations of the null
hypothesis. In Section 3 we investigate the daily returns ofstocks from the German
stock indexDAX 30between 1992-03-02 and 2002-03-01 and Section 4 concludes.

2 Testing Conditional Dependence

This section introduces some notions from copula theory which are required as a basis
for the testing procedure to be described below. Comprehensive introductions to the
theory of copulas are Joe (1997) and Nelsen (2006). The testing procedure is then in-
troduced and its finite sample properties are investigated in the final part of the section.

2.1 Some Copula Theory

Let X andY denote two random variables with joint distribution function F (x, y) =
P(X ≤ x, Y ≤ y) and marginal distribution functionsG(x) = P(X ≤ x) and
H(y) = P(Y ≤ y) for all x, y ∈ R. The corresponding quantile functions are given
by G−1(p) = inf{x : G(x) ≥ p} andH−1(p) = inf{y : H(y) ≥ p} for 0 ≤ p ≤ 1. In
Section 3,X andY will denote daily returns of two stocks.

Throughout this paper we assume thatG andH are continuous functions. Therefore,
according to Sklar’s theorem (Sklar, 1959) there exists a unique copulaC : [0, 1]2 →
[0, 1] such that

F (x, y) = C(G(x),H(y)) , ∀x, y ∈ R .

The functionC is the joint distribution function ofU = G(X) andV = H(Y ). The
rank correlation coefficient ofX andY is now given by

ρ := Corr(G(X),H(Y )) = 12

∫

[0,1]2

uv dC(u, v) − 3 .

See Nelsen (2006, p. 167) for the latter representation of Spearman’s rho.

For every fixedp with 0 < p < 1 we define

AL :=
{
(x, y) : x ≤ G−1(p), y ≤ H−1(p)

}
.

3



In the following we assume thatP{(X,Y ) ∈ AL} = C(p, p) > 0 . Consider the
conditional joint distribution function

FL(x, y) := P(X ≤ x, Y ≤ y | (X,Y ) ∈ AL) =
F (x ∧ G−1(p), y ∧ H−1(p))

F (G−1(p),H−1(p))

=
C(G(x ∧ G−1(p)),H(y ∧ H−1(p)))

C(p, p)
, ∀x, y ∈ R .

The corresponding conditional marginal distribution functions are given by

GL(x) := P(X ≤ x | (X,Y ) ∈ AL) = FL(x,H−1(p))

=
C(G(x ∧ G−1(p)), p)

C(p, p)
, ∀x ∈ R ,

andHL(y) respectively. AsGL andHL are continuous distribution functions, accord-
ing to Sklar’s theorem there exists also a unique copulaCL : [0, 1]2 → [0, 1] such
that

FL(x, y) = CL(GL(x),HL(y)) , ∀x, y ∈ R .

Indeed, Juri and Wüthrich (2002) call

CL(u, v) = FL(G−1
L (u),H−1

L (v)) , ∀u, v ∈ [0, 1] ,

the extreme tail dependence copula relative toC at the levelp . We call CL lower
tail copula and the phrase ‘relative toC at the levelp’ will be usually dropped for
convenience.

Using the lower tail copula we now can define the lower conditional Spearman’s rho,
viz

ρL = 12

∫

[0,1]2

uv dCL(u, v) − 3 .

Hence,ρL measures the rank correlation of stock returns conditionalon (X,Y ) ∈ AL.

An analogue definition can be found for theupper tail copulaCU. This is the lower
tail copula relative to thesurvival copulaaccording toC (Nelsen, 2006, Section 2.6),
i.e.

C(u, v) := u + v − 1 + C(1 − u, 1 − v) , ∀u, v ∈ [0, 1] ,

at the levelq (0 < q < 1). The survival copula corresponds to the copula of(−X,−Y )
and thusCU is the copula of(−X,−Y ) under the condition that(−X,−Y ) ∈ AU.
Here the areaAU is calculated similarly toAL just by using the quantile functions
of −X and−Y at q rather than the quantile functions ofX andY at p . Hence, the
upper conditional Spearman’s rhoρU measures the rank correlation of stock returns in
a bull market. In the following we will have to guarantee thatAL ∩ AU = ∅ and thus
p + q ≤ 1.

In most cases it is not possible to derive the conditional copulasCL or CU in closed
form. ThereforeρL andρU cannot be calculated explicitly. However, MC simulation
is a convenient tool for obtaining numerical approximations to ρL andρU with suf-
ficient precision. We apply this method to calculate the conditional rank correlation
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coefficients for the Gauss,t3 , Clayton, and Gumbel copula (see Table 1 and Table 2).
The Gauss andt3 copula are given by

CGauss(u, v ; θ) = Φθ(Φ
−1(u),Φ−1(v)) , ∀u, v ∈ [0, 1] ,

where

Φθ(x, y) :=

x∫

−∞

y∫

−∞

1

2π
√

1 − θ2
· exp

(
−s2 − 2θst + t2

2 (1 − θ2)

)
dsdt

as well as

Ct3(u, v ; θ) = t3,θ(t
−1
3 (u), t−1

3 (v)) , ∀u, v ∈ [0, 1] ,

with

t3,θ(x, y) =

x∫

−∞

y∫

−∞

1

2π
√

1 − θ2
·
(

1 +
s2 − 2θst + t2

3 (1 − θ2)

)− 5

2

dsdt ,

wheret3 denotes Student’s univariatet distribution function with 3 degrees of free-
dom and−1 < θ < 1. Note that the linear correlation coefficient is symbolizedby the
parameterθ rather thanρ. This is because to avoid possible confusions with the uncon-
ditional rank correlation coefficient ofCGauss or Ct3 . The unconditional Spearman’s
rho for the Gauss copula corresponds toρ = 6/π · arcsin(θ/2) (Hult and Lindskog,
2002). For thet3 copula to our knowledge there exists no closed-form expression.

