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Abstract

Valid inference in predictive regressions depends in a crucial manner on the degree
of persistence of the predictor variables. The paper studies test procedures that
are robust in the sense that their asymptotic null distributions are invariant to the
persistence of the predictor, that is, the limiting distribution is the same irrespective
of whether the regressors are stationary or (nearly) integrated. Existing procedures
are often conservative (e.g. tests based on Bonferroni bounds), are based on highly
restrictive assumptions (such as homoskedasticity or assuming an AR(1) process for
the regressor) or fail to have power against alternatives in a 1/T neighborhood of the
null hypothesis. We first propose a refinement of the variable addition method with
improved asymptotic power approaching the optimal rate. Second, inference based
on instrumental variables may further improve the (local) power of the test and even
achieve local power under the optimal 1/T rate. We give high-level conditions un-
der which the suggested variable addition and instrumental variable procedures are
valid no matter whether the predictor is stationary, near-integrated or integrated, or
exhibits time-varying volatility. All test statistics possess a standard limiting distri-
bution. Monte Carlo experiments suggest that tests based on simple combinations
of instruments perform most promising relative to existing tests. An application to
quarterly U.S. stock returns illustrates the need for robust inference.
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1 Introduction

Predictive regressions play an important role in empirical economics. Granger causality
implies that a variable does not cause another if the former is not able to predict the
latter. Also, in financial economics, it is of interest whether variables like dividend yields
or interest spreads contain information about future stock price returns.

One important practical problem with performing such predictive regressions is that
the regressor is highly persistent in many cases, whereas the dependent variable is close to
white noise. For example, stock price returns or exchange rate changes are approximately
uncorrelated, whereas predictors like dividend yields or interest rate differentials behave
roughly like a random walk. As shown by Elliott and Stock (1994) the t-statistic may
suffer from severe size distortions in such cases.

We start within the framework of Elliott and Stock and consider as a baseline model
the dynamic system given by the triangular representation

yt = βxt−1 + ut (1)

xt = %xt−1 + vt, (2)

t = 2, . . . , T, with Σ = E

((
ut

vt

)(
ut vt

))
=

(
σ2
u σuv

σuv σ2
v

)
. Note that the regressor

xt is assumed to be weakly exogenous since E(xt−1ut) = 0 but E(xt−1ut−1) 6= 0 whenever
σuv 6= 0. If σuv = 0, then the regressor is strictly exogenous. We first abstract from any
deterministic component such as an intercept or linear trend to focus on the main issues
without the extra notational burden. In Section 3.2 we expand our model accordingly
and show that deterministic terms can easily be dealt with in the usual manner.

To model persistent regressors, the variable xt is often assumed to be nearly integrated,

% = 1− c

T
(3)

for c ≥ 0. We are interested in testing the null hypothesis β = 0 whatever the value of c
may be. Under suitable regularity conditions (e.g. Elliott and Stock, 1994) the ordinary
least squares [OLS] t-statistic for the null β = 0 in (1) is asymptotically distributed as

tls
d→ ω

∫ 1

0
Jc (r) dWv (r)√∫ 1

0
J2
c (r) dr

+
√

1− ω2Z , (4)

where ω = σuv/(σuσv), Jc(r) represents an Ornstein-Uhlenbeck process such that T−1/2x[rT ] ⇒
σvJc(r) with Jc (r) = Wv (r)− c

∫ r
0
e−c(r−s)Wv (s) ds, and Wv(r) a standard Brownian mo-

tion obtained as T−1/2
∑[rT ]

t=1 vt ⇒ σvWv(r) (with “⇒” denoting weak convergence in a
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space of càdlàg functions on [0, 1] endowed with a suitable norm). The standard normal
variate Z is independent of Wv(r) (and thus of Jc(r)). Hence, the distribution of the
ordinary t-statistic is nonstandard and depends on the parameter c if σuv 6= 0.

Should the driving process xt be stationary, i.e. −1 < % < 1 fixed, standard asymptotic
theory applies. The problem in applied research is that the nature of xt is typically
unknown, and pre-testing to check whether |%| = 1 has been shown to induce serious
size-distortions when % is close to unity (Elliott and Stock, 1994).

For the baseline model given by (1) and (2) there already exist a number of test
procedures that are robust to the value of the autoregressive coefficient %. Elliott and
Stock (1994) proposed a Bayesian mixture procedure and Cavanagh et al. (1995) consider
various tests based on conservative bounds (as refined by Campbell and Yogo, 2006); the
work of Jansson and Moreira (2006) can be casted in a restricted likelihood framework.
The asymptotics of these procedures is however confined to the near-integrated case.

Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996) proposed testing strate-
gies that allow for valid inference irrespective of the nature of the autoregressive roots
of xt (local to unity or stationary). The idea is to augment the testing equation with
additional (redundant) variables such that the coefficients to be tested are attached to
stationary variables. Bauer and Maynard (2012) show that variable addition [VA] also
works in the context of VAR(∞) processes with unknown persistence. Although such a
robust approach is appealing, we argue that such tests may suffer from a dramatic loss
of power. Specifically, they only have power in 1/

√
T neighborhoods of the null hypothesis

compared with the typical rate of 1/T for tests involving nearly integrated regressors.1

The shortcoming is shared to some extent by the nonparametric approach of Maynard
and Shimotsu (2009) with a local power characterized by the rate 1/T 0.75 (see their Lemma
9). Gorodnichenko et al. (2012) propose a quasi-differencing procedure applicable, like the
VA method of Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996), in general
dynamic models; but, like VA, the procedure only has power in 1/

√
T neighborhoods of

the null.2 Finally, Phillips and Magdalinos (2009) propose an instrumental variable [IV]
procedure with local power arbitrarily close to the optimal 1/T of the size-distorted OLS
estimator.

We therefore study inference in the presence of regressors with unknown persistence
such that the power of the resulting tests remains close to that of an optimal test, while the
limiting null distributions do not change with the degree of persistence of the regressors.

1The VA approach of Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996) is more general
and may perform more favorable in other applications such as testing for causality in cointegrated systems.

2It should be noted, however, that these methods are designed to work against a wider range of
alternatives than we consider in (1). As argued by Lettau and Van Nieuwerburgh (2008) and Maynard
and Shimotsu (2009), it is the stationary component of the predictor that matters for forecasting series
like stock price returns. Accordingly, the rate of the sequence of local alternatives may be a misleading
guide for assessing the power against economically relevant alternatives.
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Specifically, we generalize VA and IV procedures and provide classes of tests which exhibit
similarities with the IVX approach of Phillips and Magdalinos (2009).

This paper’s contributions are as follows. We consider a model with conditional and
unconditional heteroskedasticity as well as short-run dynamics of the predictor and show
in Section 2 that the original VA test may suffer from severe loss of (asymptotic) power.
Although we demonstrate that the power of the VA procedure can be substantially im-
proved by employing certain transformations of the involved variables, some loss of power
remains. We then develop alternative test procedures based on instrumental variables that
share with the VA tests the invariance to the persistence of the predictor. At the same
time, an appropriate choice of instruments yields tests with power against a sequence of
alternatives converging to the null hypothesis at the optimal rate. Moreover, the instru-
ments we propose do not require additional data. In Section 3, we study the possibility of
improving inference in the IV setup by combining instruments. Our methods can easily
be extended to deal with deterministic components and an arbitrary number of regressors.
Section 4 compares the proposed methods with existing alternatives by means of Monte
Carlo experiments, and Section 5 illustrates the proposed methods with U.S. data.

2 Variable addition and instrument variable tests

We first extend the baseline model to allow for more general data characteristics.

Assumption 1 Let (
ut

vt

)
=

 ūt∑
j≥0

bj v̄t−j


where

∑
j≥0 j |bj| < ∞ and

∑
j≥0 bj 6= 0, the innovations ūt and v̄t are a bivariate white

noise sequence with a component structure,(
ūt

v̄t

)
= H

(
t

T

)(
ũt

ṽt

)

where H (r) is a matrix of piecewise Lipschitz functions, invertible for all r ∈ [0, 1],
and (ũt, ṽt)

′ is a martingale difference sequence with identity covariance matrix satisfying
supt

∣∣∣ 1
T

∑
j≥1

∑
k≥1 E (ṽt−j ṽt−kṽ

2
t )
∣∣∣ <∞ and supt E

(∥∥(ũt, ṽt)
′∥∥4+ε

)
<∞ for some ε > 0.

The assumption allows the increments of the predictor process xt to be serially correlated.
The so-called 1-summability condition for the moving average coefficients is standard
in the literature on integrated series. The disturbances ut are uncorrelated with the
increments of xt at all lags (i.e. xt is weakly exogenous with respect to ut). The martingale
difference assumption for the innovations is natural for the empirical applications we have
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in mind and allows for conditional heteroskedasticity. The summability condition on
the cross-product moments E (vt−jvt−kv

2
t ) slightly restricts the serial dependence in the

conditional variances and is fulfilled by independent sequences, for instance.
Unconditional time heteroskedasticity is captured by the matrix H(r) since

E

((
ūt

v̄t

)(
v̄t v̄t

))
= H

(
t

T

)
H

(
t

T

)′
.

Should H(r) be a diagonal matrix for all r ∈ (0, 1], the innovations ūt and v̄t may
have time-varying variance but are uncorrelated. In general, the off-diagonal element
of H(r)H(r)′ is not restricted to zero, allowing for contemporaneous and time varying
correlation among the innovations.3 A leading case of time heteroskedasticity is given by
breaks in the variances or the correlations, i.e. piecewise constant elements of H(r).

An invariance principle holds (see e.g. Cavaliere et al., 2010),

1√
T

T∑
t=1

(
ut

vt

)
⇒

(
BH,u(r)

BH,v(r)

)

where (
BH,u(r)

BH,v(r)

)
=

(
1 0

0
∑

j≥0 bj

)∫ r

0

H(s)dW(s)

and W(s) a vector of two independent standard Wiener processes. The processes BH,u(r)

and BH,v(r) are individually time-transformed Brownian motions whose correlation may
also vary in time. Concretely, their covariance at time r is given by

∑
j≥0 bj

∫ r
0
H(s)H ′(s)ds.

See Cavaliere et al. (2010) for a more detailed discussion. Furthermore we have that

1√
T
x[rT ] ⇒ Jc,H,v(r) where Jc,H,v(r) = BH,v(r)− c

∫ r

0

e−c(r−s)BH,v(s)ds

i.e. the Ornstein-Uhlenbeck process driven by the time-transformed Brownian motion
BH,v(r); cf. Phillips (1987) and Cavaliere (2004). In the case of weak stationarity of (ut, vt)

′

(i.e. H(r) = H almost everywhere), we recover the baseline model with BH,u = σuWu,
BH,v = σv

(∑
j≥0 bj

)
Wv and Jc,H,v = Jc, whereWu andWv are standard Wiener processes

with correlation ω = E (Wu(1)Wv(1)),

2.1 Variable addition-based inference

Building on Choi’s (1993) results, Toda and Yamamoto (1995) and Dolado and Lütkepohl
(1996) robustified Granger causality tests by including redundant regressors. This can be

3Such changing variances and covariances are plausible with macroeconomic and financial data; see
e.g. Stock and Watson (2002), Sensier and van Dijk (2004) or Clark (2009).
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adapted to our situation4 by testing the hypothesis β = 0 in the regression

yt = βxt−1 + φxt−2 + ut (5)

= βvt−1 + ψxt−2 + ut , (6)

where under the null hypothesis β = 0 and ψ = β% + φ = 0. The restriction on ψ is
however ignored when testing the hypothesis. It is well known (e.g. Sims et al., 1990)
that tests of coefficients attached to stationary variables (here: vt−1 = xt−1 − %xt−2)
possess standard (normal or χ2) limiting distributions. Thus, the t-statistic for testing
the null β = 0 in (6) is asymptotically normally distributed no matter what value % has.

