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Abstract

Using approximations of the score of the log-likelihood function we derive moment

conditions for estimating spatial regression models, starting with the spatial error

model. Our approach results in computationally simple and robust estimators

such as a new moment estimator derived from the first order approximation that

is obtained form solving a quadratic moment equation and performs similarly to

existing GMM estimators. As our estimator based on the second order approxi-

mation resemble the GMM estimator proposed by Kelejian & Prucha (1999), we

provide an intuitive interpretation of their estimator. Additionally, we provide a

convenient framework for computing the weighting matrix of the optimal GMM

estimator. Heteroskedasticity robust versions of our estimators are also provided.

Furthermore, a first order approximation for the spatial autoregressive model is

considered, resulting in a computationally simple method of moment estimator.
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1 Introduction

Spatial regression models have gained increasing popularity in applied economics dur-

ing the last three decades, for example, when estimating regional spillovers and peer

effects among economic agents.1 As Anselin (2010) puts it, the field of spatial econo-

metrics has moved “from the margins in applied urban and regional science to the

mainstream of economics and other social sciences”.

In the past 20 years much progress has been made in the estimation of spatial mod-

els. Besides a well developed Maximum Likelihood (ML) estimation framework (see

e.g. Anselin & Rey 2014) and a Bayesian framework (see LeSage & Pace 2009), Gener-

alized Method of Moments (GMM) estimators have been developed, starting with the

pioneering work of Kelejian & Prucha (1998, 1999).2 Initially the main motivation for

the derivation of GMM estimators for spatial models has been its computational sim-

plicity. In particular, the inversion of n× n matrices is avoided, which can be compu-

tationally demanding whenever the sample size n is large. Although the inversion of

large matrices is no longer a severe problem with nowadays computer technologies it

may hinder the application of simulation methods such as the bootstrap. Furthermore,

GMM estimators require weaker distributional assumptions than the traditional ML

estimators and are robust to (unknown) heteroskedasticity and deviations from nor-

mality (see Anselin 1988, Kelejian & Prucha 1999, Lin & Lee 2010). It should be noted

however that quasi-ML estimators have been developed allowing for more general

distributional assumptions (e.g. Lee 2004). Another advantage is that GMM methods

can easily be adapted for estimating moodels with endogenous covariates or lagged

1 Some recent applications are Lin (2010), Piras et al. (2012), de Dominicis et al. (2013), Kelejian et al.
(2013), Miguélez & Moreno (2013), and Brady (2014). For a list of applications from 1991 until 2007 see
Kelejian & Prucha (2010b).

2 Important contributions to the development of the GMM framework include Kelejian & Prucha
(2001, 2004, 2007, 2010a,b), Lee (2002, 2003, 2004, 2007a,b), Kelejian et al. (2004), Kapoor et al. (2007),
Fingleton (2008a,b), Fingleton & Le Gallo (2008a,b), Arnold & Wied (2010), Arraiz et al. (2010), Elhorst
(2010b), Lee & Liu (2010), Lin & Lee (2010), Liu & Lee (2010, 2013), Liu et al. (2010), Baltagi & Liu (2011)
,Drukker et al. (2013), Wang & Lee (2013), Kelejian & Piras (2014), Lee & Yu (2014, 2016), Qu & Lee
(2015), and Qu et al. (2016).
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dependent variables (see Fingleton & Le Gallo 2008a,b and Elhorst 2010a).

In this paper we point out a close relationship between the ML and GMM estima-

tion methods. We argue that the moment conditions of the GMM estimator proposed

by Kelejian & Prucha (1999) can be interpreted as a second order approximation of

the ML scores. Accordingly, the GMM estimator is expected to perform similar to the

ML estimator, which is typically observed in empirical practice. We also derive a just-

identified method of moment estimator based on a first order approximation of the

scores. The resulting estimator is very simple to compute by just solving a quadratic

equation. Our Monte Carlo simulations suggest that this estimator is nearly as efficient

as the usual GMM estimator based on a second order approximation.

We first focus on GMM estimation of regression models with exogenous regres-

sors and spatial error correlation as introduced by Cliff & Ord (1973), often referred

to as the spatial error model (SEM) model. We then extend the GMM methodology to

models that accommodate spatial spillover effects. Specifically the proposed estima-

tors can be employed for estimating the spatial autoregressive (SAR) and the spacial

Durbin model (SDM). Another possible extension is the estimation of spatial panel data

models, where the computational simplicity of our estimators should be particularly

beneficial (see Kapoor et al. 2007).3

The main contribution of this paper is the idea to derive moment conditions by

applying approximations to the first order condition of the ML estimator. The re-

sulting estimators are labelled the first or second order Maximum Likelihood Approx-

imate Moment (MLAM) estimators. The first order MLAM estimator is the simplest

available estimator of the spatial autoregressive parameter that results from solving a

quadratic moment equation. Since the estimator is based on just identified moment

conditions, no weighting matrix is required. Furthermore the estimator is robust to

3 Elhorst (2010a) provides a comprehensive discussion and comparison of different types of spatial
regression models, whereas spatial panel models are analyzed in Elhorst (2003), Kapoor et al. (2007),
and Elhorst (2012).
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heteroscedastic and non-normal error distributions. For the second order MLAM es-

timator we obtain moment conditions that resemble the ones proposed by Kelejian &

Prucha (1999). Hence, we argue that their estimator can be interpreted as an approx-

imation of the score of the log-likelihood function. Second, we derive efficient GMM

estimators with computationally simplified optimal weighting matrices. Following

the approach of Kelejian & Prucha (2010b) as well as Lin & Lee (2010) we also propose

heteroskedasticity-robust versions of all our estimators. Third, we carry out Monte

Carlo simulations in order to investigate the performance of alternative estimators un-

der different sample sizes as well as both, homoskedastic and heteroskedastic errors.

As expected, the efficient GMM estimator based on our moment conditions performs

similarly to the one using the moments of Kelejian & Prucha (2010b). Moreover, the

results suggest that the extremely simple first order MLAM estimator performs only

slight worse than the optimal estimators based on over-identified moment conditions.

The rest of the paper is structured as follows. In section 2 we present the spa-

tial autoregressive model and outline the GMM approach of Kelejian & Prucha (1999).

Approximate moment conditions underlying our MLAM estimators, as well as their

asymptotic distribution are derived in section 3. In section 4 we propose simplified ef-

ficient GMM estimators, whose heteroskedasticity robust modifications are presented

in section 5. GMM estimation of the spatial autoregressive model is considered in sec-

tion 6. Some Monte Carlos results on the performance of the proposed estimators are

discussed in section 7 and section 8 concludes.
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2 The spatial error model (SEM)

We first focus on the linear regression model with spatially correlated errors given by

y = Xβ + u (1)

u = ρ0Mnu + ε, (2)

where the vector y = [y1, . . . , yn]′ comprises the observations of the dependent vari-

able, X is a n × k matrix of exogenous regressors and u is the n × 1 vector of distur-

bances with E(u|X) = E(u) = 0. The spatial dependence among the elements of

the error vector u is represented by the spatial error model (2). In what follows, let

Bn(ρ) ≡ (In − ρMn), where In denotes the n×n identity matrix. The model assump-

tions can be summarized as follows:

Assumption 1. (a) The regressor matrix is strictly exogenous with E(u|X) = 0 and (b)

n−1X′X has full rank for all n.

Assumption 2. The elements εi of the vector ε are i.i.d. with E(εi) = 0, E(ε2
i ) = σ2

0 > 0,

and E(|εi|4+δ) < ∞ for some positive constant δ.

Assumption 3. (a) The spatial weight matrix Mn has zeros on the leading diagonal. (b)

|ρ0| < 1. (c) The matrix Bn(ρ) is non-singular for |ρ| < 1.