The Clayton copula is given by

CClayton(u, v ; θ) =
(
u−θ + v−θ − 1

)−1/θ
, ∀u, v ∈ [0, 1] ,

whereθ ≥ 0. In the limiting caseθ = 0 the Clayton copula corresponds to the
independenceor product copulaΠ(u, v) := uv (Nelsen, 2006, p. 11).

The Gumbel copula can be written as

CGumbel(u, v ; θ) = exp
[
−

{
(− log u)θ + (− log v)θ

}1/θ
]
, ∀u, v ∈ [0, 1] ,

with θ ≥ 1. Note that forθ = 1 once again the independence copula evolves. The
values forθ in Table 2 are chosen such that theunconditionalSpearman’s rho corre-
sponds toρ = 0.3, 0.5, and0.7. The relationship betweenθ andρ can be obtained by
numerical integration or MC simulation (cf. Joe, 1997, p. 147).

For our approximations of the conditional rank correlationcoefficients (see Table 1
and Table 2) we useNMC = 1000 MC replications, each one generating a sample
from C with sample sizen = 106. Both for the simulation study and for the empirical
study following later on we setp = q . Note that only the Clayton copula allows for an
explicit representation ofCL. If C is a Clayton copula then the lower tail copulaCL

corresponds toC for any0 < p < 1 (Juri and Wüthrich, 2002). That means thatρL

corresponds to the unconditional Spearman’s rho ofC.
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Gauss copula
θ = 0.25 θ = 0.50 θ = 0.75

p = q lower upper lower upper lower upper

0.05 .0404
(.0004)

.0407
(.0004)

.1109
(.0003)

.1114
(.0003)

.2622
(.0002)

.2624
(.0002)

0.20 .0601
(.0001)

.0601
(.0001)

.1595
(.0001)

.1593
(.0001)

.3485
(.0001)

.3483
(.0001)

0.35 .0775
(.0001)

.0774
(.0001)

.1972
(.0001)

.1973
(.0001)

.4090
(.0001)

.4091
(.0001)

0.50 .0962
(.0001)

.0962
(.0001)

.2354
(.0001)

.2356
(.0001)

.4655
(.0000)

.4656
(.0000)

t3 copula
θ = 0.25 θ = 0.50 θ = 0.75

p = q lower upper lower upper lower upper

0.05 .3373
(.0003)

.3369
(.0003)

.4043
(.0002)

.4044
(.0002)

.5264
(.0002)

.5265
(.0002)

0.20 .3186
(.0001)

.3183
(.0001)

.3968
(.0001)

.3967
(.0001)

.5361
(.0001)

.5361
(.0001)

0.35 .2984
(.0001)

.2984
(.0001)

.3913
(.0001)

.3913
(.0001)

.5484
(.0001)

.5485
(.0001)

0.50 .2756
(.0001)

.2756
(.0001)

.3882
(.0001)

.3882
(.0001)

.5651
(.0000)

.5652
(.0000)

Table 1: MC approximations toρL andρU for the Gauss andt3 copula possessing
different values forθ. We useNMC = 1000 MC replications, each one generating a
sample from the corresponding copula with sample sizen = 106. The standard errors
of the approximations are given in parentheses.

The null hypothesis we are going to test can be formalized as

H0 : ρL = ρU

vs. H1 : ρL 6= ρU ,

where somep andq with p + q ≤ 1 are fixed. In our frameworkH0 implies that the
monotone dependence of stock returns in bear markets is the same as in bull markets.
Here we consider the lower100p% and upper100q% of stock returns to characterize
the bear and the bull market, respectively.

Instead of a two-sided hypothesis test, a one-sided test like

H0 : ρL ≤ ρU

vs. H1 : ρL > ρU

is of general interest.

The null hypothesisH0 : ρL = ρU stated above might be also of importance in another
context. Both in theory and application of copulas it is sometimes of interest whether
the random vector(X,Y ) is radially symmetricor not (Nelsen, 2006, Section 2.7).
Radial symmetry is a useful property which guarantees thatρL = ρU for all 0 < p <
1 sinceC and the corresponding survival copula coincide. In order totest the null
hypothesisH ′

0 : ‘The random vector(X,Y ) is radially symmetric’, one can apply the
two-sided test and rejectH ′

0 if H0 is rejected.
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Clayton copula
θ = 0.5112 θ = 1.0759 θ = 2.1326

p = q lower upper lower upper lower upper

0.05 .3004
(.0002)

.0025
(.0005)

.5001
(.0002)

.0018
(.0004)

.7002
(.0001)

.0035
(.0004)

0.20 .3003
(.0001)

.0040
(.0001)