In the present framework, this test suffers from a severe loss of power resulting from
the fact that the highly persistent regressor xt−1 is essentially replaced by the white noise
series vt−1 in (6); see Theorem 1 below. We suggest a modified variable addition approach,
where xt−1 is replaced by a (highly persistent) process. Consider e.g. the decomposition

xt = (1− αL)−1
+ ∆xt + (1− α)(1− αL)−1

+ xt−1

:= zt + ζt, (7)

where L is the lag operator and (1 − αL)−1
+ = (1 − αL)−1I(t > 0) with I the indicator

function such that zt = ∆xt + α∆xt−1 + · · · + αt−2∆x2 with |α| < 1. The advantage
of using (7) instead of decomposing xt = ∆xt + xt−1 (i.e. α = 0) as in the original VA
approach is that zt−1 = (1− αL)−1

+ ∆xt−1 more closely mimics xt−1 if α is close to one.
Here, we generalize (7) by considering an augmented test regression of the form

yt = βzt−1 + ψζt−1 + ut, (8)

where zt−1 is suitably chosen (see below) and ζt−1 = xt−1 − zt−1. As before we ignore the
restriction ψ = β (i.e. φ = 0) when testing the null hypothesis β = 0.

By constructing zt such that it is indeed less persistent than the regressor xt, standard
inference can be conducted using the OLS estimator of β in (8). At the same time,
zt should be as persistent as possible to enhance the power properties. The following
assumption summarizes the properties required for the variable zt.

Assumption 2 For some 0 ≤ δ < 1/2, it holds that

(i) VT,z :=
1

T 1+2δ

T∑
t=2

z2
t−1 ⇒ Vz and VT,zu :=

1

T 1+2δ

T∑
t=2

z2
t−1u

2
t ⇒ Vzu

4Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996) considered the case that the variables
are I(1) (i.e. c = 0), whereas Bauer and Maynard (2012) present some results for the VA method under
the local-to-unity assumptions with c < 0.
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where Vz and Vzu are positive and stochastically bounded,

(ii)
1

T 1.5+δ

T∑
t=2

zt−1xt−1
p→ 0, and (iii)

1

T 1/2+δ
√
Vzu

T∑
t=2

zt−1ut ⇒ Z

with Z ∼ N (0, 1).

Note that condition (ii) is satisfied by stationary variables, e.g. zt = ∆xt in the original
VA approach, but obviously not by zt = xt. The remaining assumptions are regularity
conditions ensuring e.g. the application of a central limit theorem.

When allowing for heteroskedasticity, Eicker-White standard errors need to be em-
ployed. The respective t-statistic is given by

twva =
β̂va − β0

s.ew

(
β̂va

) , (9)

where β̂va is the OLS estimate of β in (8) and

s.e2
w

(
β̂va

)
=

(
T∑
t=2

z̃2
t−1

)−2 T∑
t=2

z̃2
t−1û

2
t

where z̃t−1 = zt−1 − ζt−1

(∑T
t=2 ζ

2
t−1

)−1∑T
t=2 ζt−1zt−1 is the residual from a projection on

ζt−1 and ût denotes the OLS residual ût = yt − β̂lsxt−1 from (1).
The obvious question is how to construct the less persistent proxy zt from the regressor

xt. Clearly, Assumption 2 allows for a wide range of candidate variables. For instance
any (asymptotically) stationary variable is admissible, but stationarity is not necessary.
In what follows we consider the following “natural” examples:

1. Short memory: zt−1 = (1 − ᾱL)−1
+ ∆xt−1 = ∆xt−1 + ᾱ∆xt−2 + · · · + ᾱt−2∆x1 with

|α| < 1 and thus δ = 0.

2. Mild integration: zt−1 = (1−αTL)−1
+ ∆xt−1 for αT = 1−a/T η, where a > 0, 0 < η < 1

leading to δ = η/2.

3. Fractional integration: zt−1 = (1− L)1−d∗ xt−1I(t > 0) = ∆1−d∗
+ xt−1 for some d∗ ∈

(0, 1/2), with δ = 0.

4. Long differences: zt−1 = xt−1−xt−kT for kT = min{[KT ν ], t−1} for some 0 < ν < 1

and positive constant K, with δ = ν/2.

The null distribution (i.e. for b = 0) and the local power (for b 6= 0) for the class of test
statistics characterized by Assumption 2 are given in the following theorem.
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Theorem 1 Let yt and xt be generated as in (1) and (2) with % = 1 − c/T . Under
Assumptions 1 – 2 and the local alternative β = b/T δ+0.5, the statistic twva defined in (9)
has the limiting distribution

twva
d→ b

Vz√
Vzu

+ Z ,

where Z represents a standard normal random variable.

Proof: See the Appendix.

Remark 1 In the homoskedastic case where Var (ut) = σ2
u ∀ t and Vzu = σ2

uVz, the ordi-
nary t-statistic based on the standard errors

s.e
(
β̂va

)
= σ̂u

 T∑
t=2

z2
t−1 −

T∑
t=2

zt−1ζt−1

(
T∑
t=2

ζ2
t−1

)−1 T∑
t=2

ζt−1zt−1

−1/2

may be used. Under the conditions of Theorem 1, Vzu is replaced by σ2
uVz and the limiting

distribution of tva =
(
β̂va − β0

)
/s.e

(
β̂va

)
results as tva

d→ b
√
Vz
σu

+ Z.

It is important to note that the local power of the VA test does not depend on the persis-
tence of the regressor (represented by the parameter c). The following corollary provides
the details for the examples considered above. For simplicity we focus on i.i.d. innovations.

Corollary 1 Let (ut, vt)
′ iid∼ (0,Σ) with finite moments of order 4 + ε for some ε > 0

implying BH,u = σuWu, BH,v = σvWv and Jc,H,v = σvJc. Furthermore, let G (r) be a
standard Wiener process independent of Wu and Wv.

1. If zt−1 = (1 − ᾱL)−1
+ ∆xt−1, |ᾱ| < 1 fixed, we have Vzu = σ2

uVz, Vz = σ2
v

1−ᾱ2 and δ = 0.

For β = b/
√
T , it follows that twva

d→ b σv
σu
√

1−ᾱ2 +G(1).

2. If zt−1 = (1−αTL)−1
+ ∆xt−1, with αT = 1− a/T η then Vzu = σ2

uVz, Vz = σ2
v

2a
and δ = η/2.

For β = b/T 1/2+η/2, it follows that twva
d→ b σv

σu
√

2a
+G(1).

3. If zt−1 = ∆1−d∗
+ xt−1 for some d∗ ∈ (0, 1/2), then Vzu = σ2

uVz, Vz = σ2
v

Γ(1−2d∗)
Γ2(1−d∗) and δ = 0.

For β = b/T 1/2, it follows that twva
d→ b σv

σu

√
Γ(1−2d∗)
Γ2(1−d∗) +G(1).

4. If zt−1 = xt−1 − xt−kT , with kT = min{[KT ν ], t − 1} then Vzu = σ2
uVz, Vz = Kσ2

v and
δ = ν/2. For β = b/T 1/2+ν/2, it follows that twva

d→ b σv
σu

√
K +G(1).

Proof: See the Appendix.

In case 1 of a short-memory VA scheme, the local power of the test is increasing in |ᾱ|.
Hence choosing ᾱ close to unity can to some extent close the power gap between the
original VA test (i.e. ᾱ = 0) and the power of the (infeasible) t test based on (4).
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If αT = 1 − a/T η, xt is mildly (or moderately) integrated in the sense of Phillips and
Magdalinos (2007) and Magdalinos and Phillips (2009). Since 0 < η < 1 and αT converges
slowly to one, one can account for the trade-off between size control and power.

When zt has (stationary) long memory (case 3 ), the local power of the test is mono-
tonically increasing in d∗ and can again enhance the power properties of the VA procedure
since Γ(1− 2d∗)→∞ for d∗ → 1/2.

Finally, the long difference VA scheme (case 4 ) has power against local alternatives
with an improved rate T−(1+ν)/2, which is faster than the rate for the long memory variant
and the same as the mildly integrated regressor for ν = η. Note that the same trade-off
as for the moderately integrated case arises.

2.2 Inference based on instrumental variables

Following Phillips and Magdalinos (2009) we now consider test statistics based on instru-
mental variable (IV) estimators given by

β̂iv =

(
T∑
t=2

zt−1xt−1

)−1 T∑
t=2

zt−1yt (10)

and the t-statistic using Eicker-White heteroskedasticity consistent standard errors

twiv =

(
T∑
t=2

z2
t−1û

2
t

)−1/2 T∑
t=2

zt−1yt , (11)

where ût = yt − β̂lsxt−1 and β̂ls is the OLS estimator of β in (1).5

Comparing this testing strategy with the VA approach proposed in the previous section
it is apparent that the IV test neglects the remainder ζt−1 in (8) when instrumenting xt−1

by zt−1. To describe the behavior of the IV statistic under sequences of local alternatives,
we require a slightly stronger version of Assumption 2:

Assumption 3 (Type-I instruments) For some δ ≥ 0 and 0 ≤ ϑ < 1/2, it holds that

VT,zu :=
1

T 1+2δ

T∑
t=2

z2
t−1u

2
t ⇒ Vzu ,

where Vzu is positive and stochastically bounded, and the vector (zt, zt−1ut, ut, vt)
′ satisfies

5As the OLS estimator is T -consistent, the residuals involve a smaller estimation error than the
residuals employing the IV estimator. Note that asymptotic properties of the test are not affected by the
estimation error of the residuals, as long as the estimator for β is consistent at a rate higher than

√
T .
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the invariance principle
1

T 1/2+ϑ+δ

∑[rT ]
t=1 zt

1

T 1/2+δ
√
VT,zu

∑[rT ]
t=2 zt−1ut

1

T 1/2

∑[rT ]
t=1 ut

1

T 1/2

∑[rT ]
t=1 vt

 ⇒


Z(r)

GI(r)

BH,u(r)

BH,v(r)


with Z(r) and GI(r) càdlàg processes such that T−1−δ−ϑ∑T

t=1

(∑t−1
j=1 zj

)
vt ⇒

∫ 1

0
Z(r)dBH,v(r)+

λ for some real λ and GI(1) ∼ N (0, 1).

The additional parameter ϑ is closely related to the mean reverting behavior of the
instrument zt and crucially affects the local power of the IV-based test. This is in contrast
to the modified variable addition approach, where only δ plays a role; see Theorem 2 below.

For zt−1 = ∆xt−1, the parameter λ equals the one-sided long-run variance of vt, λ =∑
j≥1 E (vtvt−j). But λ is relevant only under the alternative and appears whenever vt is

correlated with the lags of zt. Should vt be a martingale difference sequence and zt−1 in
the respective information set, then λ = 0 and the weak limit typically holds.

The interpretation of zt−1 is, like for VA, that of an instrument having a lower persis-
tence than the regressor xt−1. The convergence 1

T 1/2+ϑ+δ

∑[rT ]
j=1 zj ⇒ Z(r) replaces condition

(ii) of Assumption 2. In fact it implies it, as argued in the proof of Corollary 1, so it can
be interpreted as a quantification of “reduced persistence” of the variable zt too.

Assumption 2 limits the persistence of the instruments. It is however possible to em-
ploy instruments with a similar persistence as xt−1. In this case we require the instruments
to be strictly exogenous with respect to ut. The resulting IV estimators actually achieve
optimal convergence rates while still allowing us to draw robust inference on β.

Assumption 4 (Type-II instruments) For some δ ≥ 0, the sequence zt satisfies the in-
variance principle

1

T δ
z[rT ] ⇒ Ż(r)

jointly with weak convergence of T−1/2
∑[rT ]

t=1 (ut, vt)
′, such that

VT,zu :=
1

T 1+2δ

T∑
t=2

z2
t−1u

2
t ⇒ Vzu

and
1

T 1/2+δ

T∑
t=1

zt−1ut ⇒
∫ 1

0

Ż(r)dBH,u(r) ∼MN (0, Vzu) ,

whereMN (0, Vzu) denotes a mixed normally distributed random variable with expectation
zero and (stochastic) covariance matrix Vzu.
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We call instruments obeying Assumption 3 type-I instruments, and those obeying Assump-
tion 4 type-II instruments. Type-I instruments are allowed to be weakly exogenous with
respect to ut but are less persistent than xt. Type-II instruments include nonstationary
variables or deterministic functions of time, but it is basically required that the limiting
process Ż(r) is independent of the disturbances in (1). That is, valid instruments should
be either free of stochastic trends (Assumption 3) or strictly exogenous (Assumption 4).