Assumption 3 is a normalization rule. Part (c) implies that Mn is normalized ac-

cordingly. For example, consider the non-normalized weight matrix Mr
n. Then, as

noted by Kelejian & Prucha (2010b), assumption 3(c) will hold for Bn(ρ) = (In − ρMn),

where Mn = Mr
n/τn, τn = min{max1≤i≤n ∑n

j=1 |mr
ij|, max1≤j≤n ∑n

i=1 |mr
ij|}, and where

mr
ij indicates the (i, j)-element of matrix Mr

n. Alternatively, assumption 3(c) will also

hold if Mn is normalized such that each row sums to unity, as often done in empirical

applications (see Kelejian & Prucha 2010b). In our Monte Carlo simulation we also use

such a row-normalized weight matrix.
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Assumption 4. (a) The row and column sums of the matrix Mn are bounded uniformly in

absolute value. (b) The row and column sums of the matrix Bn(ρ)−1 are bounded uniformly in

absolute value.

Together assumptions 2 and 4, imply that the mean of u = B(ρ0)
−1ε is E(u) = 0

and that the variance-covariance matrix E[uu′] = σ2B(ρ0)
−1(B(ρ0)

′)−1 is uniformly

bounded, thus limiting the degree of correlation between elements of u (see Kelejian &

Prucha 2010b). Assumptions 1 to 4 are standard in the literature on GMM estimation

of the linear spatial error model (e.g. Kelejian & Prucha 1999, Lee 2003). If the weight

matrix Mn is row-normalized and, in addition, all elements of Mn are non-negative,

which is usually the case in empirical applications, assumptions 3 (c) and 4 (a) will

hold as noted by Lee (2003).

If in model (1) β is unknown, i.e. u is unobserved, we need the following additional

assumption for the identification of ρ0:

Assumption 5. Let β̂ be an initial estimate of β in (1). β̂ is estimated by a consistent estimator

of β with β̂− β = Op(n−
1
2 ).

An estimator that satisfies assumption 5 is the OLS estimator of model (1). Given

β̂OLS, one can apply any of the estimators discussed below on the residuals ûOLS =

y− Xβ̂OLS = u− X(β̂OLS − β) in order to obtain a consistent estimate ρ̂ of the spatial

autoregressive parameter ρ0. A consistent and asymptotically efficient estimate of β

can then be obtained by the two-step GLS estimator

β̂gls,n =
[
X′(In − ρ̂M′n)(In − ρ̂Mn)X

]−1 X′(In − ρ̂M′n)(In − ρ̂Mn)y.

According to assumption 5 we have û = u + Op(n−1/2). Thus, for simplicity we treat

β, and hence u, as known in the sections on estiamting the spatial error model. The
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log-likelihood function of the model results as

`(ρ, σ2) =− n
2

ln 2π − n
2

ln σ2 + ln |Bn(ρ)| −
1

2σ2 u′Bn(ρ)
′Bn(ρ)u . (3)

Taking the first order derivative with respect to ρ and concentrating out σ2 yields the

first order condition for maximizing the log likelihood

E

[
u′Bn(ρ0)

′
(

MnBn(ρ0)
−1 − 1

n
tr
{

MnBn(ρ0)
−1}In

)
Bn(ρ0)u

]
= 0 . (4)

Note that the first order condition involves the inverse of the n × n matrix Bn(ρ0)

which may become computationally demanding for sample sizes typically encoun-

tered in empirical practice. To sidestep this difficulty Kelejian & Prucha (1999) propose

a method of moments approach for estimating ρ and σ2 based on the three moment

conditions

E

(
1
n

ε′ε

)
= σ2

0 , E

(
1
n

ε̄′ ε̄

)
= σ2

0
1
n

tr(M′nMn) , E

(
1
n

ε̄′ε

)
= 0 , (5)

where ε = u− ρ0ū, ε̄ = ū− ρ0 ¯̄u, ū = Mnu and ¯̄u = Mnū. Substituting the first of these

moment conditions into the second and rewriting ε = Bn(ρ0)u yields the quadratic

moment conditions

m1,n(ρ0) = E

[
1
n

u′Bn(ρ0)
′MnBn(ρ0)u

]
= 0 (6)

and m2,n(ρ0) = E

[
1
n

u′Bn(ρ0)
′MnBn(ρ0)u

]
= 0, (7)

where Mn = M′nMn − tr(n−1M′nMn)In. In Section 3 we analyze how these moment

conditions are related to the score of the log-likelihood function (i.e. the first order

condition for maximizing the log-likelihood). As outlined in Prucha (2014) it can be

shown that minimizing the unweighted objective function based on the moment con-
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ditions in (5) is equivalent to minimizing SKP = mn(ρ)′WKP,n mn(ρ) with mn(ρ) =

[m1,n(ρ), m2,n(ρ)]
′ and the weighting matrix WKP,n = diag{1, v} with v = 1/

[
1 +(

n−1 tr{M′nMn}
)2]. We refer to this estimator as the original KP estimator in the fol-

lowing. Note that WKP,n is not the optimal weighting matrix. From the theory of GMM

estimation we know that an estimator minimizing the objective function

SW,n(ρ) = mn(ρ)
′Υn(ρ0)mn(ρ) with Υn(ρ0) =

[
E

(
1
n

mn(ρ0)mn(ρ0)
′
)]−1

(8)

is asymptotically efficient. In Section 4 we propose a simple representation of the mo-

ment conditions that allows us to easily estimate the optimal weighting matrix Υn(ρ0).

3 MLAM estimators

If ε is normally distributed, the efficient moment condition for estimating the parame-

ter ρ0 is the score of the log-likelihood function given in (4).

Under assumptions 3 and 4 we have

Bn(ρ0)
−1 = (I − ρ0Mn)

−1 = In + ρ0Mn + ρ2
0M2

n + · · · . (9)

Using this expansion, truncating it after the first term such that Bn(ρ)−1 ≈ In (e.g. by

assuming ρ0 ≈ 0) and dividing by n (4) yields the moment condition

m1,n(ρ0) = E

[
1
n

u′Bn(ρ0)
′
(

Mn −
1
n

tr{Mn}In

)
Bn(ρ0)u

]
= E

(
1
n

u′Bn(ρ0)
′MnBn(ρ0)u

)
= 0, (10)

which clearly holds under assumptions 2 and 3 (a). Replacing u by its empirical coun-

terpart û this moment condition is sufficient to identify the spatial autoregressive pa-

rameter ρ0 such that it is possible to construct a simple method of moments estimator.
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In what follows we call the resulting estimator the First Order Maximum Likelihood Ap-

proximate Moment (MLAM1) estimator. The moment condition in (10) can be rewritten

as a quadratic polynomial in ρ with the two roots

ρ̂+ = pn +
√

qn

and ρ̂− = pn −
√

qn ,

where

pn =
u′M′nMnu + u′M2

nu
2 u′M′nM2

nu

qn =

(
u′M′nMnu + u′M2

nu
2 u′M′nM2

nu

)2

− u′Mnu
u′M′nM2

nu
.

The MLAM1 estimator ρ̂1 is the root that satisfies assumption 3 (b), where in the above

expressions u is replaced by û, yielding p̂n and q̂n. Since q̂n may be negative, it is

possible that no real solution exists. In this case the unique estimator is found by setting

qn equal to zero. This is equivalent to minimizing the squared moment m̂1,n(ρ)
2 (the

empirical counterpart of m1,n(ρ)
2, where in (10) u is replaced by û) because the moment

function is symmetric around the minimum.4

In order to improve the approximation of (4) we may truncate the expansion (9) at

the second term such that Bn(ρ)−1 ≈ In + ρMn yielding the Second Order Maximum

Likelihood Approximate Moment (MLAM2) estimator based on the moment condition

m2,n(ρ0) = E

[
1
n

ε′
(

Mn(In + ρ0Mn)−
1
n

tr
{
(In + ρ0Mn)Mn

}
In

)
ε

]
= 0.

Under assumptions 2 and 3 (a) this condition holds, since in the case of homoskedas-

4 Due to this symmetry, for any pair of values with mn(ρ1) = mn(ρ2) it follows that the minimum
is obtained as mn

(
ρ1+ρ2

2

)
. Since in our case ρ1 and ρ2 are complex conjugate roots with mn(ρ1) =

mn(ρ2) = 0, it follows that (ρ1 + ρ2)/2 is just the real part of the two solutions.
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tic disturbances E
[
ε′
(

diag{ρ0M2
n} − 1

n tr{ρ0M2
n}In

)
ε
]
= 0, where diag{ρ0M2

n} rep-

resents a diagonal matrix constructed by the diagonal elements of the matrix ρ0M2
n.