.4999
(.0001)

.0113
(.0001)

.7000
(.0001)

.0318
(.0001)

0.35 .3001
(.0001)

.0130
(.0001)

.4999
(.0001)

.0356
(.0001)

.7000
(.0000)

.0906
(.0001)

0.50 .3001
(.0001)

.0298
(.0001)

.5000
(.0000)

.0764
(.0001)

.7000
(.0000)

.1783
(.0001)

Gumbel copula
θ = 1.26 θ = 1.54 θ = 2.07

p = q lower upper lower upper lower upper

0.05 .0319
(.0004)

.3499
(.0002)

.0697
(.0003)

.4504
(.0002)

.1431
(.0003)

.5849
(.0001)

0.20 .0515
(.0001)

.3158
(.0001)

.1106
(.0001)

.4392
(.0001)

.2206
(.0001)

.5871
(.0001)

0.35 .0697
(.0001)

.2906
(.0001)

.1476
(.0001)

.4314
(.0001)

.2843
(.0001)

.5916
(.0000)

0.50 .0912
(.0001)

.2744
(.0001)

.1885
(.0001)

.4276
(.0001)

.3507
(.0000)

.5990
(.0000)

Table 2: MC approximations toρL andρU for the Clayton and Gumbel copula possess-
ing different values forθ. We useNMC = 1000 MC replications, each one generating
a sample from the corresponding copula with sample sizen = 106. The standard
errors of the approximations are given in parentheses.

2.2 The Testing Procedures

Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. as(X,Y ). As we do not assume that the marginal
distribution functionsG andH are known, we have to estimate them by

Ĝn(x) =
1

n
·

n∑

i=1

1{Xi≤ x} and Ĥn(y) =
1

n
·

n∑

i=1

1{Yi≤ y} .

The corresponding estimates forĜ−1
n (p) andĤ−1

n (p) can be derived thereof. For some
fixedp andq with p + q ≤ 1 we can define

ÂL :=
{
(x, y) : x ≤ Ĝ−1

n (p), y ≤ Ĥ−1
n (p)

}

andÂU respectively. Further, letnL := |ÂL| andnU := |ÂU|, where| · | denotes the
cardinality of a set. The observations in̂AL andÂU can be used for estimatingρL and
ρU. More precisely,

ρ̂L,n =
12

nL
·

∑

i∈I bAL

rL,n(Xi)

nL
· rL,n(Yi)

nL
− 3 ,

whereI bAL

denotes the set of indices i where(Xi, Yi) lies in ÂL .
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Further,rL,n(·) is the rank of a marginal observation relative to all observations inÂL ,
i.e. the lower left area of the empirical copula

Ĉn(u, v) :=
1

n
·

n∑

i=1

1{rn(Xi)/n≤u}1{rn(Yi)/n≤ v} , ∀u, v ∈ [0, 1] .

Note thatrL,n(Xi)/nL = ĜL,n(Xi) andrL,n(Yi)/nL = ĤL,n(Yi), whereĜL,n is the
empirical counterpart ofGL, i.e.

ĜL,n(x) =
Ĉn(Ĝn(x ∧ Ĝ−1

n (p)), p)

Ĉn(p, p)
, ∀x ∈ R ,

andĤL,n is defined respectively. The estimatorρ̂U,n for the upper conditional Spear-
man’s rho can be similarly defined, just by using the survivalcopula according tôCn,
i.e. the observations in the upper right areaÂU .

It has been already shown that Spearman’s rho is consistent and asymptotically nor-
mally distributed (Schmid and Schmidt, 2006b). The same holds for the conditional
versions of Spearman’s rho described above, i.e.

√
nL ·

(
ρ̂L,n − ρL

) d−→ N
(
0, σ2

L

)
and

√
nU ·

(
ρ̂U,n − ρU

) d−→ N
(
0, σ2

U

)

asnL, nU → ∞ .

In practical situationsp andq have to be sufficiently large such thatnL andnU do
not become too small. We have foundp, q ≥ log(n)/

√
n as an appropriate rule of

thumb for analyzing daily stock returns. E.g. for the samplesize n = 1000 (that
means we have an observation period of approximately 4 years) p and q should be
larger than0.2184. In case of the product copula we would expect to meet0.21842 ·
1000 ≈ 48 data points in the lower left or upper right corner of the empirical copula.
Admittedly, financial data cannot be appropriately described by the product copula but
we can assume that there is some sort of positive dependence between stock returns. So
there are evenmoreobservations in the corresponding corners of the empiricalcopula.
Thus our rule of thumb guarantees that there are always enough data for large sample
inferences.

The asymptotic variancesσ2
L andσ2

U depend on the tail copulasCL andCU. In gen-
eral they cannot be calculated explicitly. However, they can be approximated by a
simple bootstrap procedure (Schmid and Schmidt, 2006a). Note that the observations
contained inAL andAU stem from two disjoint sets and thus are stochastically inde-
pendent. The same holds for̂AL andÂU, asymptotically, and the following procedure
for the two-sided hypothesis test becomes straightforward:

1. ComputêρL,n andρ̂U,n from the observations in̂AL andÂU, wherep andq are
fixed withp + q ≤ 1.

2. ComputeNB bootstrap replications of̂ρL,n and ρ̂U,n from the observations in
ÂL andÂU and calculate the corresponding estimates for the asymptotic vari-
ancesσ2

L andσ2
U, sayσ̂2

L andσ̂2
U.
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3a. RejectH0 : ρL = ρU if
∣∣∣∣∣

ρ̂L,n − ρ̂U,n√
σ̂2

L/nL + σ̂2
U/nU

∣∣∣∣∣ ≥ Φ−1
(
1 − α

2

)
,

whereα > 0 is a small error probability of the first kind andΦ denotes the
distribution function of the standard normal distribution.

