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Abstract

Pearson’s correlation coefficient is typically used for mwing the depen-
dence structure of stock returns. Nevertheless, it has rslaostcomings often
documented in the literature. We suggest to use a conditi@nsion of Spear-
man’s rho as an alternative dependence measure. Our appsogarely non-
parametric and we avoid any kind of model misspecificatior.daftive hypoth-
esis tests for the conditional Spearman’s rho in bull and beakets and verify
the tests by Monte Carlo simulation. Further, we study thky deturns of stocks
contained in the German stock index DAX 30. We find some sicauift differ-
ences in dependence of stock returns in bull and bear mafatthe other hand
the differences are not so strong as one might expect.

Keywords:Bear market, bootstrapping, bull market, conditional $pea’s rho, cop-
ulas, Monte Carlo simulation, stock returns.
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1 Introduction

The linear correlation coefficient according to Karl Pearstll seems to be the most
commonly used measure of dependence of two random variabbesdY though its
many shortcomings have been often documented (see, e.greEts et al., 2002).
Pearson’s correlation coefficient is strongly affected iy marginal distributions of

X andY and its estimates are sensitive to outliers (Lindskog, p0B0rther, the linear
correlation coefficient quantifies only linear dependehceighmonotone dependence

is often much more relevant. The random variabfeandY possess a strong mono-
tone dependence if we can find two real-valued and strictgeimsing functiong and

g such thatCorr{ f(X), g(Y)}| is large. It is easy to construct dependence structures
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where the linear correlation coefficient & andY is close to O but, however, cor-
responds to 1 after some monotone transformations of tldomarvariables (McNeil
et al., 2005, p. 205).

Copula theory and the dependence measures derived theeemtanvincing alterna-
tive. Due to Sklar's theorem (Sklar, 1959) it is known thaviafj distribution function
can be split up into itsopula(i.e. its dependence structure) and its marginal distribu-
tions. A meaningful dependence measure should be invariadgr monotone trans-
formations of the components of the random vector. Examgiiesich measures are
Spearman’s rho, Kendall’s tau, Gini's gamma, and Blomauistta. In this paper we
confine ourselves to thank correlation coefficienti.e. Spearman’s rho. For surveys
on copulas and dependence measures see, e.g., Cherubi(2@d4), Joe (1997), and
Nelsen (2006).

We investigate the contemporaneous dependence of two stbakisX andY. In
particular, we concentrate on the question whether deperds significantly different
in bull and bear markets, i.e. in case of a joint upswing ormgming. This question
and related problems have been already investigated ircirlderature (see, e.g., Ang
and Chen, 2002, Erb et al., 1994, Fortin and Kuzmics, 200Z&eluand May, 2005,
Patton, 2004, Silvapulle and Granger, 2001, Vaz de Melo Men2i005). But we think
that the statistical methods, in particular the use of Reégsorrelation coefficient is
unsatisfactory. Hence, there is space for further cortidhs.

Bear and bull markets are characterized as follows. Theadéar marketf the two
stock returnsX andY contemporaneously fall short of tH80p% quantiles of their
corresponding cumulative distribution functions. Anadagly, a bull market is present
whenever both- X and—Y fall short of the corresponding00¢% quantiles. Here
andq have to be pre-determined. A quantile of the cumulativeridigtion function
of a stock return is commonly known as tha&ue-at-riskunder the specified shortfall
probability. This measure is frequently used in financeditere and risk management.
So it seems to be a natural choice for characterizing bullead markets.

Our approach is purely nonparametric. Contrary to Patt@4p and Vaz de Melo
Mendes (2005) we do not fit specific copulas to the data. Spmegifthe copula

by some parametric model can lead to erroneous conclusidhs chosen model is
wrong. From our point of view it is not necessary to rely on plagametric approach
if the sample size is large enough. We are interested in fiabdata analysis and
in that context it is easy to access many thousands of olis®Brsa By following the

nonparametric approach we avoid any kind of model missjoatidin.

In this work we develop conditional versions of Spearmaht to assess the depen-
dence structure of stock returns in bull and bear marketsohtrast, some authors
analyze the dependence structure of outliers in financi@a g using the so-called
tail-dependence coefficie(Eortin and Kuzmics, 2002, Junker and May, 2005). After
applying parametric methods these authors come to the uianol that ‘the empiri-
cal joint distribution of return pairs on stock indices désgs high tail-dependence in
the lower tail and low tail-dependence in the upper tail’r(foand Kuzmics, 2002).
Dobric and Schmid (2005) as well as Frahm et al. (2005) found thahatng the
tail-dependence coefficient monparametric methodsan lead to very large estima-
tion errors even if there are many observations. Hence thédpendence coefficient



is not an appropriate alternative.

Though we focus on computational statistics and the engpieinalysis of stock re-
turns we have to introduce some statistical theory in orddvaive a formal basis for
our testing procedures. This is done in section 2.1, wharesmpula theory is pre-
sented. It allows a precise formulation of the null hypo#set® be tested. The testing
procedures are described in section 2.2. A Monte Carlo (Nt@)lstion is presented
in Section 2.3 which shows that the procedures work well &ngle sizes which are
typically available in practice. In particular the proceekikeep the prescribed error
probabilities of the first kind and have sufficient power téegé violations of the null
hypothesis. In Section 3 we investigate the daily returnstatks from the German
stock indexDAX 30between 1992-03-02 and 2002-03-01 and Section 4 concludes.