It may be surprising that instruments like a trend or a trigonometric function can
be powerful instruments although they do not reveal any specific information about the
regressor. The key insight is that, whenever the limit of the suitably normalized predic-
tor possesses a Loève-Karhunen expansion (see e.g. Phillips, 1998), type-II instruments
correlate with elements of the expansion so the R2 from a regression of xt on zt is larger
than zero. Examples of readily available type-II instruments are the following:

1. Independent random walk: zt = (1 − L)−1
+ wt, where wt is an iid(0, σ2

w) sequence,
independent of ut and vt (and whose use can be traced back to Park, 1990);

2. Deterministic functions: For example zt = t or zt = sin(πt/2T ) (cf. Phillips, 1998);

3. Cauchy instrument: zt = sign (xt) (cf. So and Shin, 1999).

Remark 2 The two types of instruments are encompassed in the more general class with

(i) the normalized partial sums of zt possess a weak limit,

1

T 1/2+ϑ+δ

[rT ]∑
j=2

zj−1 ⇒ Z (r)

jointly with weak convergence of T−1/2
∑[rT ]

t=1 (ut, vt)
′ such that

VT,zu :=
1

T 1+2δ

T∑
t=2

z2
t−1u

2
t ⇒ Vzu and

1

T 1+δ+ϑ

T∑
t=2

(
t−1∑
j=1

zj

)
vt ⇒

∫ 1

0

Z(r)dBH,v(r)+λ

(ii) there exists a càdlàg process X(s) such that

1√
T 2δ+1

[rT ]∑
t=2

zt−1ut ⇒
∫ r

0

F (Z(r)) dX (r)

with F (·) a functional depending on the nature of the instrument, where

(iii) the functional
∫ 1

0
F (Z(r)) dX (r) has a zero-mean mixed Gaussian distribution with

variance Vzu.
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For type-I instruments, F (Z(r)) =
√
Vzu does not depend on r, and X(r) = G(r) almost

everywhere. In the case of type-II instruments, Z(r) =
∫ r

0
Ż(s)ds leading to F (Z(r)) =

dZ(r)
dr

and X(s) ≡ BH,u. For our type-II examples, λ = 0, but this need not always be the
case: a random walk whose increments correlate with vt, but not with ut, is exogenous in
the framework of this paper, yet λ may still be non-zero when vt is serially correlated.

For both classes of instruments, δ acts as a normalization parameter and the parameter
ϑ characterizes the mean reversion of zt. Note that zt = xt would imply a value of 1/2 for
both δ and ϑ, but G(1) would not possess a standard normal distribution for zt = xt.
Type-II instruments, exhibiting indeed ϑ = 1/2, circumvent the possible nonnormality by
imposing strict exogeneity: the weak convergence of the normalized partial sums of the
product zt−1ut is the analog of the usual exogeneity condition of instrument variables.

The distribution of the IV test statistic under a suitable local alternative is given in

Theorem 2 Let yt and xt be generated as in (1) and (2) where % = 1−c/T and Assumption
1 holds. Assume further that zt satisfies either Assumption 3 or Assumption 4. Under the
sequence of local alternatives β = b/T 0.5+ϑ, the limiting distribution of the IV test statistic
twiv from (11) is,

1. for type-I instruments,

twiv
d→ b

Rc
zx√
Vzu

+GI(1),

and,

2. for type-II instruments,

twiv
d→ b

Rc
zx√
Vzu

+GII(1)

with Vzu =
∫ 1

0

(
Ż(r)

)2

d[BH,u](r) and [BH,u](r) the quadratic variation of BH,u(r),

where GI(1) and GII(1) =
(∫ 1

0
Ż2(r)d[BH,u](r)

)−1/2 ∫ 1

0
Ż(r)dBH,u (r) are both standard

normal, and Rc
zx is given by

1

T 1+ϑ+δ

T∑
t=2

zt−1xt−1 ⇒ Rc
zx :=

(
Z (1) Jc,H,v (1)−

∫ 1

0

Z (r) dJc,H,v (r)− λ
)

(with dJc (r) shorthand for dBH,v (r)− c Jc,H,v (r) dr) for type-I instruments, and by

1

T 1+ϑ+δ

T∑
t=2

zt−1xt−1 ⇒ Rc
zx :=

∫ 1

0

Jc,H,v (r) Ż (r) dr

for type-II instruments.

Proof: See the Appendix.
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Note that under the null hypothesis (b = 0) the IV test statistic has a standard normal
limiting distribution irrespective of the value of the parameter c. Furthermore it turns
out that the local power of the IV test crucially depends on the parameter ϑ. From the
the proof of Theorem 2 it follows for the sample correlation between zt and xt:∑T

t=1 ztxt√∑T
t=1 z

2
t

√∑T
t=1 x

2
t

= Op

(
T ϑ−0.5

)
.

The larger the parameter ϑ is, the more the instrument is correlated with the regressor,
yielding an improved asymptotic power. For type-I instruments ϑ < 0.5, but we can
come arbitrary close to the optimal 1/T rate of the distorted OLS t-statistic. For type-II
instruments the optimal rate 1/T can be achieved, however, at the expense of some more
restrictive assumption on the limit of

∑
zt−1ut (see Assumption 4).

Remark 3 In the compact notation of Remark 2,

twiv
d→ b

Rc
zx√
Vzu

+
1√
Vzu

∫ 1

0

F (Z(r)) dX (r) ,

where the second summand on the r.h.s. is standard normal and Rc
zx is given by

1

T 1+ϑ+δ

T∑
t=2

zt−1xt−1 ⇒ Rc
zx :=

(
Z (1) Jc,H,v (1)−

∫ 1

0

Z (r) dJc,H,v (r)− λ
)

with Z(r) =
∫ r

0
Ż(s)ds again. For type-II instruments, integration by parts leads also to∫ 1

0
Jc,H,v (r) dZ (r) as equivalent representation of Rc

zx.

For concreteness we now discuss the mentioned special cases of instruments.

Corollary 2 (Type-I instruments) Let (ut, vt)
′ iid∼ (0,Σ) with finite moments of order

4 + ε for some ε > 0 such that BH,u = σuWu, BH,v = σvWv, Jc,H,v = σvJc, and GI(r) is a
standard Wiener process independent of Jc and Wv.

1. Short-memory instrument If zt−1 = (1 − ᾱL)−1
+ ∆xt−1, then δ = 0, ϑ = 0, Vzu =

σ2
uVz with Vz = σ2

v

1−ᾱ2 , λ = 0 and Z(r) = σv
1−ᾱJc(r); furthermore, with β = b/T 1/2,

twiv
d→ b σv

√
1+ᾱ

σu
√

1−ᾱ

(
Jc (1)2 −

∫ 1

0
Jc (r) dJc (r)

)
+GI(1).

2. Mildly integrated instrument If zt−1 = (1−αTL)−1
+ ∆xt−1, with αT = 1−a/T η then

δ = η/2, ϑ = η/2, Z (r) = σv
a
Jc (r) , Vzu = σ2

uVz with Vz = σ2
v

2a
, and λ = 0; furthermore,

with β = b/T 1/2+η/2, twiv
d→ b σv

√
2

σu
√
a

(
Jc (1)2 −

∫ 1

0
Jc (r) dJc (r)

)
+GI(1).

3. Fractionally integrated instrument If zt = ∆1−d∗
+ xt for some d∗ ∈ (0, 1/2), then

δ = 0, ϑ = d∗, Vzu = σ2
uVz with Vz = σ2

v
Γ(1−2d∗)
Γ2(1−d∗) , λ = 0 and Z(r) = σvJ

d∗+1
c (r); with
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β = b/T 1/2+d∗ , twiv
d→ b σvΓ(1−d∗)

σu
√

Γ(1−2d∗)

(
Jd
∗+1
c (1) Jc (1)−

∫ 1

0
Jd
∗+1
c (r) dJc (r)

)
+ GI(1)

where Jd∗+1
c (r) = W d∗+1

v (r) − c
∫ r

0
e−c(r−s)W d∗+1

v (s) ds is the Ornstein-Uhlenbeck
process driven by the fractional Brownian motion W d∗+1

v (c.f. Kleptsyna and Le Bre-
ton, 2002), and GI(r) is a standard Wiener process independent of Wv (and thus of
Jc and Jd

∗+1
c as well).

4. Long difference instrument If zt = xt−1−xt−kT , with kT = min{[KT ν ], t−1} then
δ = ν/2, ϑ = ν/2, Z(r) = KσvJc(r), Vzu = σ2

uVz with Vz = Kσ2
v, and λ = 0; with

β = b/T 1/2+ν/2, twiv
d→ b σv

σu

√
K
(
Jc (1)2 −

∫ 1

0
Jc (r) dJc (r)

)
+GI(1).

Proof: See the Appendix.

The test based on mildly integrated instruments can be seen as a special case of the IVX
approach of Phillips and Magdalinos (2009). IVX applies to cointegrating systems with
nearly or mildly integrated common trends, of which our predictive regression model is a
special case. The fact that the predictive regression framework assumes weakly exogenous
regressors facilitates the use of the IVX method as no bias correction is required.

Corollary 3 (Type-II instruments) Let (ut, vt)
′ iid∼ (0,Σ) with finite moments of order

4 + ε for some ε > 0 implying BH,u = σuWu, BH,v = σvWv and Jc,H,v = σvJc.

1. Independent random walk If zt =
∑t

j=1wt−1 with wt an iid(0, σ2
w) sequence inde-

pendent of the sequence (ut, vt)
′, then δ = 1/2, ϑ = 1/2, Ż(r) = σwW⊥(r) with W⊥

a standard Wiener process independent of Wu and Wv; furthermore, with β = b/T ,

twiv
d→ bσv

σu

∫ 1
0 W⊥(r)Jc(r)dr√∫ 1

0 W
2
⊥(r)dr

+
∫ 1
0 W⊥(r)dWu(r)√∫ 1

0 W
2
⊥(r)dr

with the second summand being standard

normally distributed.

2. Linear trend If zt = t, then δ = 1, ϑ = 1/2, Ż(r) = r or Z(r) =
∫ r

0
sds = r2/2;

furthermore, with β = b/T , twiv
d→ bσv

√
3

σu

∫ 1

0
rJc (r) dr+

√
3
∫ 1

0
rdWu (r) with the second

summand being standard normally distributed.

3. Cauchy instrument If zt = sign(xt−1), then δ = 0, ϑ = 1/2 and Ż(r) = sign (Jc(s)) ;

furthermore, with β = b/T , twiv
d→ bσv

σu

∫ 1

0
|Jc (r)| dr +

∫ 1

0
sign (Jc (r)) dWu (r) where

the second summand is standard normally distributed.

Proof: See the Appendix.

Under the null hypothesis b = 0, we thus obtain a standard normal limiting null distri-
bution for all IV statistics. Under the local alternative b 6= 0, the power depends also on
the local-to-unity parameter c, which is an important difference to the VA tests using the
same variable zt. Furthermore, the IV test relying on a random walk, a linear time trend
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or the Cauchy instrument, has power against 1/T -sequences of local alternatives, whereas
the asymptotic power of the other tests is equal to the size for such alternatives. In finite
samples, the IV test with a linear trend or the Cauchy instrument may thus be more
powerful relative to IV tests employing stationary or moderately integrated instruments
for large T .

Remark 4 Some care is required when the limit Rc
zx is random and can take both positive

and negative values with positive probabilities, since the power of one-sided tests can be
affected in a rather unpredictable way. Consider e.g. the IV estimator resulting from zt = t

where Rc
zx =

√
3

σu

∫ 1

0
rJc(r)dr under the conditions of Corollary 3. Since Rc

zx is distributed
symmetrically about zero, it follows that E

(
tivβ
)

= 0 no matter what the value of the drift
parameter b is; the power of the one-sided test converges to 1/2 as b → ∞ and the test is
inconsistent. On the other hand, the power of the two-sided test tends to unity as b→∞
or b→ −∞ yielding a consistent test against the alternatives β = b/T 1−δ for all δ > 0.

2.3 VA versus IV

Which procedure is to be preferred in applied work, IV or VA? At a first glance, type-
II instruments should be preferred, as they achieve optimal local power. This comes at
the cost of imposing strict exogeneity – which has consequences when the regressors are
stationary; see Remark 4. We shall in fact propose a solution to this problem relying on
overidentified IV-based inference in the following section. In the remainder of this one, we
compare VA-based inference to IV-based procedures employing the same variable zt−1.