The one-sided hypothesis tests differ only in the third stepfrom the two-sided test, i.e.

3b. RejectH0 : ρL ≤ ρU or H0 : ρL ≥ ρU if

ρ̂L,n − ρ̂U,n√
σ̂2

L/nL + σ̂2
U/nU

≥ Φ−1(1 − α) ,

or
ρ̂L,n − ρ̂U,n√

σ̂2
L/nL + σ̂2

U/nU

≤ Φ−1(α) .

2.3 Finite Sample Properties

This section investigates the statistical properties of the testing procedures described
at the end of the last section. The results are obtained by MC simulations for various
special cases. These are essentially defined by the copula under study. First we are
interested in the rejection probability of the procedure ifH0 : ρL = ρU is true and
α is the prescribed error probability of the first kind. We consider the Gauss andt3
copula which belong to the class of elliptical copulas (Frahm et al., 2003). These are
radially symmetric for every−1 < θ < 1 and thus the null hypotheses holds. The
selected values for the copula parameter areθ = 0.25, 0.5, 0.75, the values forp are
given byp = 0.2, 0.35, 0.5, and we validate the error probabilitiesα = 0.01, 0.05, and
α = 0.1. The simulated sample size isn = 2500, the number of bootstrap replications
corresponds toNB = 1000, and the number of MC replications isNMC = 1000.
The results of the simulations are summarized in Panel 1 of Table 3. We can see that
the approximated rejection probabilities satisfactorilyagree with the prescribed error
probabilities.

We are also interested in thepower of the testing procedure, i.e. the probability of
rejection providedH0 is wrong. For that purpose we consider the Clayton and the
Gumbel copula. It is well-known that these copulas are not radially symmetric and thus
ρL 6= ρU holds in general. Remember that the parameterθ of both copula families (see
p. 5) has been selected in such a way that the unconditional Spearman’s rho is equal
to ρ = 0.3, 0.5 andρ = 0.7 . The results of the MC simulations are given in Panel
2 of Table 3. It can be seen that for every fixedp andα the power is an increasing
function of θ. This is because the asymmetry of the Archimedean copulasCClayton

andCGumbel increases withθ (cf. Nelsen, 2006, Ch. 4).

Similar results are obtained for the two one-sided tests which can be taken from Table
4 and Table 5. The rejection probabilities become very largewheneverH1 is true. In
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Figure 1: Power functions of the two-sided hypothesis test for the mixed copulasCMix1

(left hand side) andCMix2 (right hand side) as a function ofλ . The results are obtained
by MC simulation for the sample sizen = 2500, NB = 1000 bootstrap replications,
andNMC = 1000 MC replications using the threshold probabilityp = q = 0.5.

contrast, ifH0 is true our simulations produce no false rejection. For instance, consider
the right-sided testH0 : ρL ≤ ρU vs. H1 : ρL > ρU. In that case the null hypothesis
is fulfilled for the Gumbel copula. Panel 2 of Table 4 shows that there is no rejection
for any given unconditional rank correlation coefficientρ, threshold probabilityp, and
error probabilityα . In contrast, for the Clayton copula the alternative hypothesis is
true and consequently the rejection probabilities are veryhigh (e.g. roughly 90% for
ρ = 0.3, p = 0.2, andα = 0.1). Moreover, forρ = 0.5 andρ = 0.7, H0 is rejected
for the Clayton copula in almost every simulated case.

Now we want to investigate the relationship between asymmetry and power. For that
purpose we consider the mixed copula

CMix1(u, v ;λ, θ0, θ1) := λCClayton(u, v ; θ1) + (1 − λ)CGauss(u, v ; θ0) ,

where0 ≤ λ ≤ 1. Further, the copula parametersθ0, θ1 are such that theunconditional
Spearman’s rho ofCClayton(u, v ; θ1) andCGauss(u, v ; θ0) corresponds toρ = 0.5.
Hence, the mixed copula possesses the same unconditional rank correlation coefficient
for everyλ (see the formula forρ on p. 3). SinceρL = ρU is true for the Gauss copula
but for the Gumbel copula it holds thatρL < ρU, the mixing parameterλ determines
the degree of asymmetry given byCMix1(u, v ;λ, θ0, θ1). If we consider the two-sided
hypothesis test,λ = 0 means that the null hypothesis is true whereas the alternative
hypothesis holds for everyλ > 0. The largerλ the more we shall expect to rejectH0 .