2 Testing Conditional Dependence

This section introduces some notions from copula theorgkvhie required as a basis
for the testing procedure to be described below. Comprérentroductions to the
theory of copulas are Joe (1997) and Nelsen (2006). Thegestocedure is then in-
troduced and its finite sample properties are investigaidudki final part of the section.

2.1 Some Copula Theory

Let X andY denote two random variables with joint distribution fuoctiF'(z, y) =
P(X < z,Y < y) and marginal distribution function&(z) = P(X < z) and
H(y) = P(Y < y)forall z,y € R. The corresponding quantile functions are given
by G~1(p) = inf{x: G(z) > p} andH }(p) = inf{y: H(y) > p}for0 <p < 1.In
Section 3, X andY will denote daily returns of two stocks.
Throughout this paper we assume thaand H are continuous functions. Therefore,
according to Sklar's theorem (Sklar, 1959) there existsiguencopulaC': [0, 1] —
[0, 1] such that

F(z,y) = C(G(x),H(y)), Va,y€eR.

The functionC'is the joint distribution function o/ = G(X) andV = H(Y). The
rank correlation coefficient ok andY” is now given by
p = Corr(G(X),H(Y)) = 12 / uv dC(u,v) — 3.
[0,1)2

See Nelsen (2006, p. 167) for the latter representation ed$pan’s rho.
For every fixedp with 0 < p < 1 we define

A= {(wy): 2 <G pLy < H ')}



In the following we assume th&{(X,Y) € Ap} = C(p,p) > 0. Consider the
conditionaljoint distribution function

F(z NG 1(p),y NH (p))

F(G1(p), H !(p))
_ C(GanGH(p),HyNH ' (p))) Va,y €R
C(p,p) ’ ’ .

F(r,y) = PX <z Y<y|(X,)Y)eAy) =

The corresponding conditional marginal distribution fiioxas are given by

Gu(z) = P(X <z|(X,Y)€AL) = FL(z, H'(p))
C(GxAG'(p),p)
Clop) , VereR,

and Hy,(y) respectively. As71, and Hy, are continuous distribution functions, accord-
ing to Sklar’s theorem there exists also a unique cogjla [0,1]> — [0, 1] such
that

FL(CC,y) :CL(GL(CC),HL(y)), Vm,yER.

Indeed, Juri and Wiithrich (2002) call
Cr(u,v) = F(GL (u), B (0),  Vaw e [0,1],

the extreme tail dependence copula relativeoat the levelp. We call Cy, lower
tail copula and the phrase ‘relative t6' at the levelp’ will be usually dropped for
convenience.

Using the lower tail copula we now can define the lower coaddl Spearman’s rho,
viz

pr = 12 / wv dC(u,v) — 3.
[0,1]2
Hence,pr, measures the rank correlation of stock returns condition@lX, V) € Ay.

An analogue definition can be found for thpper tail copulaCy. This is the lower
tail copula relative to theurvival copulaaccording toC' (Nelsen, 2006, Section 2.6),
ie.

Clu,v) i=u+v—1+C(1—u,1—0), Vu,v e 0,1],
atthe level (0 < ¢ < 1). The survival copula corresponds to the copulé-eX, —Y")
and thusCY; is the copula of —X, —Y") under the condition that-X, —-Y) € Ay.
Here the arealy is calculated similarly to4;, just by using the quantile functions
of —X and—Y at ¢ rather than the quantile functions &f andY atp. Hence, the
upper conditional Spearman’s rpg measures the rank correlation of stock returns in
a bull market. In the following we will have to guarantee thatN Ay = () and thus

ptg=<1

In most cases it is not possible to derive the conditionautagCy, or Cy in closed
form. Thereforepr, andpy cannot be calculated explicitly. However, MC simulation
is a convenient tool for obtaining numerical approximasida p;, and py with suf-
ficient precision. We apply this method to calculate the @wmthl rank correlation
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coefficients for the Gauss; , Clayton, and Gumbel copula (see Table 1 and Table 2).
The Gauss ant; copula are given by

CGauss(ua U] 9) = (I)G((I)il(u)’ (I)il(v)) s Vu,v € [0’ 1] )

where
rr s% — 20st + 12
Dy(x,y) = / / i -exp(—w> dsdt
as well as
Cry (u,030) =tz gt (u), t57(v)),  Yu,ve(0,1],
with

z Yy 5

1 52— 20st + 12\ 2
" _ L (T dsdt
MW)//%HQ7«+M%%> |

—00 —O0

wherets denotes Student’s univariatedistribution function with 3 degrees of free-
dom and-1 < € < 1. Note that the linear correlation coefficient is symbolibgdhe
parameted rather tharp. This is because to avoid possible confusions with the uncon
ditional rank correlation coefficient @'guss OF Ct,. The unconditional Spearman’s
rho for the Gauss copula correspondgte- 6/7 - arcsin(6/2) (Hult and Lindskog,
2002). For thes copula to our knowledge there exists no closed-form exmess

The Clayton copula is given by
CCIayton(“a v 0) = (U_e + 'U_e — 1)71/9 s Yu,v € [0, 1] ,

wheref > 0. In the limiting cased = 0 the Clayton copula corresponds to the
independencer product copulal(u,v) := uv (Nelsen, 2006, p. 11).