Note that, under the null, the IV and VA tests relying on the same variable are asymp-
totically equivalent, as the difference between the VA and IV test statistics vanishes as
T →∞. Under the alternatives considered here, however, there can be severe differences,
the most obvious one being the additional condition on weak convergence of the partial
sums of zt required for the IV case. But it is not the additional condition of Assumption
3 that is the most relevant for the purposes of this subsection. Namely, the power against
local alternatives is governed by the parameter δ for the VA procedure, and by ϑ for
the IV procedure. The performance can therefore be quite different even when using the
same variable. This is best seen in the case where zt−1 is fractionally integrated: the pre-
dictability test has power against T−1/2 local alternatives in the case of the VA statistic,
whereas, if using zt−1 as instrument, the local power may come arbitrarily close to the
optimal rate T−1. Thus, if δ 6= ϑ, the decision between IV and VA is straightforward.

But how do IV and VA compare when ϑ = δ (for example, when zt is short memory or
mildly integrated)? The answer is not clear cut. By examining the limiting distributions,
it is clear that Vz has to be compared to Rc

zx. The latter obviously depends on c whereas
the former does not, which suggests that the actual value of c influences the ranking.
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Moreover, for some of the examples considered above, Vz is deterministic while Rc
zx is not.

3 Extensions

3.1 Combining instruments

Using one single instrument (the just-identified case) may be problematic. For example,
using a linear trend as instrument does not exploit any specific information about the
regressor beside the (near) integration of xt. The instrument is weak (in the sense that
it is uncorrelated with the regressor) if xt is stationary, and the IV test has only trivial
power in such a case. Moreover, using a time trend as instrument is rather arbitrary as
any other function of time (e.g. a sine function or the square of t) may be used instead.

This suggests that the IV test may be improved by employing additional instru-
ments. The two-stage least-squares [2SLS] IV t-statistic in the case of Eicker-White
heteroskedasticity-robust standard errors is given by

tw2S =

(
T∑
t=2

xt−1z
′
t−1

)(
T∑
t=2

zt−1z
′
t−1

)−1( T∑
t=2

zt−1yt

)
√(

T∑
t=2

xt−1z′t−1

)(
T∑
t=2

zt−1z′t−1

)−1( T∑
t=2

zt−1z′t−1û
2
t

)(
T∑
t=2

zt−1z′t−1

)−1( T∑
t=2

zt−1xt−1

) ,
(12)

where zt is an m-dimensional vector of instruments.
The null distribution of this statistic is not invariant to the local-to-unity parame-

ter c in general. In the just identified case, zt−1 is scalar and the terms
∑T

t=2 z
2
t−1 and∑T

t=2 xt−1zt−1 cancel out (up to sign); tw2S then has a standard normal limiting null dis-
tribution (Theorem 2). In the overidentified case the terms do not cancel out, resulting
in a nonstandard distribution of t2Sβ when several type-II instruments are involved.

It is nevertheless possible to combine instruments for some interesting special cases. To
establish the asymptotic properties of the 2SLS t-statistic in such situations, a multivariate
version of Assumptions 3 and 4 is given in

Assumption 5 Let DT = diag
(
T δ1 , . . . , T δm

)
and KT = diag

(
T 1/2+ϑ1 , . . . , T 1/2+ϑm

)
.

The vector of instruments zt = (z1t, . . . , zmt)
′ satisfies

(i) the invariance principle

K−1
T D−1

T

[rT ]∑
j=2

zj−1 ⇒ Z (r)

(jointly with weak convergence of T−1/2
∑[rT ]

t=1 (ut, vt)
′) such that Z (r) = (Z1(r), . . . , Zm(r))′
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has linearly independent elements,

1

T
D−1
T

(
T∑
t=2

zt−1z
′
t−1u

2
t

)
D−1
T ⇒ Vzu and

1

T
D−1
T

(
T∑
t=2

zt−1z
′
t−1

)
D−1
T ⇒ Vz,

and

1√
T
K−1
T D−1

T

T∑
t=2

(
t−1∑
j=1

zj

)
vt ⇒

∫ 1

0

Z (r) dBH,v + λ;

(ii) there exists a multivariate process X(r) such that

1√
T
D−1
T

T∑
t=2

zt−1ut ⇒
∫ 1

0

diag (F1 (Z(r)) , . . . ,Fm (Z(r))) dX(r),

with m functions F1, . . . ,Fm as defined in Remark 2, and

(iii) the functional F =
∫ 1

0
diag (F1 (Z(r)) , . . . ,Fm (Z(r))) dX(r) is zero-mean mixed

Gaussian with covariance matrix Vzu such that VzF is mixed Gaussian as well.

In the following theorem we assume that there exists an instrument with the property
ϑi > ϑj for all j 6= i, that is, there is only one instrument that is characterized by the
maximum value of ϑi. An example is that one instrument is a linear time trend, whereas
all other instruments are of type I. Following Remark 4, we focus on two-sided testing
in the remainder of the paper. We posit that the square of the 2SLS t-statistic has a
chi-square limiting distribution with one degree of freedom in this case.

Theorem 3 Let yt and xt be generated as in (1) and (2) with (3) where Assumption 1
holds. Consider a vector of m instruments zt = (z1t, . . . , zmt)

′ satisfying Assumption 5
with associated constants δ1, . . . , δm and ϑ1, . . . , ϑm. If there exists an i such that ϑi > ϑj

for all j 6= i, the 2SLS t-statistic in (12) has the limiting null distribution

(tw2S)2 d→ χ2 (1) .

Proof: See the Appendix.

The intuition behind the result is that the instrument with the largest ϑi dominates the
asymptotics in the sense that under the null hypothesis the 2SLS t-statistic is asymptot-
ically equivalent to the just-identified IV statistic considered in Section 2.2.

Notwithstanding the asymptotic equivalence of the over-identified and the just-identified
IV statistics, it is quite appealing to employ the over-identified one. The following example
based on the combination of a type-I and type-II instruments illustrates the benefits.
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Example 1 Let zt = (zI,t, zII,t)
′ where zI,t obeys Assumption 3 and zII,t obeys Assump-

tion 4. Let yt and xt be generated as in (1) and (2) with (3), where (ut, vt)
′ iid∼ N(0,Σ).

Under the null hypothesis β = 0 the IV statistic using zt as instruments has a χ2 asymp-
totic null distribution with one degree of freedom irrespective of whether xt is nearly in-
tegrated with arbitrary c or stationary. (The result is a corollary of Theorem 3 in the
near-integrated case, and straightforward to prove in the stationary case.)

Also, the test has power in a 1/T neighborhood of the null when xt is nearly integrated,
and in a 1/

√
T neighborhood when xt is stationary (under the additional condition that zI,t

correlates with xt, which is fulfilled, e.g., by the examples in Corollary 2). When xt is
nearly integrated, the type-I instrument is asymptotically irrelevant; when xt is stationary,
it is the type-II instrument that is irrelevant. The 2SLS procedure thus asymptotically
“picks” the instrument suitable for the given degree of persistence of the regressor.

As a counterexample we note that a combination of the Cauchy instrument and a linear
trend has a nonstandard limiting distribution: the crucial value of ϑ is identical for both
instruments (and both are type-II instruments).

Moreover, it is possible to construct Anderson-Rubin [AR] type statistics for more
general combinations of instruments than specified in Theorem 3, including e.g. two or
more sine functions. In the heteroskedasticity-robust form, the test statistic is given by

AR =

(
T∑
t=1

ytz
′
t−1

)(
T∑
t=1

zt−1z
′
t−1û

2
t

)−1( T∑
t=1

zt−1yt

)
(13)

with ût OLS residuals as before, and is equivalent to the LM statistic of the hypothesis
γ = 0 in the regression yt = γ ′zt−1 + et. It is interesting to note that, in the just-
identified case where the number of instruments is equal to the number of regressors, the
test statistic is identical to the square of the ordinary IV statistic given in (11).

Theorem 4 Let yt and xt be generated as in (1) and (2) with (3) where Assumption 1
holds and let zt be an m × 1 vector of instruments obeying Assumption 5 with m ≥ 1.
Then, under the sequence of local alternatives β = b/Tmax(0.5+ϑi) and Assumption 5, the AR
statistic from (13) has the following limiting distribution as T →∞:

AR
d→ χ2

m, b2
∑∑

ϑi,ϑj=maxϑ

[
V −1
zu

]
i,j
Rc
zx,iR

c
zx,j


where χ2 (m,κ) represents a noncentral χ2 distribution with m degrees of freedom and
noncentrality parameter κ.

Proof: See the Appendix.
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Note that imposing Assumption 5 rules out the joint use of the Cauchy instrument and a
linear trend, since the corresponding vector zt would violate Assumption 5 (iii). On the
other hand, several powers of the trend, several independent random walks, or trigono-
metric functions with different frequencies can be used.

A drawback of the AR approach is that the critical values increase with the number
of instruments m. Thus, in order to improve the power of the test in finite samples, the
additional instruments have to be sufficiently informative to compensate the higher critical
value. Note further that only the most powerful instrument(s) (that is the instruments
with the maximal value of ϑ) determine(s) the asymptotic power of the AR statistic.

3.2 Deterministic components

Let us examine the predictive regression (1) augmented by an additive deterministic com-
ponent of the form µt =

∑L
`=1 τ`f`(t) = τ ′ft , where ft obeys the conditions of Assumption

5 as a type-II variable. Accordingly, this allows for more general deterministic components
than a non-zero mean, e.g. polynomial trends or dummy variables.

We may also include deterministic terms in the data generating process of xt. Let
E(xt) = τ ′xf

x
t . If, for example, a constant is included in (2), then fxt = (1, t)′. In this

case the vector ft is constructed such that fxt lies in the space of ft. For instance, if both
(1) and (2) include a constant, then ft = (1, t)′ should be chosen, although we know that
τ2 = 0. The (irrelevant) time trend is included in (2) to remove the time trend from the
regressor whenever it is (nearly) integrated.

By expanding the test equation for the VA test accordingly we obtain

yt = τ ′ft + βzt−1 + ψζt−1 + ut. (14)

Since, under Assumptions 2 and 5, the variable zt is asymptotically orthogonal to both
ζt and ft, it is not difficult to show that augmentation of the testing equation with deter-
ministic terms does not change the asymptotic results presented in Theorem 1; cf. Sims
et al. (1990) again. For the 2SLS IV approach, it is sufficient to ensure that all elements
of the vector (ft, zt) obey Assumption 5 jointly. The corresponding result is presented in

Theorem 5 Let yt and xt be generated as in (1) and (2) with (3) where Assumption 1
holds. Furthermore, let the vector (f ′t, zt−1)′ obey Assumption 5. The limiting distribution
of the IV statistic for the null hypothesis β = 0 in model yt = τ ′ft + βxt−1 + ut is

(twiv)
2 d→ χ2(1).

Proof: straightforward and omitted.
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Note, however, that Assumption 5 (i) rules out the use of the linear trend as instrument
when a time trend is already present in the data and has to be accounted for. Assumption
5 (iii) furthermore prohibits the use of the Cauchy instrument6 but we may, for instance,
use zt = sin πt

2T
instead of a linear time trend.

For the AR statistic, several type-II instruments may be used. Let ỹt denote the
residuals from an OLS regression of yt on ft and ũt is the residual from yt on ft and xt−1.
The Anderson-Rubin statistic is computed as in (13) where yt and û2

t is replaced by ỹt
and ũ2

t , and its limiting null distribution remains χ2 with m degrees of freedom.