A similar result is obtained for the mixed copula

CMix2(u, v ;λ, θ0, θ2) := λCGumbel(u, v ; θ2) + (1 − λ)CGauss(u, v ; θ0) ,

whereθ2 is such that Spearman’s rho ofCGumbel(u, v ; θ2) once again corresponds
to ρ = 0.5. The corresponding power functions are given in Figure 1. The power
functions illustrated in Figure 1 are simulated on the basisof n = 2500, NB = 1000,
and NMC = 1000 using the threshold probabilityp = 0.5. We can see that the
two-sided hypothesis test exhibits more power in case of theClayton/Gauss copula
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H0 : ρL = ρU vs.H1 : ρL 6= ρU

Panel 1 θ = 0.25 θ = 0.50 θ = 0.75

p = q α Gauss t3 Gauss t3 Gauss t3
0.10 .107

(.0098)
.082

(.0087)
.112

(.0100)
.107

(.0098)
.101

(.0095)
.086

(.0089)

0.20 0.05 .056
(.0073)

.039
(.0061)

.054
(.0071)

.052
(.0070)

.045
(.0066)

.041
(.0063)

0.01 .011
(.0033)

.005
(.0022)

.013
(.0036)

.008
(.0028)

.009
(.0030)

.009
(.0030)

0.10 .088
(.0090)

.102
(.0096)

.085
(.0088)

.100
(.0095)

.101
(.0095)

.094
(.0092)

0.35 0.05 .057
(.0073)

.047
(.0067)

.041
(.0063)

.048
(.0068)

.041
(.0063)

.040
(.0062)

0.01 .011
(.0033)

.013
(.0036)

.007
(.0026)

.009
(.0030)

.011
(.0033)

.009
(.0030)

0.10 .115
(.0101)

.094
(.0092)

.100
(.0095)

.115
(.0101)

.120
(.0103)

.088
(.0090)

0.50 0.05 .051
(.0070)

.038
(.0060)

.049
(.0068)

.059
(.0075)

.063
(.0077)

.036
(.0059)

0.01 .010
(.0031)

.005
(.0022)

.015
(.0038)

.016
(.0040)

.016
(.0040)

.006
(.0024)

Panel 2 ρ = 0.30 ρ = 0.50 ρ = 0.70

p = q α Clayton Gumbel Clayton Gumbel Clayton Gumbel
0.10 .836

(.0117)
.738

(.0139)
1.000
(.0000)

.984
(.0040)

1.000
(.0000)

.999
(.0010)

0.20 0.05 .728
(.0141)

.637
(.0152)

.998
(.0014)

.953
(.0067)

1.000
(.0000)

.999
(.0010)

0.01 .505
(.0158)

.393
(.0154)

.993
(.0026)

.845
(.0114)

1.000
(.0000)

.989
(.0033)

0.10 .994
(.0024)

.934
(.0079)

1.000
(.0000)

.999
(.0010)

1.000
(.0000)

1.000
(.0000)

0.35 0.05 .985
(.0038)

.890
(.0099)

1.000
(.0000)

.995
(.0022)

1.000
(.0000)

1.000
(.0000)

0.01 .929
(.0081)

.763
(.0134)

1.000
(.0000)

.983
(.0041)

1.000
(.0000)

1.000
(.0000)

0.10 1.000
(.0000)

.977
(.0047)

1.000
(.0000)

.999
(.0010)

1.000
(.0000)

1.000
(.0000)

0.50 0.05 1.000
(.0000)

.952
(.0068)

1.000
(.0000)

.998
(.0014)

1.000
(.0000)

1.000
(.0000)

0.01 .994
(.0024)

.831
(.0119)

1.000
(.0000)

.995
(.0022)

1.000
(.0000)

1.000
(.0000)

Table 3: MC approximations of the rejection probabilities for the Gauss andt3 copula
(Panel 1) and for the Clayton and Gumbel copula (Panel 2) given H0 : ρL = ρU. The
simulated sample size isn = 2500, the number of bootstrap replications corresponds
to NB = 1000, and the number of MC replications isNMC = 1000. The standard
errors for the approximated rejection probabilities are given in parentheses.
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H0 : ρL ≤ ρU vs.H1 : ρL > ρU

Panel 1 θ = 0.25 θ = 0.50 θ = 0.75

p = q α Gauss t3 Gauss t3 Gauss t3
0.10 .107

(.0098)
.089

(.0090)
.104

(.0097)
.099

(.0094)
.104

(.0097)
.103

(.0096)

0.20 0.05 .050
(.0069)

.040
(.0062)

.053
(.0071)

.056
(.0073)

.049
(.0068)

.045
(.0066)

0.01 .007
(.0026)

.007
(.0026)

.011
(.0033)

.012
(.0034)

.009
(.0030)

.007
(.0026)

0.10 .101
(.0095)

.114
(.0101)

.085
(.0088)

.094
(.0092)

.097
(.0094)

.089
(.0090)

0.35 0.05 .047
(.0067)

.057
(.0073)

.038
(.0060)

.045
(.0066)

.055
(.0072)

.044
(.0065)

0.01 .010
(.0031)

.011
(.0033)

.009
(.0030)

.009
(.0030)

.014
(.0037)

.010
(.0031)

0.10 .108
(.0098)

.093
(.0092)

.093
(.0092)

.110
(.0099)

.123
(.0104)

.089
(.0090)

0.50 0.05 .052
(.0070)

.045
(.0066)

.051
(.0070)

.066
(.0079)

.063
(.0077)

.045
(.0066)

0.01 .009
(.0030)