The Gumbel copula can be written as
0 01/0
CGumbel (U, v ;0) = exp [—{(—bg u)” + (—logv) } ] , YVu,v e [0,1],

with & > 1. Note that ford = 1 once again the independence copula evolves. The
values foré in Table 2 are chosen such that tineconditionalSpearman’s rho corre-
sponds tgp = 0.3,0.5, and0.7. The relationship betweghandp can be obtained by
numerical integration or MC simulation (cf. Joe, 1997, p/)114

For our approximations of the conditional rank correlatmrefficients (see Table 1
and Table 2) we us&/\ic = 1000 MC replications, each one generating a sample
from C with sample sizex = 10°. Both for the simulation study and for the empirical
study following later on we set = ¢ . Note that only the Clayton copula allows for an
explicit representation af’,. If C is a Clayton copula then the lower tail copula
corresponds ta’ for any0 < p < 1 (Juri and Wthrich, 2002). That means that
corresponds to the unconditional Spearman’s rh@'of



Gauss copula
0 =0.25 0 =0.50 0 =0.75
p=q | lower | upper| lower | upper | lower | upper

0.05 .0404 | .0407 | .1109 | .1114 | .2622 | .2624
- (.0004) | (.0004) | (.0003) | (.0003) | (.0002) | (.0002)

0.20 .0601 | .0601 | .1595 | .1593 | .3485 | .3483
- (.0001) | (.0001) | (.0001) | (.0001) | (.0001) | (.0001)

0.35 0775 | .0774 | 1972 | 1973 | .4090 | .4091
- (.0001) | (.0001) | (.0001) | (.0001) | (.0001) | (.0001)

0.50 | ;0962 | .0962 | .2354 | .2356 | .4655 | .4656
(.0001) | (.0001) | (.0001) | (.0001) | (.0000) | (.0000)
t3 copula
0 =0.25 0 =0.50 0 =0.75
p=q | lower | upper| lower | upper| lower | upper

0.05 3373 | .3369 | .4043 | .4044 | .5264 | .5265
- (.0003) | (.0003) | (.0002) | (.0002) | (.0002) | (.0002)

0.20 3186 | L3183 | .3968 | .3967 | .5361 | .5361
- (.0001) | (.0001) | (.0001) | (.0001) | (.0001) | (.0001)

0.35 2984 | .2984 | .3913 | .3913 | .5484 | .5485
- (.0001) | (.0001) | (.0001) | (.0001) | (.0001) | (.0001)

0.50 2756 | .2756 | .3882 | .3882 | .5651 | .5652
: (.0001) | (.0001) | (.0001) | (.0001) | (.0000) | (.0000)

Table 1: MC approximations tp;, and py for the Gauss ands; copula possessing
different values foid. We useNyc = 1000 MC replications, each one generating a
sample from the corresponding copula with sample size 105. The standard errors
of the approximations are given in parentheses.

The null hypothesis we are going to test can be formalized as

Ho: pL=pu
Vs. Hl: pL#pU)

where some andg with p 4+ ¢ < 1 are fixed. In our frameworll, implies that the
monotone dependence of stock returns in bear markets isithe as in bull markets.
Here we consider the lowdH0p% and upperl00¢% of stock returns to characterize
the bear and the bull market, respectively.

Instead of a two-sided hypothesis test, a one-sided test lik

Ho: prL <pu
vs. Hi: pL>pu

is of general interest.

The null hypothesidiy: pr, = pu stated above might be also of importance in another
context. Both in theory and application of copulas it is sbmes of interest whether
the random vectofX,Y) is radially symmetricor not (Nelsen, 2006, Section 2.7).
Radial symmetry is a useful property which guaranteesghat py for all 0 < p <

1 sinceC' and the corresponding survival copula coincide. In ordeiesd the null
hypothesisH, : ‘The random vectofX,Y') is radially symmetric’, one can apply the
two-sided test and rejed{; if H is rejected.
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Clayton copula
f =0.5112 0 =1.0759 0 = 2.1326
p=q | lower | upper| lower | upper | lower | upper

0.05 .3004 | .0025 | .5001 | .0018 | .7002 | .0035
- (.0002) | (.0005) | (.0002) | (.0004) | (.0001) | (.0004)

0.20 .3003 | .0040 | .4999 | .0113 | .7000 | .0318
- (.0001) | (.0001) | (.0001) | (.0001) | (.0001) | (.0001)

0.35 3001 | .0130 | .4999 | .0356 | .7000 | .0906
- (.0001) | (.0001) | (.0001) | (.0001) | (.0000) | (.0001)

0.50 | ;3001 | .0298 | .5000 | .0764 | .7000 | .1783
(.0001) | (.0001) | (.0000) | (.0001) | (.0000) | (.0001)
Gumbel copula

0 =1.26 0 =154 0 =2.07
p=q | lower | upper| lower | upper| lower | upper

0.05 .0319 | .3499 | .0697 | .4504 | .1431 | .5849
- (.0004) | (.0002) | (.0003) | (.0002) | (.0003) | (.0001)

0.20 .0515 | .3158 | .1106 | .4392 | .2206 | .5871
- (.0001) | (.0001) | (.0001) | (.0001) | (.0001) | (.0001)

0.35 0697 | .2906 | .1476 | .4314 | .2843 | .5916
- (.0001) | (.0001) | (.0001) | (.0001) | (.0001) | (.0000)

0.50 0912 | .2744 | 1885 | .4276 | .3507 | .5990
: (.0001) | (.0001) | (.0001) | (.0001) | (.0000) | (.0000)

Table 2: MC approximations t@, andpy for the Clayton and Gumbel copula possess-
ing different values fof). We useNyc = 1000 MC replications, each one generating
a sample from the corresponding copula with sample size 10°. The standard
errors of the approximations are given in parentheses.