Moreover, it is easy to show that the moment condition can be rewritten as

m2,n(ρ0) = E
[ 1

n
ε′
(

Mn + ρ0M̃n
)
ε
]
= 0, (11)

where M̃n ≡ M2
n − n−1 tr(M2

n)In. Note that for a symmetric spatial weight matrix

Mn = M′n the moment is just a linear combination of the moments suggested by Kele-

jian & Prucha (1999).5 In the case that Mn is asymmetric, which is usually the case if

the row sums of Mn are normalized, MLAM2 exploits very similar but not identical

information as the estimator proposed by Kelejian & Prucha (1999). Substituting ε by

(In − ρ0Mn)u, the moment condition can be written as a cubic polynomial in ρ:

m2,n(ρ0) =E

[
1
n

(
u′Mnu + ρ0u′(M̃n−M2

n−M′nMn)u

+ ρ2
0u′(M′nM2

n−M̃nMn−M′nM̃n)u + ρ3
0u′M′nM̃nMnu

)]
= 0. (12)

Now let m̂2,n(ρ) be the empirical counterpart of (12) with u replaced by û. The MLAM2

estimator ρ̂2 is the real root of m̂2,n(ρ) that satisfies assumption 3 (b). From this it is clear

that we do not need an initial estimate of ρ0, as suggested by the moment condition

in (11). Hence, the implementation of both the MLAM1 and the MLAM2 estimator is

straight forward and computationally very simple.6 In a similar manner the m’th order

approximation to the scores can be obtained from replacing Bn(ρ) by I + ρMn + · · ·+

ρm−1Mm−1
n . For m → ∞ the m’th order MLAM converges to the ML estimator. Since

5 In section 4 we will split up that linear combination into two moment conditions, yielding an overi-
dentified GMM version of the MLAM2 estimator.

6 It should be noted that in principle all real roots of (12) may be out of the domain (−1, 1). While
this occurs very rarely and only for extreme values of ρ0 a simple and tractable solution of this issue is to
minimize |m̂2,n(ρ)| under the constraint |ρ| ≤ 1 whenever all real roots lie outside the domain [−1, 1]. In
the even more exceptional case that the solution is not unique, because more than one real roots lie in the
domain (−1, 1), it is less straight forward to determine ρ̂2. However, unreported simulations suggest
that this is not a relevant issue in practice.
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the computational advantage over the ML estimator gets lost for MLAM estimators

with m > 2 we focus on the first and second order approximation.

Next, we derive the limiting distribution of the MLAM estiamtors. The moment

conditions of the estimators can be represented as a quadratic form given by

mk,n(ρ0) = E

[
1
n

ε′Ak,n(ρ0)ε

]
= 0, (13)

where for the MLAM1 estiamtor

A1,n(ρ) = Mn (14)

whereas for the MLAM2 estimator we have

A2,n(ρ) = Mn + ρM̃n. (15)

Let εi denote the i’th element of the vector ε and ak,ij,n the (i, j)-element of Ak,n(ρ0),

k ∈ {1, 2}. Using similar representations as Born & Breitung (2011) we can rewrite

mk,n(ρ0) as follows:

1
n

ε′Ak,n(ρ0)ε =
1
n

n

∑
i=1

n

∑
j=1

ak,ij,nεiε j

=
1
n

n

∑
i=2

εiξk,i,n +
1
n

n

∑
i=1

ak,ii,nzi , (16)

where zi = ε2
i − σ2

0 ,
n
∑

i=1
ak,ii,n = 0, and

ξk,i,n =
i−1

∑
j=1

(ak,ij,n + ak,ji,n)ε j for i ≥ 2. (17)

Under assumption 4 (a) the variance of ξk,i,n is finite for all i and n.
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Under assumption 2 it holds that E(εi|ξk,i,n) = 0, E(zi) = E(zi|ε j) = 0 for j 6= i

and that ∑n
i=2 εiξk,i,n and ∑n

1=1 ak,ii,nzi are uncorrelated. Note also that the latter sum is

equal to zero for k = 1 (the MLAM1 estimator) since all diagonal elements of the matrix

A1,n(ρ0) equal zero. Furthermore, ξk,i,n is a martingale difference sequence with respect

to the increasing sigma-algebra generated by {ε1, . . . , εi−1}. The central limit theorem

for martingale difference sequences yields

√
n ε′Ak,n(ρ0)ε

d→ N (0, Vk),

where

Vk = σ4
0 lim

n→∞

[(
1
n

n

∑
i=2

i−1

∑
j=1

(ak,ij,n + ak,ji,n)
2

)
+ κ4

(
1
n

n

∑
1=1

a2
k,ii,n

)]
, (18)

where κ4 = E(ε4
i )/σ4

0 − 1 (with κ4 = 2 for normally distributed errors). With these

results the limiting distribution of the MLAM estimator can be derived.

Theorem 1. Under assumptions 1 to 5 and n → ∞ the k’th order MLAM estimators are

asymptotically distributed as

√
n(ρ̂k − ρ0)

d→ N (0, Vk/ψ2
k), for k = 1, 2

where Vk is defined in (18) and

ψ1 = lim
n→∞

E

[
1
n

u′(2ρM′nM2
n −M′nMn −M2

n)u
]

ψ2 = lim
n→∞

E

[
1
n

u′(M̃n−M2
n −M′nMn)u + 2ρu′(M′nM2

n − M̃nMn −M′nM̃n)u

+ 3ρ2u′M′nM̃nMnu
]

.

The proof of Theorem 1 is provided in the appendix.
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In practice, the asymptotic variances can be consistently estimated by the respective

sample moments based on û and by inserting the estimator

κ̂4 =

(
1

nσ̂4

n

∑
i=1

ε̂4
i

)
− 1, (19)

where ε̂i is the i’th element of the vector ε̂ = (I − ρ̂Mn)û. Note also that the limiting

distribution is invariant to the error variance σ2
0 since the factor σ4

0 drops from the

asymptotic variance Vk/ψ2
k .

4 Efficient GMM estimators

As outlined in Section 2 the original GMM estimator suggested by Kelejian & Prucha

(1999) based on the moment conditions (6) and (7) is not efficient. Kelejian & Prucha

(2010b) and Drukker et al. (2013) propose GMM estimators with optimal weighting

matrices Υn as defined in (8). In this section we employ a simpler approach to obtain

an asymptotically efficient GMM estimator based on the empirical counterpart of the

moment vector mn(ρ) = [m1,n(ρ), m2,n(ρ)]
′, proposed by Kelejian & Prucha (1999),

or the MLAM2 version m∗n(ρ) = [m1,n(ρ), m̃2,n(ρ)]
′ with m2,n(ρ) defined in (7) and

m̃2,n(ρ) = E(n−1ε′M̃nε). Since m2,n(ρ) = m1,n(ρ) + ρm̃2,n(ρ), which is easily seen in

(11), the single moment condition of the simple MLAM2 estimator proposed in section

3 is just a linear combination of the moments in m∗n(ρ).

As in Section 3 we represent the first moment condition of the original KP estimator

as

m1,n(ρ0) = E

(
1
n

ε′Mnε

)
= E

(
1
n

n

∑
i=2

η1,i,n

)
= 0 (20)

with η1,i,n = εiξ1,i,n, where ξ1,i,n is defined in (17), whereas the second moment condi-
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tion can be represented as

m2,n(ρ0) = E

(
1
n

ε′Mnε

)
= E

(
1
n

n

∑
i=1

η2,i,n

)
= 0, (21)

η2,1,n = m11,nz1, η2,i,n = ∑i−1
j=1 εi(mij,n + mji,n)ε j + mii,nzi for i ≥ 2, where mij,n is the

(i, j)-element of Mn and zi = ε2
i − σ2

0 .