.007
(.0026)

.012
(.0034)

.017
(.0041)

.018
(.0042)

.005
(.0022)

Panel 2 ρ = 0.30 ρ = 0.50 ρ = 0.70

p = q α Clayton Gumbel Clayton Gumbel Clayton Gumbel
0.10 .903

(.0094)
.000

(.0000)
1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.20 0.05 .836
(.0117)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.01 .600
(.0155)

.000
(.0000)

.997
(.0017)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.10 .999
(.0010)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.35 0.05 .994
(.0024)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.01 .962
(.0060)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.10 1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.50 0.05 1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

0.01 .995
(.0022)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

Table 4: MC approximations of the rejection probabilities for the Gauss andt3 copula
(Panel 1) and for the Clayton and Gumbel copula (Panel 2) given H0 : ρL ≤ ρU. The
simulated sample size isn = 2500, the number of bootstrap replications corresponds
to NB = 1000, and the number of MC replications isNMC = 1000. The standard
errors for the approximated rejection probabilities are given in parentheses.
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H0 : ρL ≥ ρU vs.H1 : ρL < ρU

Panel 1 θ = 0.25 θ = 0.50 θ = 0.75

p = q α Gauss t3 Gauss t3 Gauss t3
0.10 .101

(.0095)
.082

(.0087)
.096

(.0093)
.100

(.0095)
.084

(.0088)
.091

(.0091)

0.20 0.05 .057
(.0073)

.042
(.0063)

.059
(.0075)

.051
(.0070)

.052
(.0070)

.041
(.0063)

0.01 .015
(.0038)

.004
(.0020)

.014
(.0037)

.009
(.0030)

.006
(.0024)

.010
(.0031)

0.10 .098
(.0094)

.104
(.0097)

.099
(.0094)

.100
(.0095)

.098
(.0094)

.100
(.0095)

0.35 0.05 .041
(.0063)

.045
(.0066)

.047
(.0067)

.055
(.0072)

.046
(.0066)

.050
(.0069)

0.01 .014
(.0037)

.010
(.0031)

.010
(.0031)

.010
(.0031)

.005
(.0022)

.010
(.0031)

0.10 .118
(.0102)

.109
(.0099)

.103
(.0096)

.102
(.0096)

.110
(.0099)

.083
(.0087)

0.50 0.05 .063
(.0077)

.049
(.0068)

.049
(.0068)

.049
(.0068)

.057
(.0073)

.043
(.0064)

0.01 .015
(.0038)

.006
(.0024)

.014
(.0037)

.014
(.0037)

.010
(.0031)

.009
(.0030)

Panel 2 ρ = 0.30 ρ = 0.50 ρ = 0.70

p = q α Clayton Gumbel Clayton Gumbel Clayton Gumbel
0.10 .000

(.0000)
.838

(.0117)
.000

(.0000)
.996

(.0020)
.000

(.0000)
1.000
(.0000)

0.20 0.05 .000
(.0000)

.738
(.0139)

.000
(.0000)

.984
(.0040)

.000
(.0000)

.999
(.0010)

0.01 .000
(.0000)

.485
(.0158)

.000
(.0000)

.901
(.0094)

.000
(.0000)

.997
(.0017)

0.10 .000
(.0000)

.975
(.0049)

.000
(.0000)

.999
(.0010)

.000
(.0000)

1.000
(.000)

0.35 0.05 .000
(.0000)

.934
(.0079)

.000
(.0000)

.999
(.0010)

.000
(.0000)

1.000
(.0000)

0.01 .000
(.0000)

.829
(.0119)

.000
(.0000)

.987
(.0036)

.000
(.0000)

1.000
(.0000)

0.10 .000
(.0000)

.993
(.0026)

.000
(.0000)

1.000
(.0000)

.000
(.0000)

1.000
(.0000)

0.50 0.05 .000
(.0000)

.977
(.0047)

.000
(.0000)

.999
(.0010)

.000
(.0000)

1.000
(.0000)

0.01 .000
(.0000)

.886
(.0101)

.000
(.0000)

.997
(.0017)

.000
(.0000)

1.000
(.0000)

Table 5: MC approximations of the rejection probabilities for the Gauss andt3 copula
(Panel 1) and for the Clayton and Gumbel copula (Panel 2) given H0 : ρL ≥ ρU. The
simulated sample size isn = 2500, the number of bootstrap replications corresponds
to NB = 1000, and the number of MC replications isNMC = 1000. The standard
errors for the approximated rejection probabilities are given in parentheses.

13



p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

¯̂ρL .3609 .3009 .3149 .3387 .3479
¯̂ρU .2685 .2409 .2400 .2571 .2749

ρ̂L − ρ̂U .0924 .0600 .0749 .0816 .0730

|ρ̂L − ρ̂U| .1528 .0891 .0829 .0840 .0754

Table 6: Average conditional rank correlation coefficients, differences, and absolute
differences of all 231 asset combinations for different threshold probabilitiesp = q .

CMix1. However, both figures demonstrate that the hypothesis testalways keeps the
prescribed error probability of the first kind and the rejection probability indeed is an
increasing function of the mixing parameterλ. Similar results can be obtained for
other constellations ofρ andp.