2.2 The Testing Procedures

Let (X1,Y7),...,(X,,Y,) beiid.agX,Y). As we do not assume that the marginal
distribution functions& and H are known, we have to estimate them by

R 1 n R 1 n
Ghn(z) = n Z Lixi<a) and  H,(y) = n Z Livicyy -
i=1 =1

The corresponding estimates @gl(p) andf]gl(p) can be derived thereof. For some
fixedp andq with p + ¢ < 1 we can define

A= {(w,y): 2 < G 0)y < Hy ')}
and Ay respectively. Further, let;, := LXL\ andny := |Ay|, where| - | denotes the

cardinality of a set. The observations4n, and Ay can be used for estimating, and
pu. More precisely,

12 3 10 (Xi) 1Ln(Y5)

[)L’n - n_ . n n
iEIg L L
L

_3’

whereIgL denotes the set of indices i whe¥;, Y;) lies in fTL .
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Further,, ,,(+) is the rank of a marginal observation relative to all obsgows in XL ,
i.e. the lower left area of the empirical copula

n

~ 1
Cn(uav) = E ’ Z 1{rn(X1)/nSu}l{rn(Y?)/nSU} ) Vu,v e [0’ 1] :
1=1

Note thatrr, ,,(X;)/n1, = GL..(X;) andry,,(Y;)/nr, = Hy,(Y;), whereGr,, is the
empirical counterpart aofy, i.e.

Co(Cnlz A Gy p). p)
Cn(p,p)

@Ln(x) = , VreR,

andeLm is defined respectively. The estimaar ,, for the upper conditional Spear-
man’s rho can be similarly defined, just by using the surveedula according t6,,
i.e. the observations in the upper right arka.

It has been already shown that Spearman’s rho is consistenasymptotically nor-
mally distributed (Schmid and Schmidt, 2006b). The sameédr the conditional
versions of Spearman’s rho described above, i.e.

VL - (PLn — pL) 4, ./\/(O,O'I%) and /ny - (pun — pu) 4, N(O,U%)

asny,,ny — o0.

In practical situationg andg have to be sufficiently large such that andny do
not become too small. We have foupd; > log(n)/\/n as an appropriate rule of
thumb for analyzing daily stock returns. E.g. for the sangileen = 1000 (that
means we have an observation period of approximately 4 y@aasd g should be
larger than0.2184. In case of the product copula we would expect to nieztg84? -
1000 ~ 48 data points in the lower left or upper right corner of the encpl copula.
Admittedly, financial data cannot be appropriately desatiby the product copula but
we can assume that there is some sort of positive dependetveedn stock returns. So
there are evemoreobservations in the corresponding corners of the empicioaiila.
Thus our rule of thumb guarantees that there are always éndatg for large sample
inferences.

The asymptotic variancesf ando?, depend on the tail copulas;, andCy. In gen-
eral they cannot be calculated explicitly. However, theg ba approximated by a
simple bootstrap procedure (Schmid and Schmidt, 2006ale that the observations
contained inAr, and Ay stem from two disjoint sets and thus are stochastically-inde
pendent. The same holds fay, andﬁU, asymptotically, and the following procedure
for the two-sided hypothesis test becomes straightforward

1. Computepy, , andpy ,, from the observations iﬁL andﬁU, wherep andq are
fixed withp + ¢ < 1.

2. ComputeNB bootstrap replications gy, ,, and vy, from the observations in
A, and AU and calculate the corresponding estimates for the asyin -
ancesi ando?;, sayo? andoy.



3a. RejectHy: pr, = pu if
‘ pAL,n - ﬁU,n
NG

wherea > 0 is a small error probability of the first kind antl denotes the
distribution function of the standard normal distribution

>0 (1-2),
2

The one-sided hypothesis tests differ only in the third §tem the two-sided test, i.e.

3b. RejeCtH()l pL < pu or Hy: pr, > pu if
ﬁL,n - ﬁU,n

>d 1 (1-a),
V2 + 5%

or R R
PLn — PUn

\/Eﬁ/nL —|—&\%/TLU

<o a).

2.3 Finite Sample Properties

This section investigates the statistical properties eftdsting procedures described
at the end of the last section. The results are obtained byimMGlations for various
special cases. These are essentially defined by the copdéa study. First we are
interested in the rejection probability of the proceduréfif : pr, = py is true and
« is the prescribed error probability of the first kind. We ddes the Gauss ant}
copula which belong to the class of elliptical copulas (Fnadt al., 2003). These are
radially symmetric for every-1 < 6 < 1 and thus the null hypotheses holds. The
selected values for the copula parameteréare 0.25,0.5,0.75, the values fop are
given byp = 0.2,0.35,0.5, and we validate the error probabilitias= 0.01, 0.05, and

a = 0.1. The simulated sample sizeris= 2500, the number of bootstrap replications
corresponds taVg = 1000, and the number of MC replications €y = 1000.
The results of the simulations are summarized in Panel 1loeTa We can see that
the approximated rejection probabilities satisfactoaityree with the prescribed error
probabilities.