3.3 Multiple predictors

Should there be several regressors xt ∈ RK ,

yt = τ ′ft + β′xt−1 + ut, (15)

VA and IV are straightforward to use. Moreover, the extension to several predictor
variables for different degrees of persistence for each of the predictors is straightforward.
Let Γ be a (not necessarily diagonal) K×K matrix. The univariate autoregressive process
(2) is replaced by the multivariate analog

xt =

(
IK −

1

T
Γ

)
xt−1 + vt , (16)

and a multivariate version of Assumption 1 is available for the vector (ut,v
′
t)
′. In the case

of the VA method we adapt a generalized version of (14) yielding

yt = τ ′ft + β′zt−1 +ψ′ζt−1 + ut, (17)

where each element of the vector zt−1 is constructed as in the univariate case, and
ζt = xt − zt. If Assumption 5 holds jointly for zt and ft, the previous results on
the properties of the modified VA procedure are easily established in the multivari-
ate case as well. The test statistic is the usual Wald statistic for the null hypothesis
β = 0 where the Eicker-White heteroskedasticity-consistent covariance matrix estimator
V̂w

(
β̂va

)
is employed to accommodate heteroskedastic errors. This test statistic is de-

noted by T wva,K = β̂
′
va V̂

−1
w

(
β̂va

)
β̂va, and its asymptotic null properties are established

in

Theorem 6 Assume that yt and xt are generated as in (1) and (16), where the vector
(ut,v

′
t)′ satisfies a multivariate version of Assumption 1. The vector (f ′t, z

′
t−1)′ obeys

6If the data only exhibits a nonzero mean, recursive demeaning of the regressor and forward demeaning
of the dependent variable lead to normality of the IV test statistic based on the sign instrument.
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Assumption 5 and zt contains only type-I instruments. Under the null hypothesis β = 0,
the limiting distribution of the Wald-type statistic is given by

T wva,K
d→ χ2(K).

Proof: see the Appendix.

A analogous result applies to the IV approach using type-I instruments. Some care is
needed, though, for type-II instruments. While the Anderson-Rubin statistic can be used
in a straightforward manner, the 2SLS approach is not without potential pitfalls. First,
an obvious requirement is that (f ′t, z

′
t−1)′ is not multicollinear. For example, if ft includes

a linear time trend, the trend is obviously ruled out as a type-II instrument. Second, the
problems with combining instruments are also relevant in the multivariate context. This
suggests that one may only use one type-II instrument for each regressor. Theorem 7
below shows that using K type-II instruments for K predictors leads to a χ2

K asymptotic
null distribution. As before, the Wald statistic is defined as

T wiv,K = β̂
′
iv V̂

−1
w

(
β̂iv

)
β̂iv , (18)

where β̂iv denotes the IV estimator of β in (15) and V̂w
(
β̂iv

)
is the corresponding diagonal

block of the heteroskedasticity-consistent IV covariance matrix estimator (the precise
expression is given in the proof of the following theorem).

Theorem 7 Under the assumptions of Theorem 6, the limiting distribution of the IV
statistic from (18) for model (15) is given by

T wiv,K
d→ χ2(K).

Proof: see the Appendix.

Under the conditions of Theorem 3, it follows that the type-II instruments (i.e. the instru-
ments with the largest value of ϑi) matter asymptotically. Thus, adding further type-I
instruments to obtain an overidentified 2SLS IV estimator does not raise difficulties. Just
like in the univariate case, adding type-I instruments may improve finite-sample power in
particular if xt is stationary (to escape the weak instruments problem).

4 Monte Carlo experiments

We now present some simulation evidence comparing the size and power properties of
alternative tests. Data are generated according to model (1) and (2) with serially in-
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dependent bivariate normal ut and vt, where an additional constant is included in (1).
Accordingly, all tests are applied to the demeaned series. Instead of the parameter c
we present the resulting autoregressive parameter % = 1 − c/T , where the sample size is
T = 250. The parameter of interest is computed as β = b/T and, therefore, b measures the
deviation from the null hypothesis relative to the sample size. Table 1 reports rejection
rates for two-sided tests based on 10 000 replications of the model with nominal size 10%.
The correlation between ut and vt is ω = 0.9 and both errors have unit variance.

The following test statistics are considered. The statistic π∗ represents the test pro-
posed by Jansson and Moreira (2006) and “CY-Q” refers to the Bonferroni Q statistic of
Campbell and Yogo (2006).7 The original variable addition test proposed by Dolado and
Lütkepohl (1996) (i.e. the test is performed on the difference zt−1 = ∆xt−1) is denoted by
“VAᾱ=0” and the modified VA test suggested in Corollary 1.2 is labeled as “VAmild”, where
the autoregressive parameter used to construct ∆ξt−1 is computed as αT = 1 − 12.5/T 0.8.
The test statistic employing long differences of the regressor as instrument with trunca-
tion parameter kT = [0.2 · T 0.85] is denoted by “IVkT ”.8 The IV test using sign(xt−1) as
instrument (with forward demeaning for the dependent variable and recursive demeaning
for the regressor) is indicated as “IVsign”, whereas the IV tests based on fractionally inte-
grated instrument ∆

1/2
+ xt−1 and a sine function9 with sin(πt/T) are labeled “IVd∗=1/2” and

“IVsin”, respectively. Finally, “IVcomb” indicates an over-identified IV estimator combining
the sine function with the fractional instrument (cf. Theorem 3).

The simulation results for a significance level of 10% are reported in Table 1. They
show negligible size distortions for all VA and IV tests that are within the simulation error
of the rejection frequencies. Only the VA test with moderately integrated regressor tends
to reject slightly too often. With respect to the power of the tests, substantial differences
emerge. As predicted by Theorem 1, the original VA test has very poor power relative
to the other tests whenever % is close to unity. The modified statistic VAmild proposed in
Corollary 1 (2.) dramatically improves the power of the VA test. The relative performance
of the IV tests also depends on the persistence of the regressor. While the sine function
performs well as an instrument if xt is close to I(1), the performance of the IVsin test
deteriorates severely if the regressor approaches stationarity (still, it is more powerful
than π∗). The reason is that the deterministic sine function is uncorrelated with the
stationary AR process xt and, therefore, the weak instrument problem arises. The IV
estimator that combines the sine function and the fractional instrument performs best
among all VA and IV statistics. The power of this test is comparable to the CY-Q test

7The authors are grateful to Michael Jansson for sharing the corresponding computer codes and
to Motohiro Yogo for making them available (https://sites.google.com/site/motohiroyogo/home/
publications/Predict_Programs.zip).

8Preliminary Monte Carlo simulations, not reported here, suggest that the choices αT = 1− 12.5/T 0.8

and kT = 0.2T 0.85 strike a good balance between size control and power in finite samples.
9The IV test with a trend as instrument performs slightly worse and is omitted.
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Table 1: Comparison of test procedures for a nearly integrated regressor

% = 1.00
b CY-Q π∗ VAᾱ=0 VAmild IVkT IVsign IVd∗=1/2 IVsin IVcomb
0 5.6 10.1 11.1 13.3 12.5 10.3 11.1 9.9 11.2
5 44.5 50.2 10.1 12.8 15.8 19.1 13.6 37.7 34.5
10 77.1 55.7 13.5 22.8 33.6 35.7 33.4 61.4 65.7
15 91.2 58.4 18.7 39.5 51.8 48.5 52.4 73.4 83.7
20 96.7 54.6 27.3 57.6 66.1 58.6 66.9 79.5 91.3

% = 0.98
b CY-Q π∗ VAᾱ=0 VAmild IVkT IVsign IVd∗=1/2 IVsin IVcomb
0 5.8 8.1 11.0 11.4 10.7 9.3 10.2 10.6 10.8
5 20.5 17.7 11.0 14.4 17.8 17.8 17.0 29.4 30.9
10 52.7 23.8 14.3 26.4 37.6 30.5 34.0 45.1 55.6
15 75.6 25.9 20.6 44.6 59.2 44.7 54.8 55.6 75.1
20 89.6 33.9 29.5 62.8 76.1 56.5 69.7 63.2 86.6

% = 0.96
b CY-Q π∗ VAᾱ=0 VAmild IVkT IVsign IVd∗=1/2 IVsin IVcomb
0 6.0 6.2 10.5 10.4 10.5 10.0 9.4 9.9 10.4
5 15.2 11.9 11.1 14.5 16.4 16.8 15.5 21.9 26.3
10 41.0 16.5 14.6 26.4 33.4 30.5 30.1 34.4 47.3
15 63.4 18.8 21.4 43.1 53.5 45.0 48.4 44.4 66.5
20 79.9 21.0 30.5 61.6 70.0 58.9 64.7 51.9 80.4

% = 0.92
b CY-Q π∗ VAᾱ=0 VAmild IVkT IVsign IVd∗=1/2 IVsin IVcomb
0 6.5 6.1 10.7 10.4 10.6 10.0 10.1 9.8 11.4
5 12.4 7.3 11.3 13.8 14.7 15.0 13.9 16.9 20.0
10 28.9 10.7 15.4 24.0 26.3 26.1 23.7 24.4 35.7
15 48.0 13.6 22.1 40.8 43.6 40.4 39.6 31.5 54.3
20 65.6 15.5 30.5 57.4 61.4 55.1 55.3 37.3 68.9

Note: The rejection frequencies are computed from 10 000 replications of model (1) – (2)
allowing for a nonzero constant. The mutual correlation of the errors is ω = 0.9. The
nominal size is 10%, and the sample size is T = 250. The null hypothesis is b = 0.

which has been characterized to be efficient in this context (cf. Campbell and Yogo, 2006).
In a set of additional Monte Carlo experiments we have also investigated the relative

performance of various Anderson-Rubin statistics proposed in (13). It turned out that the
AR test generally suffers from significant size distortions in small samples, in particular
when more than two instruments are employed. Moreover the power tends to be smaller
compared to the 2SLS statistic IVcomb. We therefore do not recommend the AR test for
empirical applications and in order to save space we do not present the results here.10

5 Predictability of quarterly U.S. stock index returns

To illustrate the proposed methods, we re-analyze the predictability of U.S. equity data.
The predicted series are quarterly NYSE/AMEX value-weighted index data (1926 Q4 to

10The respective results are available from the authors on request.
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2002 Q4) from the Center for Research in Security Prices analyzed in Campbell and Yogo
(2006).As predictors, we employ the (log) dividend yield, the (log) earnings-price ratio, a
risk-free interest rate and a yield spread.11 See Figure 1.

Figure 1: Quarterly NYSE/AMEX value-weighted index returns (left) and log earnings-
price ratio (right), 1926Q4–2002Q4
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We report the estimated autoregressive coefficient %̂ of the predictors and the correla-
tion between the prediction error ût and the residual of the autoregression v̂t in Table 2.
For the log dividend yield and the log earnings-price ratio, we find high persistence and
large negative correlation. We therefore expect the OLS t-statistic to be unreliable.

Table 2: Predictors: Some stylized facts

Dividend yield Earnings/price Risk-free rate Yield spread

%̂ 0.9634 0.9578 0.9654 0.7999

σ̂uv/σ̂uσ̂v −0.9422 −0.9861 −0.0501 −0.1194

We perform OLS predictive regressions with each possible predictor alone, and a joint
regression with all four (all include an intercept). The results are presented in Table 3.
In the problematic cases where size distortions are expected, the OLS t statistics tend to
reject. In the joint regression, only the t-statistics for the earnings-price ratio is significant.

Applying the robust methods reveals interesting differences; see Table 4. On the
one hand, employing long-difference instruments (the VA or the IV approach) rejects
the null hypothesis β = 0 for the earnings-price based on the usual t-statistic (assum-
ing homoskedasticity). On the other hand, neither test is able to reject the null when
the heteroskedasticity-robust variant of the t-statistic is applied to the four indicators.

11Obtained from https://sites.google.com/site/motohiroyogo/home/publications/Predict_
Data.xls; we thank Motohiro Yogo for making the replication data available.
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Table 3: OLS estimation results

Intercept Dividend yield Earnings/price Risk-free rate Yield spread
0.1247∗
(0.0544)

0.0342∗
(0.0166)

– – –

0.1489∗
(0.0470)

– 0.0473∗
(0.0163)

– –

0.0221∗
(0.0098)

– – −0.2332
(0.2020)

-

0.0009
(0.0126)

– – – 0.5556
(0.4951)

0.1138∗
(0.0551)

−0.0505
(0.0410)

0.0894∗
(0.0402)

−0.2097
(0.2193)

−0.0345
(0.5631)

Note: ∗ indicates significance at 5%; ordinary standard errors in parentheses.

Thus, for the period 1926-2002, there is no robust evidence for predictability of quarterly
U.S. index returns by using variables like the earnings-price ratio or the dividend yield.