3 Empirical Results for German Stock Returns

Now we consider daily returns of 21 stocks of the German stockindex DAX 30 from
1992-03-02 to 2002-03-01 and the stock index itself. More precisely, the considered
stock prices were adjusted by dividends, splits, etc., and our analyzes are based on the
daily log-returns of the stocks. The number of observationsis n = 2523. Table 6
contains the sample means of the upper and lower conditionalSpearman’s rho for all
asset combinations given the threshold probabilities or, say, value-at-risk levelsp =
0.1, 0.2, 0.3, 0.4, andp = 0.5. Here ¯̂ρL symbolizes the mean lower and̂̄ρU the mean
upper conditional Spearman’s rho,ρ̂L − ρ̂U is the mean difference, whereas|ρ̂L − ρ̂U|
denotes the mean absolute difference betweenρ̂L andρ̂U. We can see that in average
the lower conditional rank correlations are between 6 and 10points larger than the
upper conditional rank correlations. However, without some meaningful economical
arguments it is not possible to judge whether this gap between bull and bear markets
is rather ‘large’ or ‘small’ and we would like to avoid such kind of statements.

In contrast, we will discuss how much of the empirical evidence leads to significant
results in our hypothesis tests. It is worth to point out thatthe outcomes of the test
generally depend on the probability thresholdp . Figure 2 shows the estimates of the
lower and upper conditional Spearman’s rho as a function ofp for Allianz vs. BASF
and Allianz vs. Munich Re. We can see that the difference between ρ̂L and ρ̂U for
Allianz vs. Munich Re essentially depends on the chosen threshold whereas for Allianz
vs. BASF the difference is roughly stable. However, in both casesρ̂L − ρ̂U increases
asp approaches to zero. That means the rank correlation coefficients of stock returns
seem to be substantially different between situations of panic and elation. From this
arguments it should be clear that the hypothesis test works only if p is chosenbefore
examining different estimates forρL andρU. Otherwise the test would suffer from a
selection bias.
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Panel 1 H0 : ρL = ρU vs.H1 : ρL 6= ρU

α p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

0.10 37 34 67 89 107
0.05 25 16 51 67 72
0.01 6 3 19 31 30

Panel 2 H0 : ρL ≤ ρU vs.H1 : ρL > ρU

α p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

0.10 55 61 94 136 148
0.05 35 32 67 89 107
0.01 11 4 30 42 50

ρ̂L > ρ̂U 170 173 196 218 217

Panel 3 H0 : ρL ≥ ρU vs.H1 : ρL < ρU

α p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

0.10 9 7 3 0 0
0.05 2 2 0 0 0
0.01 1 0 0 0 0

ρ̂L < ρ̂U 61 58 35 13 14

Table 7: Numbers of rejections for the different hypothesistests, various threshold
probabilitiesp = q , and error probabilitiesα given231 asset combinations. Further,
the numbers of asset combinations whereρ̂L is larger or smaller than̂ρU (in the last
rows of Panel 2 and Panel 3).

3.1 Two-Sided Hypothesis Test

There are
(22

2

)
= 231 combinations of the 21 stocks and the stock index. It is clearthat

the estimateŝρL and ρ̂U are different from each other for every combination and we
want to see whether the differences are significant. That means we testH0 : ρL = ρU

againstH1 : ρL 6= ρU by using the procedure described in Section 2.2. The first
panel of Table 7 contains the number of rejections for all 231asset combinations. For
p = 0.1 only 25 of 231 asset combinations (i.e. roughly 11%) and forp = 0.3 only
51 (that means about 22%) are significantly different on the 5% level, etc. However,
we see that for allp taken into consideration the proportions of rejection exceed the
corresponding error probability of the first kind. More precisely, since the number
of rejections is always larger than231α we can conclude that in generalρL does not
correspond toρU for daily asset returns.

3.2 One-Sided Hypothesis Tests

Panel 2 and 3 of Table 7 contain the number of asset combinations wherêρL > ρ̂U and
ρ̂L < ρ̂U. Forp = 0.1 there are 170 asset combinations withρ̂L > ρ̂U and only 35 (≈
21%) of these combinations are significant. Forp = 0.3 there are 67 of 196 (≈ 34%)
significant asset combinations witĥρL > ρ̂U on the 5% level, etc. It is clear that not
every combination witĥρL > ρ̂U or ρ̂L < ρ̂U can be significant. This holds especially
if the number of observations in the lower left and upper right part of the empirical
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Figure 2: Estimates of the lower and upper conditional Spearman’s rho as a function
of p = q for Allianz vs. BASF (left hand) and Allianz vs. Munich Re (right hand).

copula is small. However, the fact that the proportion of significant combinations is
relatively small of course neither implicates that the corresponding null hypotheses are
true nor that the distances between the true rank correlation coefficientsρL andρU are
small (cf. the last row of Table 6).

First consider the second panel of Table 7 which contains thenumber of rejections for
various levels ofp andα . The numbers of rejection exceed231α in all cases. This
indicates thatρL > ρU is a typical constellation for daily asset returns. In contrast, for
the opposite testH0 : ρL ≥ ρU vs. H1 : ρL < ρU the number of rejections given in
Table 7 (Panel 3) are always smaller than231α . Thus we can assume that most of the
documented rejections are errors of the first kind.