We are also interested in thmower of the testing procedure, i.e. the probability of
rejection providedH, is wrong. For that purpose we consider the Clayton and the
Gumbel copula. Itis well-known that these copulas are riiatly symmetric and thus

pL # pu holds in general. Remember that the paramgtdrboth copula families (see

p. 5) has been selected in such a way that the unconditioredrByan’s rho is equal
top = 0.3,0.5 andp = 0.7. The results of the MC simulations are given in Panel
2 of Table 3. It can be seen that for every fixednd « the power is an increasing
function of 8. This is because the asymmetry of the Archimedean copiias ion
andCgcumbel iNcreases wittd (cf. Nelsen, 2006, Ch. 4).

Similar results are obtained for the two one-sided testghvban be taken from Table
4 and Table 5. The rejection probabilities become very larbeneverH; is true. In

9



Rejection probability
Rejection probability

Figure 1. Power functions of the two-sided hypothesis tdtie mixed copula€irixi
(left hand side) and'\ixo (right hand side) as a function af. The results are obtained
by MC simulation for the sample size = 2500, Ny = 1000 bootstrap replications,
and Ny = 1000 MC replications using the threshold probability= ¢ = 0.5.

contrast, ifH is true our simulations produce no false rejection. Forinse, consider
the right-sided tesH : p;, < py vS. H1: pr, > py. In that case the null hypothesis
is fulfilled for the Gumbel copula. Panel 2 of Table 4 showg thare is no rejection
for any given unconditional rank correlation coefficienthreshold probability, and
error probabilitya. In contrast, for the Clayton copula the alternative hypsih is
true and consequently the rejection probabilities are g (e.g. roughly 90% for
p = 0.3,p=0.2, anda = 0.1). Moreover, forp = 0.5 andp = 0.7, Hy is rejected
for the Clayton copula in almost every simulated case.

Now we want to investigate the relationship between asymynastd power. For that
purpose we consider the mixed copula

CMin (u) (%N )\) 905 91) = )\CCIayton(ua (%N 91) + (1 - )‘)CGaUSS(u) (%N 90) 5

where0 < X\ < 1. Further, the copula parametéks ¢, are such that thenconditional
Spearman’s rho ofciayton (4, v;01) and Cgauss(u, v ;3 0p) corresponds te = 0.5.
Hence, the mixed copula possesses the same unconditiokaloaelation coefficient
for every\ (see the formula fop on p. 3). Sincey;, = py is true for the Gauss copula
but for the Gumbel copula it holds thaf, < py, the mixing parametek determines
the degree of asymmetry given B (u, v ; A, 0o, 61). If we consider the two-sided
hypothesis testh = 0 means that the null hypothesis is true whereas the alteenati
hypothesis holds for every > 0. The larger\ the more we shall expect to rejeft, .

A similar result is obtained for the mixed copula
CMixQ(uv U3 )‘7 007 02) = )‘CGumbel(ua O 02) + (1 - )\)CGauss(ua O 00) ;

whered, is such that Spearman’s rho Ofumpbel (u, v ; #2) Once again corresponds
to p = 0.5. The corresponding power functions are given in Figure 1le power
functions illustrated in Figure 1 are simulated on the babis = 2500, Ny = 1000,
and Ny = 1000 using the threshold probability = 0.5. We can see that the
two-sided hypothesis test exhibits more power in case ofClagton/Gauss copula
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Hy: pL = pyVvs.Hi: pL # pu
Panel 1 0 =0.25 0 = 0.50 0 =0.75
p=q « Gauss t3 Gauss t3 Gauss t3
0.10 107 .082 112 107 .101 .086
(.0098) (.0087) (.0100) (.0098) (.0095) (.0089)
0.20 0.05| .056 .039 .054 .052 .045 .041
- (.0073) (.0061) (.0071) (.0070) (.0066) (.0063)
0.01 .011 .005 .013 .008 .009 .009
(.0033) (.0022) (.0036) (.0028) (.0030) (.0030)
0.10 .088 .102 .085 .100 101 .094
(.0090) (.0096) (.0088) (.0095) (.0095) (.0092)
0.35 0.05 .057 .047 .041 .048 .041 .040
- (.0073) (.0067) (.0063) (.0068) (.0063) (.0062)
0.01 .011 .013 .007 .009 011 .009
(.0033) (.0036) (.0026) (.0030) (.0033) (.0030)
0.10 115 .094 .100 115 120 .088
(.0101) (.0092) (.0095) (.0101) (.0103) (.0090)
0.50 0.05| .051 .038 .049 .059 .063 .036
- (.0070) (.0060) (.0068) (.0075) (.0077) (.0059)
0.01 .010 .005 .015 .016 .016 .006
(.0031) (.0022) (.0038) (.0040) (.0040) (.0024)
Panel 2 p=0.30 p = 0.50 p=0.70
p=q a | Clayton Gumbel|l Clayton Gumbel Clayton Gumbel
0.10| .836 738 1.000 984 1.000 .999
(.0117) (.0139) (.0000) (.0040) (.0000) (.0010)
0.20 0.05| .728 637 .998 .953 1.000 .999
- (.0141) (.0152) (.0014) (.0067) (.0000) (.0010)
0.01 .505 .393 .993 .845 1.000 .989
(.0158) (.0154) (.0026) (.0114) (.0000) (.0033)
0.10| .994 934 1.000 .999 1.000 1.000
(.0024) (.0079) (.0000) (.0010) (.0000) (.0000)
0.35 0.05| .985 .890 1.000 .995 1.000 1.000
- (.0038) (.0099) (.0000) (.0022) (.0000) (.0000)
0.01 .929 763 1.000 .983 1.000 1.000
(.0081) (.0134) (.0000) (.0041) (.0000) (.0000)
0.10| 1.000 977 1.000 .999 1.000 1.000
(.0000) (.0047) (.0000) (.0010) (.0000) (.0000)
0.50 0.05| 1.000 .952 1.000 .998 1.000 1.000
- (.0000) (.0068) (.0000) (.0014) (.0000) (.0000)
0.01 .994 .831 1.000 .995 1.000 1.000
(.0024) (.0119) (.0000) (.0022) (.0000) (.0000)