It should be noted that E

(
n
∑

i=1
mii,nzi

)
= 0 so that this term can be neglected when

minimizing the criterion function. It is required only for computing the weighting

matrix, which is typically held fix during the iterative minimization.

Using the results of Section 3 it is not difficult to show that ηi,n = [η1,i,n, η2,i,n]
′ is

a martingale difference sequence with respect to the increasing sigma-algebra gener-

ated by {η1,n, . . . , ηi−1,n}. Invoking the central limit theorem for martingale difference

sequences yields

1√
n

n

∑
i=1

ηi,n
d→ N (0,Vη) , (22)

where Vη = lim
n→∞

Vη,n and

Vη,n = E

(
1
n

n

∑
i=1

ηi,nη′i,n

)
. (23)

Let η̂i,n(ρ) be constructed as ηi,n, where εi is replaced by the i’th element of ε̂n(ρ) =

(I − ρMn)û. An asymptotically efficient GMM estimator based on the KP moment

conditions results from minimizing the objective function

Q̂n(ρ) =

(
1
n

n

∑
i=1

η̂i,n(ρ)

)′
Υ̂n(ρ̂)

(
1
n

n

∑
i=1

η̂i,n(ρ)

)
, (24)
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with

Υ̂n(ρ̂) =
(
V̂η,n

)−1
=

[
1
n

n

∑
i=1

η̂i,n(ρ̂)η̂i,n(ρ̂)
′
]−1

From the law of large numbers it follows that under assumptions 1 to 5 the estimator

Υ̂n(ρ̂) is consistent for the optimal weighting matrix Υn(ρ0) whenever the estimate ρ̂ is

consistent for ρ0. For example, a consistent initial estimate may be obtained by letting

Υn = WKP,n as in the original approach by Kelejian & Prucha (1999).

The asymptotic distribution of the efficient GMM estimator is presented in the fol-

lowing theorem.

Theorem 2. Under assumptions 1 to 5 and n → ∞ the efficient GMM estimator ρ̂opt =

argmin{Q̂n(ρ)} with Q̂n(ρ) based on the moment vector m̂n(ρ) = [m̂1,n(ρ), m̂2,n(ρ)]
′ and

defined in (24) possesses the limiting distribution

√
n(ρ̂opt − ρ0)

d→ N
(
0, [δ(ρ0)

′Υ(ρ0)δ(ρ0)]
−1),

where Υ(ρ0) = lim
n→∞

Υn(ρ0) and δ(ρ0) = lim
n→∞

δn(ρ0) with

δn(ρ0) =
1
n

 u′(2ρ0M′nM2
n −M′nMn −M2

n)u

u′(2ρ0M′nMnMn −M′nMn −MnMn)u

 .

The proof of theorem 2 is provided in the appendix.

In practice the variance of ρ̂opt can be consistently estimated by

Vρ̂opt =
1
n

[
δ̂n(ρ̂opt)

′Υ̂n(ρ̂opt)δ̂n(ρ̂opt)
]−1

(25)
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where δ̂n(ρ̂opt) =
1
n

 û′(2ρ̂optM′nM2
n −M′nMn −M2

n)û

û′(2ρ̂optM′nMnMn −M′nMn −MnMn)û

 .

The asymptotic distribution of the GMM version of the MLAM estimator based on the

moment vector m∗n(ρ) = [m1,n(ρ), m̃2,n(ρ)]
′ results easily from replacing the elements

of Mn by the elements of M̃n when constructing η2,i,n and δn(ρ). Asymptotically this

estimator may yield a smaller variance than the simple MLAM2 estimator if there ex-

ists some superior linear combination of m1,n(ρ) and m̃2,n(ρ) than m1,n(ρ) + ρm̃2,n(ρ).

5 Heteroskedastic and non-Gaussian errors

The MLAM1 estimator is based on the empirical counterpart of the moment m1,n(ρ0) =

E(ε′Mnε) which remains valid under heteroskedastic and non-Gaussian errors. In con-

trast, the original KP estimator and the MLAM2 estimator, including their efficient

GMM variants presented in section 4, are inconsistent if the errors are heteroskedastic.

This is due to the fact that E(zi) = E(ε2
i ) − σ2

0 may be different from zero (see eqs.

(16) and (21)). Furthermore, the asymptotic variances of the estimators presented in

Theorems 1 and 2 require homoskedastic errors (see assumption 2).

In order to cope with this shortcoming, Kelejian & Prucha (2010b) propose the al-

ternative moment condition mh
2,n(ρ) = E

[
ε′
(

M′nMn − diag{M′nMn}
)
ε
]
= E(ε′M0,nε),

where diag{M′nMn} represents a diagonal matrix constructed by the diagonal ele-

ments of the matrix M′nMn. Accordingly, the matrix M0,n is obtained by setting the

diagonal elements of M′nMn equal to zero. Similarly, a heteroskedasticity robust mod-

ification for the MLAM2 moment condition m2,n(ρ) is given by mh
2,n(ρ) = E[ε′(Mn +

ρM̃0,n)ε] with M̃0,n = M2
n − diag{M2

n}.

These heteroskedasticity robust moments can easily be constructed by dropping the

terms depending on zi = ε2
i − σ2

0 in (16) and (21). For the simple (i.e. just identified)
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MLAM2 estimator the robust moment condition results as

mh
2,n(ρ0) = E

(
1
n

n

∑
i=2

η̃h
2,i,n

)
= 0 (26)

where η̃h
2,i,n = εiξ2,i,n and ξ2,i,n is defined in (17). The heteroscedasticity robust version

of the moment used by the original KP estimator is given by

mh
2,n(ρ0) = E

(
1
n

n

∑
i=2

ηh
2,i,n

)
= 0, (27)

where ηh
2,i,n = ∑i−1

j=1(mij,n + mji,n)εiε j. For the GMM version of the MLAM2 estimator

the corresponding moment m̃h
2,n(ρ0) is constructed equivalently, replacing the elements

of Mn by those of M̃n.

The asymptotic distributions of the resulting estimators are easily derived by set-

ting the diagonal elements of A2,n(ρ0) (for the simple MLAM2 estimator), respectively

Mn and M̃n (for the GMM estimators), equal to zero. For example, the asymptotic

variance V2 in (18) is replaced by

V2 = σ4
0 lim

n→∞

(
1
n

n

∑
i=2

i−1

∑
j=1

(a2,ij,n + a2,ji,n)
2

)
. (28)

The respective modifications of the limiting distributions presented in Theorems 1 and

2 are obvious and we therefore do not derive the modified limiting distributions.

6 GMM estimators for the spatial autoregressive model (SAR) and

the Durbin model (SDM)

In empirical practice, the spatial autoregressive model is more relevant as it offers the

opportunity to estimate spatial spillover effects (see e.g. Elhorst 2010a). The basic SAR
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model is given by

y = γWny + Xβ + ε, (29)

where γ and Wn correspond to ρ and Mn in the spatial error model. Furthermore, let

Cn(γ) ≡ (In− γWn) in what follows. Accordingly, we now apply assumptions 3 and 4

to γ, Wn, and Cn(γ) instead of ρ, Mn, and Bn(ρ). Assuming further that ε ∼ N (0, σ2 In)

yields the log-likelihood function

`(β, γ, σ2) = const −n
2

ln(σ2) + ln|Cn(γ)| −
1

2σ2 (y−γWny−Xβ)′(y−γWny−Xβ)

with the gradients7

∂`(·)
∂β

=
1
σ2 X′(y− γWny− Xβ)

∂`(·)
∂γ

= − tr{WnCn(γ)
−1}+ 1

σ2 (y− γWny− Xβ)′Wny.

The reduced form representation of the model

y = Cn(γ)
−1Xβ + u

with u = Cn(γ)−1ε yields

∂`(·)
∂γ

= − tr{WnCn(γ)
−1}+ 1

σ2 (y− γWny− Xβ)′WnCn(γ)
−1(Xβ + ε)

= − tr{WnCn(γ)
−1}+

[
1
σ2 (y− γWny− Xβ)′WnCn(γ)

−1Xβ

]
+

[
1
σ2 (y− γWny− Xβ)′WnCn(γ)

−1ε

]
.