Table 4: Results based on robust test procedures

Dividend yield Earnings/price (E/P) Risk-free rate Yield spread E/P (break-adj.)
VA test: mildly integrated

β̂ 0.0052 0.0383 –0.3522 0.3416 0.1143
tva 0.1516 1.2476 –0.7227 0.5328 3.4840∗
twva 0.0828 0.4631 –0.6888 0.4148 2.9368∗

VA test: long differences
β̂ 0.0372 0.0531 –0.2940 0.3796 0.0660
tva 1.9683∗ 3.0239∗ –1.1011 0.5603 2.0754∗
twva 1.3778 1.5965 –0.9245 0.6002 1.3348

IV test: mildly integrated
β̂ 0.0115 0.0393 –0.3625 0.3158 0.0598
tiv 0.4020 1.3824 –0.6963 0.4704 1.8571
twiv 0.2269 0.5576 –0.6840 0.3757 0.7909

IV test: long differences
β̂ 0.0400 0.0620 –0.3840 0.7585 0.1090
tiv 1.6667 2.6840∗ –0.8084 1.0459 3.2812∗
twiv 1.2991 1.5938 –0.7998 0.8409 1.9894∗

IV test: combined (sine, fractional)
β̂ 0.0169 0.0308 –0.1467 0.3989 0.0701
tiv 0.7788 1.3756 –0.5840 0.5380 2.0378∗
twiv 0.4495 0.6016 –0.4353 0.4693 0.9616
Note: This table present the result of 5 predictive regressions for the indicated variables. tva and tiv
indicate the ordinary t-statistics based on the assumption of homoskedastic errors. twva and twiv denote
the respective statistics based on the Eicker-White heteroskedasticity robust standard errors. ∗ indicates
significance at the 5%.

Lettau and Van Nieuwerburgh (2008) argue however that it is the stationary com-
ponent of the dividend yield or the earnings-price ratio that matters. They identify two
breaks in the mean, in 1955 and in 1995, for the yearly dividend yield, and find that
the demeaned series (that is by removing the means over 1926-1954, 1955-1994 and 1995-
2002, see Figure 1) does indeed help to predict yearly returns. We therefore included the
break-adjusted predictors in our empirical investigation, focusing on the log earnings-price
ratio, as this variable appeared the more promising candidate in our previous analysis. We
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adopt the break dates identified by Lettau and Van Nieuwerburgh (2008). Since the data
are quarterly, we locate the breaks at the first quarter of 1955 and 1995. As the break-
adjusted series is still persistent with an autoregressive root of 0.905, the OLS t-statistic
may still be unreliable. As in Lettau and Van Nieuwerburgh (2008) we found that the
null hypothesis is rejected but if the test statistic is adjusted for heteroskedasticity the
t-statistics become insignificant, with the exception IV statistic based on long-differences
that marginally rejects at 5%. This result corroborates earlier findings that accounting
for heteroskedastic errors when testing financial time series matters.

6 Concluding remarks

We proposed a class of modified variable addition tests for predictive regressions with
persistent variables and consider their power under local alternatives. We found that the
original version of the VA tests may suffer from dramatic loss of power relative to other
existing tests. With a more appropriate variable decomposition, the loss of power may be
reduced to a minimum. We also discussed IV inference as a simple and robust solution.
When choosing instruments properly, the IV tests have power in the same neighborhood
of the null as the infeasible OLS-based test, e.g. for a linear trend or the sign of the
regressor. Another class of instruments consists of mean-reverting, yet highly persistent
variables. They can e.g. be obtained by filtering the differenced regressor and are useful
when the regressor is close to stationarity. For both VA and IV, standard inference follows
irrespective of the degree of persistence of the regressor. Combining instruments by 2SLS
or via the Anderson-Rubin test statistic may further improve the power of the tests.

Appendix

Proof of Theorem 1
The heteroskedasticity robust t statistic is written as

twva =
1√
NT

 T∑
t=2

zt−1ut −
T∑
t=2

zt−1ζt−1

(
T∑
t=2

ζ2
t−1

)−1 T∑
t=2

ζt−1ut


+

β√
NT

 T∑
t=2

z2
t−1 −

T∑
t=2

zt−1ζt−1

(
T∑
t=2

ζ2
t−1

)−1 T∑
t=2

ζt−1zt−1


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where

NT =

T∑
t=2

z2
t−1û

2
t − 2

T∑
t=2

zt−1ζt−1

(
T∑
t=2

ζ2
t−1

)−1 T∑
t=2

ζt−1zt−1û
2
t

+

T∑
t=2

zt−1ζt−1

(
T∑
t=2

ζ2
t−1

)−1 T∑
t=2

ζ2
t−1û

2
t

(
T∑
t=2

ζ2
t−1

)−1 T∑
t=2

ζt−1zt−1.

It follows from Assumption 2 that

T∑
t=2

zt−1ζt−1 =

T∑
t=2

zt−1xt−1 −
T∑
t=2

z2
t−1 = op

(
T 1.5+δ

)
,

since δ < 1/2. Recall that T−1/2x[rT ] ⇒ Jc,H,v(r), so the continuous mapping theorem (CMT) implies

1

T 2

T∑
t=2

ζ2
t−1 =

1

T 2

T∑
t=2

x2
t−1 −

2

T 2

T∑
t=2

xt−1zt−1 +
1

T 2

T∑
t=2

z2
t−1 ⇒

∫ 1

0

J2
c,H,v(r)dr,

and, therefore, (
T∑
t=2

ζ2
t−1

)−1

= Op

(
1

T 2

)
.

Since xt−1ut has the martingale difference property it follows that Var
(∑T

t=2 xt−1ut

)
=
∑T
t=2 E

(
x2
t−1u

2
t

)
≤√

E
(
x4
t−1

)
E (u4

t ); the uniform boundedness of E
(
x2
t−1u

4
t

)
is guaranteed by Assumption 1, while the

Beveridge-Nelson decomposition (c.f. Phillips and Solo (1992)) indicates the leading term of E
(
x4
t−1

)
as

t−1∑
j=1

t−1∑
k=1

t−1∑
l=1

t−1∑
m=1

E (v̄j v̄kv̄lv̄m) .

The above expectations are nonzero if the largest two indices are equal, so

t−1∑
j=1

t−1∑
k=1

t−1∑
l=1

t−1∑
m=1

E (v̄j v̄kv̄lv̄m) = E
(
v̄4

1

)
+

t−1∑
j=2

(
j−1∑
k=1

j−1∑
l=1

E
(
v̄kv̄lv̄

2
j

))
.

Using the summability condition on E
(
ṽkṽlṽ

2
j

)
from Assumption 1 and the boundedness ofH, we conclude

that E
(
x4
t−1

)
= O

(
T 2
)
leading to

∑T
t=2 xt−1ut = Op(T ); since

∑T
t=2 zt−1ut = Op

(
T 1/2+δ

)
,

T∑
t=2

ζt−1ut =

T∑
t=2

xt−1ut −
T∑
t=2

zt−1ut = Op (T ) .

Note now that weak convergence of T−1/2 x[rT ] to Ornstein-Uhlenbeck process implies that sup2≤t≤T |xt−1| =
Op
(
T 1/2

)
and β̂ls − β = Op

(
T−1

)
. Furthermore, sup2≤t≤T |ut| = op

(
T 1/2

)
and sup2≤t≤T u2

t = op
(
T 1/2

)
given the uniform boundedness of E

(
|ut|4+ε

)
for some ε > 0. This leads to

T∑
t=2

z2
t−1û

2
t =

T∑
t=2

z2
t−1u

2
t − 2

(
β̂ls − β

) T∑
t=2

z2
t−1xt−1ut +

(
β̂ls − β

)2 T∑
t=2

z2
t−1x

2
t−1

=

T∑
t=2

z2
t−1u

2
t + op

(
T 1+2δ

)
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since ∣∣∣∣∣(β̂ls − β)
T∑
t=2

z2
t−1xt−1ut

∣∣∣∣∣ ≤ ∣∣∣β̂ls − β∣∣∣ ( sup
2≤t≤T

|xt−1ut|
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t=2

z2
t−1

≤
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z2
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2≤t≤T
|xt−1| sup

2≤t≤T
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)
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0 ≤
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2
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)2
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T 2δ
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2
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Furthermore,
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and
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Collecting all results we finally obtain as required for the result that

twva =
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∑T
t=2 z

2
t−1u

2
t

+ op (1) ,

d→ Z + b
Vz√
Vzu

.

Proof of Corollary 1

Note that
(

1√
T

∑[rT ]
j=1 ut ,

1√
T

∑[rT ]
j=1 vt

)′
⇒ (σuWu (r) , σvWv (r))

′ where the r.h.s. is a bivariate Brownian

motion with covariance Σ, and 1√
T
x[rT ] ⇒ σvJc (r); see Phillips and Durlauf (1986) and Phillips (1987).

We show that each of the variables satisfies Assumption 3 and the condition T−1−2δ
∑T
t=2 z

2
t−1 ⇒ Vz,

which implies that the discussed variables obey Assumption 2. We take the route over Assumption 3
in order to avoid proving very similar results twice. Note that Assumption 3 involves the additional
parameter ϑ < 1/2 which does not play an explicit role for the VA procedure, but simplifies some of the
derivations significantly.

For all four choices of zt, the condition 1
T 1/2+ϑ+δ

∑[rT ]
j=1 zj ⇒ Z(r) implies 1

T 1.5+δ

∑T
t=2 zt−1xt−1

p→ 0.
Concretely, it is shown in the proof of Theorem 2 that

1

Tϑ+δ+1

T∑
t=2

zt−1xt−1 ⇒ Rczx,

the key ingredient in establishing convergence toRczx being precisely the weak convergence
1

T 1/2+ϑ+δ

∑[rT ]
j=1 zj ⇒

Z(r). Then, given that ϑ < 1/2, 1
T 1.5+δ

∑T
t=2 zt−1xt−1

p→ 0 follows immediately. Also, the i.i.d. property
of (ut, vt)

′ and the weak convergence of the partial sums of zt implies

1

T 1+δ+ϑ

T∑
t=1

t−1∑
j=1

zj

 vt ⇒
∫ 1

0

Z(r)dBH,v(r)

(Hansen, 1992) such that λ = 0.

1. Short-memory The proof is standard and we do not provide it here; the details can be found
in the working paper version of this article.

2. Mild integration We need to establish the behavior of four terms,

1

T 1/2+η

[rT ]∑
t=1

zt, VT,z =
1

T 1+η

T∑
t=2

z2
t−1,

1

T 1/2+η/2

[rT ]∑
t=2

zt−1ut and VT,zu =
1

T 1+η

T∑
t=2

z2
t−1u

2
t .

Clearly, δ = η/2 from the normalization of VT,z and thus ϑ = η/2 as well.
For establishing the behavior of the first term, note that

1

T 1/2+η

[rT ]∑
t=1

zt =
1

T 1/2+η

[rT ]−1∑
j=0

αjTx[rT ]−j .

29



Following Phillips and Solo (1992), it is straightforward to obtain that

t∑
j=1

zj =

t−1∑
j=0

αjT

xt +

t−1∑
j=1

αjT (xt−j − xt) .

Note that E |xt − xt−j | ≤ C
√
j, leading with 0 ≤ αT < 1 to

E

∣∣∣∣∣∣ 1

T 1/2+η

t−1∑
j=1

αjT (xt−j − xt)

∣∣∣∣∣∣ ≤ C

T 1/2+η

t−1∑
j=1

√
j αjT ≤

C

T 1/2+η

T∑
t=1

√
t αtT .

To obtain an upper bound for the latter, write

C

T 1/2+η

T∑
t=1

√
t αtT =

C

T 1/2+η

hT∑
t=1

√
t αtT +

C

T 1/2+η

T∑
t=hT+1

√
t αtT

with hT = CTλ for some η < λ < 1. Note that

αT
λ

T =
(

1− a

T η

)Tλ
=

((
1− a

T η

)−Tη/a)−a Tλ/Tη
.

For any η < λ ≤ 1 and T > T0, there exists a constant C∗ > 1 such that αT
λ

T ≤ C−a T
λ−η

∗ → 0. Thus,
since αhT+1

T → 0, it holds that

0 ≤ C

T 1/2+η

hT∑
t=1

√
t αtT ≤

√
hT
T

C

T η

hT∑
t=1

αtT =

√
hT
T

C

T η
1− αhT+1

T

1− αT

≤ C

√
hT
T
→ 0.