Table 3: MC approximations of the rejection probabilities the Gauss ant; copula
(Panel 1) and for the Clayton and Gumbel copula (Panel 2ngilig: pr, = py. The
simulated sample size is = 2500, the number of bootstrap replications corresponds
to Ng = 1000, and the number of MC replications 18y;¢ = 1000. The standard

errors for the approximated rejection probabilities akegiin parentheses.
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Ho: pr, < puvs.H;: pr, > py
Panel 1 0 =0.25 0 = 0.50 0 =0.75
p=q « Gauss t3 Gauss t3 Gauss t3
0.10 107 .089 .104 .099 .104 .103
(.0098) (.0090) (.0097) (.0094) (.0097) (.0096)
0.20 0.05| .050 .040 .053 .056 .049 .045
- (.0069) (.0062) (.0071) (.0073) (.0068) (.0066)
0.01 .007 .007 .011 .012 .009 .007
(.0026) (.0026) (.0033) (.0034) (.0030) (.0026)
0.10| .101 114 .085 .094 .097 .089
(.0095) (.0101) (.0088) (.0092) (.0094) (.0090)
0.35 0.05| .047 .057 .038 .045 .055 .044
- (.0067) (.0073) (.0060) (.0066) (.0072) (.0065)
0.01 .010 .011 .009 .009 .014 .010
(.0031) (.0033) (.0030) (.0030) (.0037) (.0031)
0.10| .108 .093 .093 110 123 .089
(.0098) (.0092) (.0092) (.0099) (.0104) (.0090)
0.50 0.05| .052 .045 .051 .066 .063 .045
- (.0070) (.0066) (.0070) (.0079) (.0077) (.0066)
0.01 .009 .007 .012 .017 .018 .005
(.0030) (.0026) (.0034) (.0041) (.0042) (.0022)
Panel 2 p=0.30 p = 0.50 p=0.70
p=q a | Clayton Gumbel|l Clayton Gumbel Clayton Gumbel
0.10| .903 .000 1.000 .000 1.000 .000
(.0094) (.0000) (.0000) (.0000) (.0000) (.0000)
0.20 0.05| .836 .000 1.000 .000 1.000 .000
- (.0117) (.0000) (.0000) (.0000) (.0000) (.0000)
0.01 .600 .000 .997 .000 1.000 .000
(.0155) (.0000) (.0017) (.0000) (.0000) (.0000)
0.10| .999 .000 1.000 .000 1.000 .000
(.0010) (.0000) (.0000) (.0000) (.0000) (.0000)
0.35 0.05| .994 .000 1.000 .000 1.000 .000
- (.0024) (.0000) (.0000) (.0000) (.0000) (.0000)
0.01 .962 .000 1.000 .000 1.000 .000
(.0060) (.0000) (.0000) (.0000) (.0000) (.0000)
0.10| 1.000 .000 1.000 .000 1.000 .000
(.0000) (.0000) (.0000) (.0000) (.0000) (.0000)
0.50 0.05| 1.000 .000 1.000 .000 1.000 .000
- (.0000) (.0000) (.0000) (.0000) (.0000) (.0000)
0.01 .995 .000 1.000 .000 1.000 .000
(.0022) (.0000) (.0000) (.0000) (.0000) (.0000)