7For convenience we assume σ2 to be known. As usual a consistent estimator can be obtained from
the residuals of the model.
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Concentrating out σ2 yields the moment conditions g1(β, γ) = ε′WnCn(γ)−1Xβ and

g2(β, γ) = ε′[WnCn(γ)−1− 1
n tr{WnCn(γ)−1}In]ε along with the moment condition ob-

tained from the gradient with respect to β, g0(β, γ) = X′ε. These are the same moment

conditions as the ones proposed by Lee (2007a) for the best GMM estimator (BGMME).

Using the first order approximation Cn(γ)−1 ≈ In gives rise to the following set of

moments for estimating β and γ

g̃0(β, γ) = X′ε (30)

g̃1(β, γ) = β′X′W ′nε (31)

g̃2(β, γ) = ε′Wnε. (32)

The first and third moment conditions are also employed for the spatial error model

and only the second moment is added for the spatial autoregressive model. Accord-

ingly, the treatment of the spatial autoregressive model is straightforward.

Note that our approach yields not only computationally very simple but also het-

eroskedasticity robust moment conditions. In particular, g̃2(β, γ) in (32) is heterosked-

asitity robust, while the original moment condition g2(β, γ) is not. An alternative

heteroskedasticity robust, yet computationally more demanding version of g2(β, γ)

is ε′[WnCn(γ)−1 − diag{WnCn(γ)−1}]ε, as proposed by Lin & Lee (2010).

The moment condition g̃1(β, γ) can be interpreted as a linear combination of the k

vector of moments

g̃+1 (β, γ) = X′W ′nε. (33)

While the vector of moments g̃(β, γ) = (g̃0(β, γ)′, g̃+1 (β, γ)′, g̃2(β, γ))′ leads to an over-

identified GMM estimator whenever the number of regressors is larger than one, the

linear moment conditions in g̃+1 (β, γ) are computationally simpler than the nonlinear
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moment condition g̃1(β, γ). The optimal weight matrix can be constructed as in section

4. Specifically we rewrite the moment condition (32) as

g̃2(β, γ) =
N

∑
i=2

ζi,nεi (34)

where ζi,n = ∑i−1
j=1(wij,n + wji,n)ε j for i ≥ 2, and wij,n denotes the (i, j) element of Wn.

Accordingly the set of moment conditions can be written as

g̃(β, γ) =
N

∑
i=1

zi,nεi

where

zi,n =


xi

X′w′i,·,n

ζi,n


and wi,·,n denotes the i’th row of Wn. Let ε̂i denote the i’th element of the vector ε̂ =

(In − γ̂Wn)û, where û denotes the residuals from a consistent initial estimation of the

model (e.g. by using the identity matrix as the weight matrix). The optimal weight

matrix of the GMM estimator can be easily estimated as

Υ̂n =
1
n

n

∑
i=1

ε̂2
i ẑi,nẑ′i,n

where ẑi,n is constructed as zi,n but using ε̂i instead of εi when computing ζi−1,n. We

refer to the resulting estimator as the MLAM1 estimator for the spatial autoregressive

model.

Note that the Generalized Spatial Two-Stage Least Squares (GS2SLS) estimator of

Kelejian & Prucha (1998) is based on g0(β, γ) and a p’th order approximation of g1(β, γ),

resulting in the instrumental variable matrix that is given by the linearly independent
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columns of (X, WnX, W2
n X, . . . , Wp

n X) whereas the term g2(β, γ) is ignored. As pointed

out by Lee (2007a) this may result in a dramatic loss of efficiency if β is close to zero.

Let us finally consider the SDM given by

y = γWny + Xβ + WnXα + ε. (35)

In this case the MLAM1 estimator based on the vector of moments g̃(β, γ) and

treating WnX as additional exogenous regressors is no longer identified because WnX is

already employed as instrument for the lagged dependent variable in (33). A potential

remedy is the use of higher order approximations of Cn(γ)−1. For example, a second

order approximation of the moment g2(β, γ) yields

g∗1(β, γ) = ε′Wn(In + γWn)Xβ

= g̃1(β, γ) + γε′W2
n Xβ.

This suggest to employ

g̃+1a(α, β, γ) = X′W ′nε

g̃+1b(α, β, γ) = X′W2′
n ε

for identifying the parameters α and γ, where ε = y− γWny−Xβ−WnXα. As pointed

out by Gibbons & Overman (2012) the identification by powers of Wn typically results

in weak identification. Accordingly, the loss in efficiency may become large relative to

the ML estimator when estimating the SDM.8

8We are grateful to an anonymous referee for pointing out this potential problem with GMM esti-
mates in the SDM.
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7 Monte Carlo comparison

We now compare the properties of alternative MM and GMM estimators for the SEM

and SAR in a Monte Carlo (MC) simulation distinguishing the case of small and large

samples as well as homo- and heteroskedastic disturbances. To this end we employ

two variants of a row standardized “ahead-behind” spatial weight matrix similar to

the one used by Kelejian & Prucha (2007) in which observation i has di = 2ri neigh-

bors, ri “ahead” (i− ri, . . . , i− 1) and ri “behind” (i + 1, . . . , i + ri).9 The corresponding

elements of the matrix are initially set to one and then the matrix is row-normalized.

In the first variant, M1,n, the first and third quarter of observations have di = 8 neigh-

bors each whereas the second and last quarter have di = 2 neighbors each. Hence, all

nonzero elements of the weight matrix equal 1/8 or 1/2. In the second variant, M2,n,

the first and third quarter of observations have di = 6 neighbors while the second

and last quarter of observations have di = 4 neighbors, with corresponding nonzero

elements equal to 1/6 or 1/4. Note that the resulting spatial weight matrices are not

symmetric. The characteristics of both matrices for sample sizes n = 100 and n = 1000

are summarized in Table 1:

Table 1: Characteristics of spatial weight ma-
trices.

No. of neighbors percent nonzero
avg. max min n = 100 1000

M1,n 5.0 8 2 5.0 0.5
M2,n 5.0 6 4 5.0 0.5

For the spatial autoregressive parameter ρ0 we consider the values −0.8, −0.4, 0,

0.4 and 0.8. In our baseline specification the error vector is generated as ε ∼ N (0, σ2
0 In)

9 Since we consider a “circular world” obsevation 1 and observation n are direct neighbors. Hence,
for observation i = n, the jth “behind”-neighbor i + j is observation j.
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with σ2
0 = 1. As noted by Kelejian & Prucha (1999) the choice of the error variance

σ2
0 does not affect the performance of the estimators. Results are presented for small

samples with n = 100 and large samples with n = 1000.

In addition to the baseline specification we also consider a heteroskedastic setup

similar to Kelejian & Prucha (2010b). Specifically εi = σ0,iεi, where εi is generated

by independent draws from a standard normal distribution and σ2
0,i = di/5, where,

as defined above, the factor di denotes the number of neighbors of individual i. The

scaling is such that the average error variance is approximately 1.

The following estimators are included in our MC study: KP-NLS refers to the inef-

ficient and not heteroskedasticity robust original KP estimator computed by running a

nonlinear least-squares estimator based on the three moment conditions in (5). In the

heteroskedastic-error setup we compare this estimator to the heteroskedasticity robust

but inefficient GMM version of the original KP estimator using the weighting matrix

WKP,n (see section 2), labeled KP-GMM. MLAM1 and MLAM2 indicate the simple mo-

ment estimators based on a first and second order approximation of the likelihood

function (see Section 3). Recall that these estimators involve no weighting matrix as

they are based on a single moment condition. For both estimators we use the het-

eroskedasticity robust variants (described in Section 5) in the setup with heteroskedas-

tic errors. KP-eff and MLAM-eff refer to the efficient GMM estimators based on the

two-dimensional KP and MLAM2 moment vector, respectively, and the corresponding

optimal weighting matrix proposed in section 4.