Furthermore,

0 ≤ C

T 1/2+η

T∑
t=hT+1

√
t αtT ≤

CαhTT
T 1/2+η

T∑
t=hT+1

√
t ≤ CαhTT T 1−η .

Recall that αhTT vanishes at a rate exponential in Tλ−η, so αhTT
(
Tλ−η

) 1−η
λ−η → 0 (given that 1−η

λ−η is fixed),
so

1

T 1/2+η

[rT ]∑
t=1

zt =
1

T 1/2+η

1− α[rT ]
T

1− αT
x[rT ] + op (1) .

Using
1

T 1/2+η

1− α[rT ]
T

1− αT
x[rT ] =

1

a T 1/2
x[rT ] −

α
[rT ]
T

a T 1/2
x[rT ]

and α[rT ]
T → 0 yields

1

T 1/2+η

[rT ]∑
t=1

zt ⇒
σv
a
Jc (r) = Z(r)

on [r, 1] for all 0 < r < 1. This is extended to [0, 1] by noting that 1
T 1/2+η

∑[rT ]
t=1 zt = op (1) as r → 0.

The asymptotic behavior of the second expression was derived by Phillips and Magdalinos (2007,
Equation (4)),

1

T 1+η

T∑
t=1

z2
t →

σ2
v

2a
= Vz.
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When deriving the limit of the third term, 1
T 1/2+η/2

∑[rT ]
t=2 zt−1ut, we resort to arguments similar to

those of the proof in Lemma 3.1 of Phillips and Magdalinos (2009). Their Lemma 3.1 is not directly
applicable since they require η > 1/2. Our predictive regression model exhibits however weak exogeneity,
which they do not assume, and we are thus able to weaken the condition to 0 < η < 1.

Let zt =
∑t−1
j=0 α

j
T∆xt−j =

∑t−1
j=0 α

j
T vt−j + c

T

∑t−1
j=0 α

j
Txt−1−j , and define, as in Phillips and Mag-

dalinos (2009),

z
(0)
t =

t−1∑
j=0

αjT vt−j = αT z
(0)
t−1 + vt

where z(0)
0 = 0, and ψt = c

T

∑t−1
j=0 α

j
Txt−1−j with x0 = 0 for simplicity, such that

1

T 1/2+η/2

T∑
t=2

zt−1ut =
1

T 1/2+η/2

T∑
t=2

z
(0)
t−1ut +

1

T 1/2+η/2

T∑
t=2

ψt−1ut.

Using Lemma 3.2 of Phillips and Magdalinos (2009), the first term on the r.h.s. converges as required,

1

T 1/2+η/2

T∑
t=2

z
(0)
t−1ut ⇒ N

(
0, σ2

uVz
)
,

and we show in the following that the second term vanishes for any 0 < η < 1.
Note that ψt−1ut possesses the md property, so it is an uncorrelated sequence and

Var

(
1

T 1/2+η/2

T∑
t=2

ψt−1ut

)
=

1

T 1+η

T∑
t=2

Var (ψt−1ut) .

Then, due to the independence of (ut, vt)
′,

Var (ψt−1ut) = σ2
u Var (ψt−1) = σ2

u E


 c

T

t−1∑
j=0

αjTxt−1−j

2
 .

=
c2σ2

u

T 2

t−1∑
j=0

t−1∑
k=0

αjTα
k
T E (xt−1−jxt−1−k) ;

since E (xt−1−jxt−1−k) ≤ CT , it follows that

Var (ψt−1ut) ≤ C
1

T 2

t−1∑
j=0

t−1∑
k=0

αjTα
k
T = C

1

T 2

t−1∑
j=0

αjT

2

.

With
∑t−1
j=0 α

j
T =

1−αtT
1−αT = O (T η), we have that Var (ψt−1ut) ≤ CT 2η−2. It follows as required that, for

any 0 < η < 1,

0 < Var

(
1

T 1/2+η/2

T∑
t=2

ψt−1ut

)
≤ CT

2η−2

T 1+η
= CT η−1 → 0.

For the fourth term, write

1

T 1+η

T∑
t=2

z2
t−1u

2
t = σ2

u

1

T 1+η

T∑
t=2

(z0
t−1)2 +

1

T 1+η

T∑
t=2

(z0
t−1)2(u2

t − σ2
u) + op(1).
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The limit Vzu = σ2
uVz follows if 1

T 1+η

∑T
t=2(z0

t−1)2(u2
t − σ2

u)
p→ 0 since (z0

t−1)2(u2
t − σ2

u) has the md
property under the assumptions of the corollary. Hence it suffices to show that Var

(
T−η(z0

t−1)2
)
is

uniformly bounded. This is the case when T−2η E
(
(z0
t−1)4

)
is itself uniformly bounded and

E
(
(z0
t−1)4

)
=

t−1∑
j=1

t−1∑
k=1

t−1∑
l=1

t−1∑
m=1

αjTα
k
Tα

l
Tα

m
T E (vt−jvt−kvt−lvt−m) .

With vt ∼ iid(0, σ2), the expectation E (vt−jvt−kvt−lvt−m) is nonzero only if the indices j, k, l and m
are pairwise equal, and is also uniformly bounded, so for all t

E
(
(z0
t−1)4

)
= O

 T∑
j=1

T∑
k=1

α2j
T α

2k
T

 = O


 T∑
j=1

α2j
T

2
 .

The result follows with
∑T
j=1 α

2j
T =

1−α2T
T

1−α2
T

= O (T η) since αT = 1− 2a
Tη −

a2

T 2η ≈ 1− 2a
Tη .

3. Fractional integration Involving essentially stationary series, the proof is straightforward
and we do not provide it here; the details can be found in the working paper version of this article.

4. Long differences Let w.l.o.g. kT = [KT ν ] and xt = 0 for t ≤ 0. With this convention, we have

1

kT
√
T

[rT ]∑
j=1

zj =
1

kT
√
T

[rT ]∑
j=1

(xj − xj−kT ) =
1

kT
√
T

kT−1∑
k=0

x[rT ]−k

=
1

kT
√
T
kTx[rT ] +

1

kT
√
T

kT−1∑
k=1

(
x[rT ]−k − x[rT ]

)
.

Then,
∑kT−1
k=1

(
x[rT ]−k − x[rT ]

)
=
∑kT−1
k=1 (k − kT ) ∆x[rT ]−k+1 = Op

(
k1.5
T

)
, so

1

kT
√
T

[rT ]∑
j=1

zj =
1√
T
x[rT ] +Op

(√
kT
T

)

with the Op term not depending on r, leading in turn to

1

T 1/2+δ+ϑ

[rT ]∑
j=1

zj ⇒ KσvJc (r) = Z(r)

with δ = ϑ = ν/2.
Let us now examine

1

kTT

[rT ]∑
j=1

z2
j =

1

kTT

[rT ]∑
j=1

(
kT−1∑
k=0

∆xj−k

)2

=
1

kTT

[rT ]∑
j=1

kT−1∑
k=0

(∆xj−k)
2

+
1

kTT

[rT ]∑
j=1

∑∑
1≤k 6=l≤kT−1

∆xj−k∆xj−l
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For the first sum term, we obtain that

1

kTT

[rT ]∑
j=1

kT−1∑
k=0

(∆xj−k)
2

=
1

T

[rT ]∑
j=1

(∆xj)
2

+ op (1) =
1

T

[rT ]∑
j=1

v2
j + op (1)

= σ2
v

[rT ]

T
+

1

T

[rT ]∑
j=1

(
v2
j − σ2

v

)
+ op (1)

converging to the desired limit due to the martingale difference property of v2
j − σ2

v . The second sum is
rearranged to obtain

1

kTT

[rT ]∑
j=1

∑∑
1≤k 6=l≤kT−1

∆xj−k∆xj−l =
1

kTT

[rT ]∑
j=1

∆xj

(
kT−1∑
k=1

(kT − k) ∆xj−k

)
+ op (1) ,

and recall that ∆xj = vj − (c/T)xj−1. Tedious, yet straightforward evaluations lead to the conclusion
that c

kTT 2

∑[rT ]
j=1 xj−1

(∑kT−1
k=1 (kT − k) ∆xj−k

)
= op (1) , so

1

kTT

[rT ]∑
j=1

∑∑
1≤k 6=l≤kT−1

∆xj−k∆xj−l =
1

kTT

[rT ]∑
j=1

vj

(
kT−1∑
k=1

(kT − k) ∆xj−k

)
+ op (1) .

Furthermore, vj
(∑kT−1

k=1 (kT − k) ∆xj−k

)
are the elements of an md array, and thus

Var

[rT ]∑
j=1

vj

(
kT−1∑
k=1

(kT − k) ∆xj−k

) =

[rT ]∑
j=1

Var

(
vj

(
kT−1∑
k=1

(kT − k) ∆xj−k

))
;

with

Var

(
vj

(
kT−1∑
k=1

(KT − k) ∆xj−k

))
≤ Ck3

T ,

Consequently we obtain

Var

[rT ]∑
j=1

vj

(
kT−1∑
k=1

(kT − k) ∆xj−k

) ≤ Ck3
T [rT ].

Summing up,

1

kTT

[rT ]∑
j=1

∑∑
1≤k 6=l≤kT−1

∆xj−k∆xj−l = Op

(√
kT
T

)
+ op (1) = op (1)

yields

1

T 1+2δ

[rT ]∑
j=1

z2
j ⇒ Kσ2

vr

which implies that
Vz = Kσ2

v .

Finally, apply a functional central limit theorem for md arrays (Davidson, 1994, Theorem 27.14) to
establish the limiting behavior of 1

σuσv
√
kTT

∑[rT ]
t=2 zt−1ut. To this end, we need to check

1. that 1
σ2
uσ

2
vkTT

∑T
t=2 z

2
t−1u

2
t
p→ 1,
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2. that maxt

∣∣∣ 1
σuσv

√
kTT

zt−1ut

∣∣∣ p→ 0, and that

3. 1
σ2
uσ

2
vkTT

∑[rT ]
t=2 Var (zt−1ut)

p→ r.

It is straightforward to check condition 1 since

1

TkT

[rT ]∑
t=2

z2
t−1u

2
t =

σ2
u

TkT

[rT ]∑
t=2

z2
t−1 +

1

TkT

[rT ]∑
t=2

z2
t−1

(
u2
t − σ2

u

)
,

with the first summand converging to rσ2
vσ

2
u and the second vanishing due to the md property of the

elements in the sum. This also establishes the existence of the limit of VT,zu with Vzu = σ2
uVz.

The second condition follows from

E

∣∣∣∣ zt−1ut

σuσv
√
kT

∣∣∣∣3 <∞,
which is implied by the fact that the kurtosis of the i.i.d. sequences ut and vt is bounded. The global
homoskedasticity condition is easily established exploiting the independence of ut and vt−j for any j > 0.

The increments zt−1ut are uncorrelated with ut or vt, so G(r) is indeed independent of Wu and Wv.

Proof of Theorem 2
Begin by letting St =

∑t
j=1 zj denote the partial sums of zt with S0 = 0, so T−1/2−ϑ−δS[rT ] ⇒ Z (r),

where Z(r) =
∫ r

0
Ż(s)ds for type-II instruments. Then

T∑
t=2

zt−1xt−1 =

T∑
t=2

(St−1 − St−2)xt−1 = ST−1xT−1 − S0x0 −
T−1∑
t=2

St−1∆xt

= ST−1xT−1 −
T−1∑
t=2

St−1vt +
c

T

T−1∑
t=2

St−1xt−1

and the weak convergence

1

Tϑ+δ+1

T∑
t=2

zt−1xt−1 ⇒ σv

(
Z (1) Jc,H,v (1)−

∫ 1

0

Z(r)dBH,v(r)− λ+ c

∫ 1

0

Z (r) Jc,H,v(r)dr

)
= Rczx

follows with Assumptions 3 or 4 and the CMT. The t-statistic is then given under the local alternative
by

twiv =

∑T
t=2 zt−1ut√∑T
t=2 z

2
t−1û

2
t

+
b

T 1/2+ϑ

∑T
t=2 zt−1xt−1√∑T
t=2 z

2
t−1û

2
t

=

1
T δ+1/2

∑T
t=2 zt−1ut√

1
T 2δ+1

∑T
t=2 z

2
t−1u

2
t + op(1)

+ b
1

T δ+ϑ+1

∑T
t=2 zt−1xt−1√

1
T 2δ+1

∑T
t=2 z

2
t−1u

2
t + op(1)

. (19)

We know from the proof of Theorem 1 that
∑T
t=2 z

2
t−1û

2
t =

∑T
t=2 z

2
t−1u

2
t + op

(
T 2δ+1

)
for type-I instru-

ments; the same holds for type-II instruments since

1

T 2δ+1

T∑
t=2

z2
t−1û

2
t =

1

T 2δ+1

T∑
t=2

z2
t−1u

2
t −

2
(
β̂ls − β

)
T 2δ+1

T∑
t=2

z2
t−1xt−1ut +

(
β̂ls − β

)2

T 2δ+1

T∑
t=2

z2
t−1x

2
t
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with β̂ls − β = Op
(
T−1

)
, and

1

T 2δ+1

T∑
t=2

z2
t−1xt−1ut ≤

√√√√ 1

T 4δ+2

T∑
t=2

z4
t−1x

2
t−1

T∑
t=2

u2
t = Op

(√
T
)

1

T 2δ+2

T∑
t=2

z2
t−1x

2
t ⇒

∫ 1

0

(
Ż(r)

)2

(Jc,H,v(r))
2

dr.