Table 4: MC approximations of the rejection probabilities the Gauss ant; copula
(Panel 1) and for the Clayton and Gumbel copula (Panel 2ngilig: pr, < py. The
simulated sample size is = 2500, the number of bootstrap replications corresponds
to Ng = 1000, and the number of MC replications 18y;¢ = 1000. The standard

errors for the approximated rejection probabilities akegiin parentheses.
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Ho: pr, > pu vs. H;: pr, < py
Panel 1 0 =0.25 0 = 0.50 0 =0.75
p=q « Gauss t3 Gauss t3 Gauss t3
0.10| .101 .082 .096 .100 .084 .091
(.0095) (.0087) (.0093) (.0095) (.0088) (.0091)
0.20 0.05| .057 .042 .059 .0561 .052 .041
- (.0073) (.0063) (.0075) (.0070) (.0070) (.0063)
0.01 .015 .004 .014 .009 .006 .010
(.0038) (.0020) (.0037) (.0030) (.0024) (.0031)
0.10| .098 .104 .099 .100 .098 .100
(.0094) (.0097) (.0094) (.0095) (.0094) (.0095)
0.35 0.05| .041 .045 .047 .055 .046 .050
- (.0063) (.0066) (.0067) (.0072) (.0066) (.0069)
0.01 .014 .010 .010 .010 .005 .010
(.0037) (.0031) (.0031) (.0031) (.0022) (.0031)
0.10 118 .109 .103 .102 110 .083
(.0102) (.0099) (.0096) (.0096) (.0099) (.0087)
0.50 0.05| .063 .049 .049 .049 .057 .043
- (.0077) (.0068) (.0068) (.0068) (.0073) (.0064)
0.01 .015 .006 .014 .014 .010 .009
(.0038) (.0024) (.0037) (.0037) (.0031) (.0030)
Panel 2 p=0.30 p = 0.50 p=0.70
p=q a | Clayton Gumbel|l Clayton Gumbel Clayton Gumbel
0.10| .000 .838 .000 .996 .000 1.000
(.0000) (.0117) (.0000) (.0020) (.0000) (.0000)
0.20 0.05| .000 738 .000 984 .000 .999
- (.0000) (.0139) (.0000) (.0040) (.0000) (.0010)
0.01 .000 485 .000 .901 .000 997
(.0000) (.0158) (.0000) (.0094) (.0000) (.0017)
0.10| .000 975 .000 .999 .000 1.000
(.0000) (.0049) (.0000) (.0010) (.0000) (.000)
0.35 0.05| .000 .934 .000 .999 .000 1.000
- (.0000) (.0079) (.0000) (.0010) (.0000) (.0000)
0.01 .000 .829 .000 987 .000 1.000
(.0000) (.0119) (.0000) (.0036) (.0000) (.0000)
0.10| .000 .993 .000 1.000 .000 1.000
(.0000) (.0026) (.0000) (.0000) (.0000) (.0000)
0.50 0.05| .000 977 .000 .999 .000 1.000
- (.0000) (.0047) (.0000) (.0010) (.0000) (.0000)
0.01 .000 .886 .000 .997 .000 1.000
(.0000) (.0101) (.0000) (.0017) (.0000) (.0000)

Table 5: MC approximations of the rejection probabilities the Gauss ant; copula
(Panel 1) and for the Clayton and Gumbel copula (Panel 2ngilig: pr, > pu. The
simulated sample size is = 2500, the number of bootstrap replications corresponds
to Ng = 1000, and the number of MC replications 18y;¢ = 1000. The standard

errors for the approximated rejection probabilities akegiin parentheses.
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p=01|p=02|p=03|p=04]|p=0.>5
L 3609 | .3009 | .3149 | .3387 | .3479
pu 2685 | .2409 | .2400 | .2571 | .2749
oL —pu | .0924 | .0600 | .0749 | .0816 | .0730
|pL —pul | 1528 | .0891 | .0829 | .0840 | .0754

Table 6: Average conditional rank correlation coefficiemti$ferences, and absolute
differences of all 231 asset combinations for differenésmold probabilitiep = ¢ .

Chwix1- However, both figures demonstrate that the hypothesisatestys keeps the
prescribed error probability of the first kind and the re@tiprobability indeed is an
increasing function of the mixing paramet&r Similar results can be obtained for
other constellations gf andp.

3 Empirical Resultsfor German Stock Returns

Now we consider daily returns of 21 stocks of the German siogdéx DAX 30 from
1992-03-02 to 2002-03-01 and the stock index itself. Moexisely, the considered
stock prices were adjusted by dividends, splits, etc., am@balyzes are based on the
daily log-returns of the stocks. The number of observatigns = 2523. Table 6
contains the sample means of the upper and lower condit®pedrman’s rho for all
asset combinations given the threshold probabilities ay, galue-at-risk levelp =
0.1,0.2,0.3,0.4, andp = 0.5. Herep;, symbolizes the mean lower apg the mean
upper conditional Spearman’s rh@, — pu is the mean difference, wheregg, — pu|
denotes the mean absolute difference betwigeandpyy. We can see that in average
the lower conditional rank correlations are between 6 angdifts larger than the
upper conditional rank correlations. However, without sameaningful economical
arguments it is not possible to judge whether this gap betveed and bear markets
is rather ‘large’ or ‘small’ and we would like to avoid sucmki of statements.