Besides comparing the estimation performance in terms of the bias and root mean

squared error (RMSE) of the estimators, actual sizes of the t-statistics are reported in

order to assess whether the asymptotic properties regarding the variance-covariance

structure of the estimators remain valid in small samples.10 The MC results allow us

10 This is done by running a t-test for each estimate ρ̂ of whether it equals the true parameter ρ0.
In doing so we use the corresponding standard error estimate of ρ which is based on its asymptotic
distribution. We indicate a rejection if the (true) null hypothesis of equality is rejected at the 5% level.
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to assess how our simple MM estimators perform compared to the original estimator

by Kelejian & Prucha (1999) and its efficient and heteroskedasticity robust counterpart.

For our analysis we focus on the disturbance vector of the SEM model given in equa-

tion (2). All MC results are based on 1000 replications as in comparable simulation

studies (e.g. Lin & Lee 2010 and Liu et al. 2010).

Table 2 summarizes the MC results for both spatial weight matrices and sample

size n = 100 under homoskedasticity. There is no clear tendency for any estimator

to yield the smallest bias if the sample size is that small. This holds true for both

types of the spatial weight matrix, M1,n and M2,n. However, the MLAM2 estimator

tends to yield the largest bias in cases where ρ0 is large in absolute value. The efficient

GMM estimators (KP-eff and MLAM-eff) do not yield smaller RMSE than the other

estimators if the variation in the number of neighbors per observation is large (M1,n).

In the case of a more moderate variation in the number of neighbors per observation

(M2,n) the efficient GMM estimator with KP moments improves slightly in terms of

RMSE relative to the original KP estimator (KP-NLS). Overall, the MLAM2 estimator

yields the smallest RMSE for samples of size 100. Furthermore, the results in Table 2

show that the KP-NLS estimator fits the desired rejection rate of 5% best in the case

of small samples with large variation in the number of neighbors (M1,n) whereas the

efficient GMM estimators tend to reject too often. If the number of neighbors varies

less (M2,n) the actual size of the MLAM1 approach is close to the nominal size of 5%.

[TABLE 2 ABOUT HERE ]

Increasing the sample size to 1000 but maintaining homoskedastic errors changes

the relative performance of the estimators only little, see Table 3. Still there is no clear

tendency which estimator yields the smallest bias if the number of neighbors per ob-

servation varies a lot (M1,n). For the spatial weight matrix with moderate variation

Hence, for each estimator we expect a (wrong) rejection to occur in 5% of the MC replications.
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(M2,n) the efficient GMM estimators yield the smallest bias whereas the KP-NLS es-

timator possesses the largest bias. In specification M1,n the efficient GMM estimator

with KP moments yields a smaller RMSE than the KP-NLS estimator while the effi-

cient GMM variant of the MLAM2 estimator does not improve relative to the simpler

variants. This changes in specification M2 where both variants of the efficient GMM

yield a smaller or equal RMSE than the other estimators. Generally the differences are

not very large, however. Overall the estimators fit the desired rejection rate of 5% ad-

equately, an exception being the efficient GMM estimators in the case of specification

M1,n with ρ0 = −0.8.

[TABLE 3 ABOUT HERE ]

Incorporating heteroskedasticity that depends on the spatial dependence structure,

which is arguably more realistic than the case of homoskedastic errors, leads to more

pronounced results. Table 4 contains the results for small samples (n = 100). Not

surprisingly the original KP estimator, which relies on homoskedasticity, yields much

larger biases than the heteroskedasticity robust estimators for almost all values of ρ.

Among the latter there is, however, again no clear ranking in terms of size distortions.

The efficient GMM estimators with KP moments yield smaller RMSE than the ineffi-

cient counterpart (KP-GMM) in more cases than under homoskedasticity and for both

spatial weight matrices. Yet the MLAM2 and even the MLAM1 estimator still yield the

smallest RMSE in most cases. The actual sizes are least reliable for the efficient GMM

estimators and the KP-NLS estimator.

[TABLE 4 ABOUT HERE ]

The MC results presented above do not reveal a notable advantage of the efficient

GMM estimators. This picture changes in the case of heteroskedastic errors and a sam-

ple size of 1000. These results are summarized in Table 5. The efficient GMM estimators
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yield the smallest bias across all specifications. As expected, the bias is almost indis-

tinguishable between these two estimators. Not surprisingly the non-robust KP-NLS

estimator yields the largest bias. Also in terms of the RMSE the efficient GMM estima-

tors perform best. However, for some values of ρ the RMSE of the simple MLAM es-

timators is only marginally larger. While again the KP-NLS estimator generally yields

the largest RMSE, the inefficient GMM variant yields similar results as the MLAM esti-

mators for positive values of ρ. The fit of the rejection rate is best for the efficient GMM

estimators in most specifications. In some cases the MLAM1 estimator performs even

better. Generally the fit is adequate for all estimators but the KP-NLS estimator.

[TABLE 5 ABOUT HERE ]

The results of these MC simulations show that both, the efficient GMM variant with

KP moments and the one with MLAM2 moments tend to outperform the other estima-

tors in terms of bias and RMSE if the sample size is sufficiently large. The advantage

is more pronounced in the case of heteroskedastic errors. Comparing both efficient

GMM estimators with each other the performance is indistinguishable, as expected.11

The simple MLAM estimators, based on a single moment condition, perform very

well in general. For smaller samples they even outperform the (overidentified) efficient

GMM estimators. This observation is remarkable and makes these simple moment

estimators, not involving the estimation of a weighting matrix, a reasonable alternative

to conventional GMM estimators. This holds in particular for the MLAM1 estimator,

which has an analytical solution. Overall, the results also reassure the validity of the

applied approximations empirically.

We close our MC simulation study by comparing the MLAM1 estimator for the spa-

tial autoregressive model to the ML estimator and the GS2SLS estimator of Kelejian &

Prucha (1998) which is based on the instrumental variable matrix [X, WX, W2X]. The

11 Recall that these estimators differ only in the second element of the moment vector given in (27). In
the case of a symmetric spatial weight matrix they are equal, since then Mn ≡ M′n Mn = Mn Mn ≡ M̃n.
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regressor is generated as xi
i.i.d.∼ N (0, 1) and the spatial dependence is generated by the

weight matrix Wn = M2,n. The sample size is n = 100 and various combinations of the

parameters β and γ are considered. From the results presented in Table 6 it turns out

that the MLAM1 estimator perfoms much better than the GS2SLS estimator, in partic-

ular if β is small. The reason is that for small β the instruments WkX are weak leading

to a severe bias and large standard errors. Unfortunately, in empirical applications

the R2 is typically small, which is the scenario where the GS2SLS estimator performs

poorly. As expected, the ML estimator performs best but the MLAM1 estimator is also

unbiased and nearly as efficient as the ML estimator. Note that the MLAM1 estimator

is robust against heteroskedastic and non-Gausian errors which is not the case for the

ML estimator.

[TABLE 6 ABOUT HERE ]

8 Conclusion

In this paper we reconsider (approximately) optimal moment conditions for the es-

timation of the spatial parameter in regression models with spatial error correlation

(SEM). These are directly derived from the first order condition for the maximization

of the log-likelihood function. The resulting moment conditions yield computation-

ally simple and robust estimators. Illustrating the similarity of our moment conditions

to those used by Kelejian & Prucha (1999) we provide an intuitive interpretation for

their popular method of moments estimator. In addition we derive simplified efficient

GMM estimators based on a modification of the moment conditions. Following Kele-

jian & Prucha (2010b) and Lin & Lee (2010) we also propose heteroskedasticity robust

versions of all our estimators. Finally, we extend the idea underlying our estimators to

the GMM estimation of the spatial autoregressive (SAR) and the spatial Durbin model

(SDM).
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Our MC results suggest that the efficient GMM estimators are (slightly) more effi-

cient than the original KP estimator if the errors are heteroskedastic and the sample is

large. As expected, the KP moments and the MLAM2 moments perform equally well,

confirming our interpretation of the estimator by Kelejian & Prucha (1999) as an ap-

proximation of the score of the log-likelihood function. Most importantly the simplest

MLAM1 estimator performs similar to the more demanding GMM or ML variants sug-

gesting that this estimator is particularly attractive in empirical practice. Our MLAM1

estimator for the spatial autoregressive model performs well in comparison to both

the GS2SLS estimator proposed by Kelejian & Prucha (1998) and also the (efficient) ML

estimator.
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back’, Annales D’Économie et de Statistique 87.