Many empirical studies suggest that thelinear dependence of stock returns is larger
in bear markets than in bull markets (see, e.g., Ang and Chen,2002, Erb et al., 1994).
Our results of the one-sided hypothesis tests confirm findings in the finance literature
where Pearson’s linear correlation coefficient is used as a dependence measure. That
means in bear markets stock returns depend more on each otherthan in bull markets
where the notion of ‘dependence’ is represented by the rank correlation coefficient.

4 Conclusion

Several authors have investigated the dependencies of stock returns in bull and bear
markets. Pearson’s correlation coefficient has been typically used as a canonical de-
pendence measure. Unfortunately, it essentially depends on the marginal distributions
of the random variables which are taken into consideration and quantifies only the de-
gree of linear dependence. However, often we are interestedin the degree of monotone
rather than linear dependence. This holds especially if themarginal distributions are
highly non-standard which is definitely the case if we concentrate on the tails of stock
return distributions. So it is crucial to find a reasonable dependence measure for the
degree of monotone dependence under the condition that stock returns go up or down,
contemporaneously. We believe that copula theory can serveas an appropriate tool-
box and suggest Spearman’s rho as a dependence measure. Thisis in contrast to the
previous literature where e.g. conditional correlation coefficients are used for the same
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purpose. Moreover, our approach is purely nonparametric. Since we do not fit specific
copulas to the data we can avoid a model misspecification. We successfully verified the
proposed one- and two-sided hypothesis tests by several MC simulations. Further, we
conducted an empirical study using daily returns of stocks contained in the DAX 30.
Of course, everybody can draw his own conclusions from the empirical results. But we
think that there is sufficient evidence to support the hypothesis of different dependence
structures in bull and bear markets. On the other hand the deviations probably are not
as strong as one might expect.

17



References

A. Ang and J. Chen (2002), ‘Asymmetric correlations of equity portfolios’, Journal of
Financial Economics63, pp. 443–494.

U. Cherubini, E. Luciano, and W. Vecchiato (2004),Copula Methods in Finance, John
Wiley.

J. Dobríc and F. Schmid (2005), ‘Nonparametric estimation of the lower tail depen-
denceλL in bivariate copulas’,Journal of Applied Statistics32, pp. 387–407.

P. Embrechts, A.J. McNeil, and D. Straumann (2002), ‘Correlation and dependence in
risk management: properties and pitfalls’, in: M. Dempster, ed., ‘Risk Management:
Value at Risk and Beyond’, Cambridge University Press.

C.B. Erb, C.R. Harvey, and T.E. Viskanta (1994), ‘Forecasting international equity
correlations’,Financial Analysts Journal50, pp. 32–45.

I. Fortin and C. Kuzmics (2002), ‘Tail-dependence in stock return pairs’,International
Journal of Intelligent Systems in Accounting, Finance & Management11, pp. 89–
107.

G. Frahm, M. Junker, and R. Schmidt (2005), ‘Estimating the tail-dependence coef-
ficient: properties and pitfalls’,Insurance: Mathematics and Economics37, pp.
80–100.

G. Frahm, M. Junker, and A. Szimayer (2003), ‘Elliptical copulas: applicability and
limitations’, Statistics and Probability Letters63, pp. 275–286.

H. Hult and F. Lindskog (2002), ‘Multivariate extremes, aggregation and dependence
in elliptical distributions’,Advances in Applied Probability34, pp. 587–608.

H. Joe (1997),Multivariate Models and Dependence Concepts, Chapman & Hall.

M. Junker and A. May (2005), ‘Measurement of aggregate risk with copulas’,Econo-
metrics Journal8, pp. 428–454.

A. Juri and M. Wüthrich (2002), ‘Copula convergence theorems for tail events’,Insur-
ance: Mathematics and Economics30, pp. 405–420.

F. Lindskog (2000), ‘Linear correlation estimation’, Preprint, ETH Zurich, Department
of Mathematics, Switzerland.

A.J. McNeil, R. Frey, and P. Embrechts (2005),Quantitative Risk Management,
Princeton University Press.

R.B. Nelsen (2006),An Introduction to Copulas, Springer, second edition.

A.J. Patton (2004), ‘On the out-of-sample importance of skewness and asymmetric
dependence for asset allocation’,Journal of Financial Econometrics2, pp. 130–
168.

18



F. Schmid and R. Schmidt (2006a), ‘Bootstrapping Spearman’s multivariate rho’, in:
A. Rizzi and M. Vichi, eds., ‘COMPSTAT 2006 - Proceedings in Computational
Statistics’, Springer.

F. Schmid and R. Schmidt (2006b), ‘Multivariate extensionsof Spearman’s rho and
related statistics’,Statistics and Probability Letters77, pp. 407–416.

P. Silvapulle and C.W.J. Granger (2001), ‘Large returns, conditional correlation and
portfolio diversification: a value-at-risk approach’,Quantitative Finance1, pp. 542–
551.

A. Sklar (1959), ‘Fonctions de répartition àn dimensions et leurs marges’, Research
report, University of Paris, Institute of Statistics, France.

B. Vaz de Melo Mendes (2005), ‘Asymmetric extreme interdependence in emerging
equity markets’,Applied Stochastic Models in Business and Industry21, pp. 483–
498.

19