In contrast, we will discuss how much of the empirical eviteeteads to significant
results in our hypothesis tests. It is worth to point out tiwt outcomes of the test
generally depend on the probability threshpldFigure 2 shows the estimates of the
lower and upper conditional Spearman’s rho as a functiop fof Allianz vs. BASF
and Allianz vs. Munich Re. We can see that the difference éety;, and gy for
Allianz vs. Munich Re essentially depends on the chosersitiold whereas for Allianz
vs. BASF the difference is roughly stable. However, in bathesp;, — pu increases
asp approaches to zero. That means the rank correlation ceetftscof stock returns
seem to be substantially different between situations ofcpand elation. From this
arguments it should be clear that the hypothesis test warksifop is choserbefore
examining different estimates foi, and py. Otherwise the test would suffer from a
selection bias.
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Panel 1 Hy: pr, = pu Vvs.Hy: p1, # pu
« p=01|p=02|p=03|p=04]|p=0.>5
0.10 37 34 67 89 107
0.05 25 16 51 67 72
0.01 6 3 19 31 30
Panel 2 Hy: pr, < puVvs.Hy: pr, > pu
« p=01|p=02|p=03|p=04]|p=0.>5
0.10 55 61 94 136 148
0.05 35 32 67 89 107
0.01 11 4 30 42 50
pL > pPuU 170 173 196 218 217
Panel 3 Hy:pr, > puVvs.Hy: pr, < pu
@ p=01|p=02|p=03|p=04|p=0.5
0.10 9 7 3 0 0
0.05 2 2 0 0 0
0.01 1 0 0 0 0
oL < pu 61 58 35 13 14

Table 7: Numbers of rejections for the different hypothdssts, various threshold
probabilitiesp = ¢, and error probabilities: given 231 asset combinations. Further,
the numbers of asset combinations whgies larger or smaller thapy (in the last
rows of Panel 2 and Panel 3).

3.1 Two-Sided Hypothesis Test

There arg(%}) = 231 combinations of the 21 stocks and the stock index. It is dleatr
the estimate$r, and py are different from each other for every combination and we
want to see whether the differences are significant. Thahmea testH, : p;, = pu
againstH; : p;, # pu by using the procedure described in Section 2.2. The first
panel of Table 7 contains the number of rejections for all 284et combinations. For
p = 0.1 only 25 of 231 asset combinations (i.e. roughly 11%) andpfet 0.3 only

51 (that means about 22%) are significantly different on #elével, etc. However,
we see that for alp taken into consideration the proportions of rejection exicthe
corresponding error probability of the first kind. More fsaty, since the number
of rejections is always larger th&31« we can conclude that in general does not
correspond tey for daily asset returns.

3.2 One-Sided Hypothesis Tests

Panel 2 and 3 of Table 7 contain the number of asset comhnsatiberes;, > py and
oL < pu. Forp = 0.1 there are 170 asset combinations with> 5y and only 35 &
21%) of these combinations are significant. et 0.3 there are 67 of 196 34%)
significant asset combinations with, > py on the 5% level, etc. Itis clear that not
every combination witlpr, > py or pr, < py can be significant. This holds especially
if the number of observations in the lower left and upper trigért of the empirical
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p P

Figure 2: Estimates of the lower and upper conditional Spaais rho as a function

of p = ¢ for Allianz vs. BASF (left hand) and Allianz vs. Munich Redht hand).

copula is small. However, the fact that the proportion ohiigant combinations is
relatively small of course neither implicates that the esponding null hypotheses are
true nor that the distances between the true rank correlatefficientsp;, andpy are
small (cf. the last row of Table 6).

First consider the second panel of Table 7 which containsitingber of rejections for
various levels ofy anda. The numbers of rejection exce@dla in all cases. This
indicates thapy, > puy is a typical constellation for daily asset returns. In casty for
the opposite testl; : p1, > pu Vvs. Hi : p1, < pyu the number of rejections given in
Table 7 (Panel 3) are always smaller tt2aia . Thus we can assume that most of the
documented rejections are errors of the first kind.

Many empirical studies suggest that tiveear dependence of stock returns is larger
in bear markets than in bull markets (see, e.g., Ang and G682, Erb et al., 1994).
Our results of the one-sided hypothesis tests confirm fidimghe finance literature
where Pearson’s linear correlation coefficient is used aepamtience measure. That
means in bear markets stock returns depend more on eachtldimein bull markets
where the notion of ‘dependence’ is represented by the ramklation coefficient.

4 Conclusion

Several authors have investigated the dependencies &f itians in bull and bear
markets. Pearson’s correlation coefficient has been thpiaaed as a canonical de-
pendence measure. Unfortunately, it essentially depemdseomarginal distributions
of the random variables which are taken into consideratimhcuantifies only the de-
gree of linear dependence. However, often we are inter@stad degree of monotone
rather than linear dependence. This holds especially ifrtagginal distributions are
highly non-standard which is definitely the case if we comi@da on the tails of stock
return distributions. So it is crucial to find a reasonablpetelence measure for the
degree of monotone dependence under the condition th&t igttarns go up or down,
contemporaneously. We believe that copula theory can senan appropriate tool-
box and suggest Spearman’s rho as a dependence measurés ilhisntrast to the
previous literature where e.g. conditional correlatioeftioients are used for the same
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purpose. Moreover, our approach is purely nonparametimnzeSve do not fit specific
copulas to the data we can avoid a model misspecification.udeessfully verified the
proposed one- and two-sided hypothesis tests by severalifi@adions. Further, we
conducted an empirical study using daily returns of stodkgained in the DAX 30.
Of course, everybody can draw his own conclusions from thgiréral results. But we
think that there is sufficient evidence to support the hypsithof different dependence
structures in bull and bear markets. On the other hand thata®ws probably are not
as strong as one might expect.
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