Gibbons, S. & Overman, H. G. (2012), ‘Mostly Pointless Spatial Econometrics?’, Journal
of Regional Science 52, 172–191.

Kapoor, M., Kelejian, H. H. & Prucha, I. R. (2007), ‘Panel data models with spatially
correlated error components’, Journal of Econometrics 140, 97–130.

Kelejian, H. H., Murrell, P. & Shepotylo, O. (2013), ‘ Spatial spillovers in the develop-
ment of institutions ’, Journal of Development Economics 101, 297–315.

Kelejian, H. H. & Piras, G. (2014), ‘Estimation of spatial models with endogenous
weighting matrices, and an application to a demand model for cigarettes’, Regional
Science and Urban Economics 46, 140–149.

Kelejian, H. H. & Prucha, I. R. (1998), ‘A Generalized Spatial Two-Stage Least Squares
Procedure for Estimating a Spatial Autoregressive Model with Autorgressive Distur-
bances’, Journal of Real Estate Finance and Economics 17, 99–121.

Kelejian, H. H. & Prucha, I. R. (1999), ‘A Generalized Moments Estimator for the Au-
toregressive Parameter in a Spatial Model’, International Economic Review 40, 509–533.

29



Kelejian, H. H. & Prucha, I. R. (2001), ‘On the asymptotic distribution of the Moran I
test statistic with applications’, Journal of Econometrics 104, 219–257.

Kelejian, H. H. & Prucha, I. R. (2004), ‘Estimation of simultaneous systems of spatially
interrelated cross sectional equations’, Journal of Econometrics 118, 27–50.

Kelejian, H. H. & Prucha, I. R. (2007), ‘HAC estimation in a spatial framework’, Journal
of Econometrics 140, 131–154.

Kelejian, H. H. & Prucha, I. R. (2010a), ‘Spatial models with spatially lagged dependent
variables and incomplete data’, Journal of Geographic Systems 12, 241–257.

Kelejian, H. H. & Prucha, I. R. (2010b), ‘Specification and estimation of spatial autore-
gressive models with autoregressive and heteroskedastic disturbances’, Journal of
Econometrics 157, 53–67.

Kelejian, H. H., Prucha, I. R. & Yuzefovich, Y. (2004), Instrumental Variable Estima-
tion of a Spatial Autoregressive Model with Autoregressive Disturbances: Large
and Small Sample Results, in ‘Spatial and Spatiotemporal Econometrics, Advances
in Econometrics, Volume 18’, Elsevier, New York, NY, pp. 163–198.

Lee, L.-f. (2002), ‘Consistency and Efficiency of Least Squares Estimation for Mixed
Regressive, Spatial Autoregressive Models’, Econometric Theory 18, 252–277.

Lee, L.-f. (2003), ‘Best Spatial Two-Stage Least Squares Estimators for a Spatial Autore-
gressive Model with Autoregressive Disturbances’, Econometric Reviews 22, 307–335.

Lee, L.-f. (2004), ‘Asymptotic Distributions of Quasi-Maximum Likelihood Estimators
for Spatial Autoregressive Models’, Econometrica 72, 1899–1925.

Lee, L.-f. (2007a), ‘GMM and 2SLS estiamtion of mixed regressive, spatial autoregres-
sive models’, Journal of Econometrics 137, 489–514.

Lee, L.-f. (2007b), ‘The method of elimination and substitution in the GMM estimation
of mixed regressive, spatial autoregressive models’, Journal of Econometrics 140, 155–
189.

Lee, L.-F. & Liu, X. (2010), ‘Efficient GMM Estimation of High Order Spatial Autore-
gressive Models with Autoregressive Disturbances’, Econometric Theory 26, 187–230.

Lee, L.-f. & Yu, J. (2014), ‘Efficient GMM estimation of spatial dynamic panel data mod-
els with fixed effects’, Journal of Econometrics 180, 174–197.

30



Lee, L.-f. & Yu, J. (2016), ‘Idenification of Spatial Durbin Panel Models’, Journal of Ap-
plied Econometrics 31, 133–162.

LeSage, J. & Pace, R. K. (2009), Introduction to Spatial Econometrics, CRC Press Inc., Tay-
lor and Francis Group, Broken Sound Parkway, NW.

Lin, X. (2010), ‘Identifying Peer Effects in Student Academic Achievement by Spa-
tial Autoregressive Models with Group Unobservables ’, Journal of Labor Economics
28, 825–860.

Lin, X. & Lee, L.-F. (2010), ‘GMM estiamtion of spatial autoregressive models with
unknown heteroskedasticity’, Journal of Econometrics 157, 34–52.

Liu, X. & Lee, L.-f. (2010), ‘GMM estimation of social interaction models with central-
ity’, Journal of Econometrics 159, 99–115.

Liu, X. & Lee, L.-F. (2013), ‘Two-Stage Least Squares Estimation of Spatial Autoregres-
sive Models with Endogenous Regressors and Many Instruments’, Econometric Re-
views 32, 734–753.

Liu, X., Lee, L.-f. & Bollinger, C. R. (2010), ‘An efficient GMM estimator of spatial au-
toregressive models’, Journal of Econometrics 159, 303–319.
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Tables

Table 2: Bias, (RMSE) and {sizes} for homoskedastic errors, n = 100

ρ KP-NLS MLAM1 MLAM2 KP-eff MLAM-eff
spatial weight matrix: M1,n (8 or 2 neighbors)

−0.80 0.0064 0.0048 0.0121 0.0104 0.0104
(0.0747) (0.0796) (0.0696) (0.0743) (0.0742)
{0.0430} {0.0430} {0.0420} {0.0810} {0.0800}

−0.40 0.0022 0.0038 0.0110 0.0100 0.0099
(0.1214) (0.1229) (0.1163) (0.1221) (0.1219)
{0.0500} {0.0500} {0.0510} {0.0740} {0.0730}

0.00 -0.0046 -0.0005 -0.0002 0.0031 0.0030
(0.1293) (0.1298) (0.1256) (0.1307) (0.1306)
{0.0510} {0.0510} {0.0540} {0.0710} {0.0690}

0.40 -0.0086 -0.0041 -0.0087 -0.0036 -0.0037
(0.1081) (0.1102) (0.1066) (0.1100) (0.1100)
{0.0500} {0.0510} {0.0530} {0.0710} {0.0720}

0.80 -0.0064 -0.0039 -0.0073 -0.0054 -0.0054
(0.0566) (0.0608) (0.0555) (0.0580) (0.0579)
{0.0500} {0.0430} {0.0570} {0.0760} {0.0770}

spatial weight matrix: M2,n (6 or 4 neighbors)
−0.80 0.0035 0.0064 0.0123 0.0119 0.0118

(0.1549) (0.1495) (0.1472) (0.1519) (0.1515)
{0.0250} {0.0240} {0.0190} {0.0330} {0.0330}

−0.40 -0.0174 -0.0130 -0.0057 -0.0045 -0.0044
(0.1830) (0.1770) (0.1684) (0.1746) (0.1741)
{0.0590} {0.0580} {0.0540} {0.0810} {0.0810}

0.00 -0.0194 -0.0154 -0.0145 -0.0114 -0.0113
(0.1641) (0.1611) (0.1580) (0.1614) (0.1612)
{0.0550} {0.0570} {0.0600} {0.0740} {0.0720}

0.40 -0.0176 -0.0147 -0.0172 -0.0146 -0.0145
(0.1252) (0.1256) (0.1242) (0.1255) (0.1255)
{0.0520} {0.0550} {0.0530} {0.0690} {0.0690}

0.80 -0.0100 -0.0087 -0.0105 -0.0102 -0.0101
(0.0621) (0.0650) (0.0617) (0.0618) (0.0617)
{0.0490} {0.0520} {0.0490} {0.0670} {0.0650}