Due to Assumptions 3 or 4, 1
T 2δ+1

∑T
t=2 z

2
t−1u

2
t

p→ Vzu and, as shown above, 1
Tϑ+δ+1

∑T
t=2 zt−1xt−1 ⇒

Rczx. Therefore, the second ratio in (19) converges to bRczx/
√
Vzu due to the CMT. Moreover, given

convergence to G(1) from Assumption 3 or the limiting (mixed) normality from Assumption 4, we have
for both types of instruments

1
T δ+1/2

∑T
t=2 zt−1ut√

1
T 2δ+1

∑T
t=2 z

2
t−1û

2
t

d→ N (0, 1).

For type-II instruments, we have

1

T δ+1/2

T∑
t=2

zt−1ut ⇒
∫ 1

0

Ż(r)dBH,u(r)

which is mixed Gaussian, so Vzu is given by the quadratic variation of the Ito integral over [0, 1], Vzu =∫ 1

0
Ż2(r)d[BH,u](r). Should ut be weakly stationary, BH,u ≡ σuWu(r) with Wu(r) a standard Wiener

process, leading to ∫ 1

0

Ż2(r)d[BH,u](r) = σ2
u

∫ 1

0

Ż2(r)dr.

The CMT implies T−1−2δ
∑T
t=2 z

2
t−1 ⇒

∫ 1

0
Ż2(r)dr and the usual standard errors are equivalent to the

Eicker-White standard errors asymptotically.

Proof of Corollary 2
Each of the instruments satisfies Assumption 3; see the proof of Corollary 1. Theorem 2 then applies
with Rczx derived from the Z(r) and Vz implied by the chosen instrument.

Proof of Corollary 3
Each of the instruments are easily shown to satisfy Assumption 4 and the result follows; the details can
be found in the working paper version of this article.

Proof of Theorem 3
Under the null hypothesis and Assumption 5 the 2SLS test statistic (12) can be written as

tw2S =
MxzD

−1
T (D−1

T MzzD
−1
T )−1

√
T ·D−1

T Mzu√
MxzD

−1
T (D−1

T MzzD
−1
T )−1(D−1

T MzzuuD
−1
T )(D−1

T MzzD
−1
T )−1D−1

T Mzx

,

where Mxz = T−1
∑T
t=2 xt−1z

′
t−1, all other matrices M•• are defined in a similar manner, and Mzzuu =

T−1
∑T
t=2 zt−1z

′
t−1û

2
t . Assume that the instruments in the vector zt are arranged with respect to ϑi
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such that z1t denotes the instrument with the largest value ϑ1 > 0 with ϑ1 > ϑi for i = 2, . . . ,m. Since
Assumption 5 implies Assumption 3 or 4 individually, it follows from Theorem 2 that

1

Tϑ1+1
D−1
T Mzx

p→
(
Rczx,1, 0, . . . , 0

)′
.

Following the proof of Theorem 2, we obtain

D−1
T

(
1

T

T∑
t=2

zt−1z
′
t−1û

2
t

)
D−1
T = D−1

T

(
1

T

T∑
t=2

zt−1z
′
t−1u

2
t

)
D−1
T + op(1).

Assumption 5 then leads to

tw2S
d→ sign

(
Rczx,1

) [V −1
z ]1,• MN (0, Vzu)√
[V −1

z ]1,•Vzu [V −1
z ]′1,•

,

where [V −1
z ]1• denotes the first row of the matrix V −1

z . Hence [V −1
z ]1,• MN (0, Vzu) is mixed Gaussian

too as stated by Assumption 5, and the ratio [V −1
z ]1,• N (0,Vzu)√

[V −1
z ]1,•Vzu[V −1

z ]′1,•

is standard normal. Since sign
(
Rczx,1

)
may be random and dependent of the ratio (e.g. for type-II instruments), tw2S itself is not always standard
normal. But its square (tw2S)

2 is chi-squared distributed with one degree of freedom as required.

Proof of Theorem 4
The result follows with the property of quadratic forms ofm-dimensional multivariate normal distributions
x ∼ N (µ,Σ) that x′Σ−1x ∼ χ2

(
m,µ′Σ−1µ

)
by using Assumption 5 (iii),

1√
T
DT

∑
zt−1ut

d→ N (0;Vzu) ,

together with the convergence to Rczx,i for each instrument as in Theorem 2, and by noting that

1

Tmaxj ϑj+δi+1

∑
zi,t−1xt−1

d→ Rczx,i

only if maxj ϑj = ϑi (the latter limit being zero otherwise).

Proof of Theorem 6
The estimators τ̂ and β̂va are given by (

τ̂

β̂va

)
= M−1

T PT ,

where the FWL theorem indicates that

PT =

( ∑T
t=2 ftut∑T

t=2 zt−1ut

)
−

( ∑T
t=2 ftζ

′
t−1∑T

t=2 zt−1ζ
′
t−1

)(
T∑
t=2

ζt−1ζ
′
t−1

)−1 T∑
t=2

ζt−1ut

and

MT =

( ∑T
t=2 ftf

′
t

∑T
t=2 ftz

′
t−1∑T

t=2 zt−1f
′
t

∑T
t=2 zt−1z

′
t−1

)
−

( ∑T
t=2 ftζ

′
t−1∑T

t=2 zt−1ζ
′
t−1

)(
T∑
t=2

ζt−1ζ
′
t−1

)−1( ∑T
t=2 ftζ

′
t−1∑T

t=2 zt−1ζ
′
t−1

)′
.
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The HC covariance matrix estimator is given by

M−1
T QTM

−1
T ,

where

QT =

( ∑T
t=2 ftf

′
t û

2
t

∑T
t=2 ftz

′
t−1û

2
t∑T

t=2 zt−1f
′
t û

2
t

∑T
t=2 zt−1z

′
t−1û

2
t

)
−

−

( ∑T
t=2 ftζ

′
t−1∑T

t=2 zt−1ζ
′
t−1

)(
T∑
t=2

ζt−1ζ
′
t−1

)−1 ( ∑T
t=2 ζt−1f

′
t û

2
t

∑T
t=2 ζt−1z

′
t−1û

2
t

)

−

( ∑T
t=2 ftζ

′
t−1û

2
t∑T

t=2 zt−1ζ
′
t−1û

2
t

)(
T∑
t=2

ζt−1ζ
′
t−1

)−1 ( ∑T
t=2 ζt−1f

′
t

∑T
t=2 ζt−1z

′
t−1

)

+

( ∑T
t=2 ftζ

′
t−1∑T

t=2 zt−1ζ
′
t−1

)(
T∑
t=2

ζt−1ζ
′
t−1

)−1 T∑
t=2

ζt−1ζ
′
t−1û

2
t

(
T∑
t=2

ζt−1ζ
′
t−1

)−1( ∑T
t=2 ftζ

′
t−1∑T

t=2 zt−1ζ
′
t−1

)′
.

The steps of the proof are quite similar to that of Theorem 1. Specifically, by using similar arguments
we obtain (

T∑
t=2

ζt−1ζ
′
t−1

)−1

= Op
(
T−2

)
and

T∑
t=2

ζt−1ut = Op (T ) .

Moreover,

1

T 1.5
D−1
T

( ∑T
t=2 ftζ

′
t−1∑T

t=2 zt−1ζ
′
t−1

)
=

1

T 1.5
D−1
T

( ∑T
t=2 ftx

′
t−1∑T

t=2 zt−1x
′
t−1

)
− 1

T 1.5
D−1
T

( ∑T
t=2 ftz

′
t−1∑T

t=2 zt−1z
′
t−1

)
= op(1)

since under the null yt = ut and

1√
T
D−1
T PT =

1√
T
D−1
T

T∑
t=2

(
ft

zt−1

)
ut + op(1)

Using again the arguments of the proof of Theorem 1, we obtain

T∑
t=2

ζt−1ζ
′
t−1û

2
t = Op

(
T 2
)
,

1

T
D−1
T

( ∑T
t=2 ftf

′
t û

2
t

∑T
t=2 ftz

′
t−1û

2
t∑T

t=2 zt−1f
′
t û

2
t

∑T
t=2 zt−1z

′
t−1û

2
t

)
D−1
T =

1

T
D−1
T

( ∑T
t=2 ftf

′
tu

2
t

∑T
t=2 ftz

′
t−1u

2
t∑T

t=2 zt−1f
′
tu

2
t

∑T
t=2 zt−1z

′
t−1u

2
t

)
D−1
T +op(1)

and
1

T 1.5
D−1
T

( ∑T
t=2 ftζ

′
t−1û

2
t∑T

t=2 zt−1ζ
′
t−1û

2
t

)
= Op (1)

leading to

1

T
D−1
T QTD

−1
T =

1

T
D−1
T

( ∑T
t=2 ftf

′
tu

2
t

∑T
t=2 ftz

′
t−1u

2
t∑T

t=2 zt−1f
′
tu

2
t

∑T
t=2 zt−1z

′
t−1u

2
t

)
D−1
T + op(1)

taking us to the desired limiting distribution of Tva,K .
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Proof of Theorem 7
Denote the diagonal block of DT corresponding to ft by DfT , and the diagonal block of DT corresponding
to zt−1 by DzT . Then, standard results for IV regression yield

β̂iv = M−1
T PT

with

1√
T
D−1

zT PT =
1√
T
D−1

zT

T∑
t=2

zt−1yt −
1

T
D−1

zT

T∑
t=2

zt−1f
′
tD
−1
fT

(
1

T
D−1

fT

T∑
t=2

ftf
′
tD
−1
fT

)−1

1√
T
D−1

fT

T∑
t=2

ftyt ,

MT =

T∑
t=2

zt−1xt−1 −
T∑
t=2

zt−1f
′
t

(
T∑
t=2

ftf
′
t

)−1 T∑
t=2

ftxt−1

and
V̂w

(
β̂iv

)
= M−1

T QT
(
M−1
T

)′
,

where QT is defined analogously to the proof of Theorem 6 (with f replacing ζ). Consequently,

T wiv,K =
1√
T
P ′TD

−1
zT

(
1

T
D−1

zTQTD
−1
zT

)−1
1√
T
D−1

zT PT .

Since under the null yt = ut,

1√
T

T∑
t=2

(
D−1

fT ftyt

D−1
zT zt−1yt

)
⇒MN (0, Vfzu) ,

it follows by Assumption 5 and the fact that ft is deterministic that

1√
T
PT ⇒MN (0, R′VfzuR)

with R′ =
(
−VzfV

−1
ff , IK

)
, where Vzf is the (weak) limit of 1

TD
−1
zT

∑T
t=2 zt−1f

′
tD
−1
fT and Vff that of

1
TD
−1
fT

∑T
t=2 ftf

′
tD
−1
fT and is thus deterministic. But this is exactly the (weak) limit of 1

TD
−1
zTQTD

−1
zT , as

can be easily checked using the arguments employed in the proof of Theorems 1 and 2, and the result
follows.

This result only holds when MT cancels out, which is only the case when K instruments are used.
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