Notes: The number of MC replications is 1000. The errors are generated as u = ρMu + ε, ε ∼
N (0, I). Entries report bias (without brackets), RMSE in round brackets, empirical sizes of t-
tests in curly brackets (nominal size = 0.050). For details on the spatial weight matrices see
Table 1.
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Table 3: Bias, (RMSE) and {sizes} for homoskedastic errors, n = 1000

ρ KP-NLS MLAM1 MLAM2 KP-eff MLAM-eff
spatial weight matrix: M1,n (8 or 2 neighbors)

−0.8 0.0003 0.0000 0.0008 0.0006 0.0006
(0.0197) (0.0217) (0.0182) (0.0193) (0.0193)
{0.0480} {0.0440} {0.0510} {0.0690} {0.0670}

−0.4 -0.0004 -0.0003 0.0005 0.0004 0.0004
(0.0359) (0.0362) (0.0350) (0.0357) (0.0357)
{0.0500} {0.0450} {0.0480} {0.0540} {0.0530}

0.0 -0.0012 -0.0008 -0.0008 -0.0004 -0.0004
(0.0391) (0.0390) (0.0388) (0.0392) (0.0392)
{0.0450} {0.0450} {0.0450} {0.0480} {0.0480}

0.4 -0.0014 -0.0010 -0.0015 -0.0009 -0.0009
(0.0321) (0.0330) (0.0320) (0.0324) (0.0324)
{0.0440} {0.0460} {0.0410} {0.0440} {0.0430}

0.8 -0.0009 -0.0007 -0.0010 -0.0008 -0.0008
(0.0160) (0.0175) (0.0156) (0.0159) (0.0159)
{0.0420} {0.0460} {0.0400} {0.0440} {0.0450}

spatial weight matrix: M2,n (6 or 4 neighbors)
−0.8 -0.0015 -0.0012 -0.0003 0.0002 0.0002

(0.0548) (0.0526) (0.0509) (0.0503) (0.0503)
{0.0450} {0.0470} {0.0500} {0.0550} {0.0550}

−0.4 -0.0019 -0.0016 -0.0011 -0.0005 -0.0005
(0.0549) (0.0533) (0.0528) (0.0528) (0.0527)
{0.0450} {0.0470} {0.0520} {0.0570} {0.0570}

0.0 -0.0020 -0.0017 -0.0017 -0.0012 -0.0012
(0.0487) (0.0481) (0.0481) (0.0481) (0.0481)
{0.0430} {0.0470} {0.0470} {0.0500} {0.0510}

0.4 -0.0018 -0.0016 -0.0018 -0.0015 -0.0015
(0.0364) (0.0369) (0.0364) (0.0364) (0.0364)
{0.0410} {0.0470} {0.0430} {0.0450} {0.0450}

0.8 -0.0010 -0.0009 -0.0010 -0.0010 -0.0010
(0.0173) (0.0184) (0.0172) (0.0170) (0.0170)
{0.0410} {0.0470} {0.0420} {0.0430} {0.0440}

Notes: See Table 2.
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Table 4: Bias, (RMSE) and {sizes} for heteroskedastic errors, n = 100

ρ KP-NLS KP-GMM MLAM1 MLAM2 KP-eff MLAM-eff
het. robust No Yes Yes Yes

spatial weight matrix: M1,n (8 or 2 neighbors)
−0.8 0.0029 -0.0061 -0.0048 0.0046 0.0102 0.0104

(0.1182) (0.1093) (0.1082) (0.0840) (0.0858) (0.0849)
{0.0210} {0.0480} {0.0410} {0.0360} {0.0510} {0.0460}

−0.4 -0.0624 -0.0119 -0.0101 0.0014 0.0123 0.0134
(0.1921) (0.1618) (0.1553) (0.1370) (0.1377) (0.1368)
{0.0230} {0.0500} {0.0510} {0.0580} {0.0640} {0.0620}

0.0 -0.0852 -0.0149 -0.0126 -0.0087 0.0052 0.0068
(0.1911) (0.1591) (0.1532) (0.1490) (0.1470) (0.1463)
{0.0270} {0.0490} {0.0560} {0.0650} {0.0700} {0.0710}

0.4 -0.0823 -0.0153 -0.0129 -0.0156 -0.0034 -0.0020
(0.1586) (0.1278) (0.1247) (0.1271) (0.1255) (0.1249)
{0.0420} {0.0450} {0.0570} {0.0570} {0.0750} {0.0740}

0.8 -0.0499 -0.0096 -0.0080 -0.0113 -0.0070 -0.0066
(0.0868) (0.0667) (0.0673) (0.0675) (0.0685) (0.0686)
{0.0690} {0.0440} {0.0590} {0.0510} {0.0730} {0.0750}

spatial weight matrix: M2,n (6 or 4 neighbors)
−0.8 -0.0029 0.0027 0.0050 0.0097 0.0119 0.0116

(0.1566) (0.1577) (0.1520) (0.1490) (0.1537) (0.1531)
{0.0250} {0.0310} {0.0330} {0.0270} {0.0310} {0.0290}

−0.4 -0.0269 -0.0193 -0.0154 -0.0084 -0.0048 -0.0048
(0.1878) (0.1862) (0.1798) (0.1710) (0.1767) (0.1760)
{0.0510} {0.0630} {0.0650} {0.0660} {0.0780} {0.0730}

0.0 -0.0281 -0.0208 -0.0173 -0.0162 -0.0116 -0.0115
(0.1676) (0.1658) (0.1624) (0.1595) (0.1627) (0.1623)
{0.0520} {0.0660} {0.0650} {0.0660} {0.0770} {0.0770}

0.4 -0.0245 -0.0185 -0.0160 -0.0181 -0.0149 -0.0148
(0.1276) (0.1259) (0.1260) (0.1250) (0.1262) (0.1261)
{0.0510} {0.0650} {0.0640} {0.0660} {0.0740} {0.0730}

0.8 -0.0137 -0.0104 -0.0093 -0.0109 -0.0105 -0.0104
(0.0634) (0.0624) (0.0649) (0.0621) (0.0621) (0.0621)
{0.0470} {0.0630} {0.0590} {0.0600} {0.0670} {0.0670}

Notes: The errors are generated as u = ρMu + ε, εi = σiεi, εi ∼ i.i.d.N (0, 1), σ2
i = di/5. See

Table 2 for more details.
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Table 5: Bias, (RMSE) and {sizes} for heteroskedastic errors, n = 1000

ρ KP-NLS KP-GMM MLAM1 MLAM2 KP-eff MLAM-eff
het. robust No Yes Yes Yes

spatial weight matrix: M1,n (8 or 2 neighbors)
−0.8 0.0221 -0.0019 -0.0018 -0.0005 0.0003 0.0002

(0.0424) (0.0342) (0.0348) (0.0250) (0.0242) (0.0241)
{0.0640} {0.0480} {0.0400} {0.0520} {0.0500} {0.0490}

−0.4 -0.0455 -0.0025 -0.0024 -0.0012 0.0003 0.0003
(0.0727) (0.0514) (0.0493) (0.0445) (0.0430) (0.0429)
{0.0650} {0.0410} {0.0410} {0.0430} {0.0570} {0.0560}

0.0 -0.0734 -0.0028 -0.0026 -0.0023 -0.0004 -0.0004
(0.0914) (0.0509) (0.0488) (0.0487) (0.0468) (0.0467)
{0.1880} {0.0360} {0.0400} {0.0400} {0.0490} {0.0490}

0.4 -0.0713 -0.0025 -0.0024 -0.0026 -0.0011 -0.0011
(0.0830) (0.0400) (0.0390) (0.0402) (0.0390) (0.0390)
{0.3490} {0.0320} {0.0380} {0.0400} {0.0440} {0.0460}

0.8 -0.0417 -0.0014 -0.0013 -0.0016 -0.0012 -0.0011
(0.0468) (0.0197) (0.0199) (0.0198) (0.0197) (0.0197)
{0.5210} {0.0290} {0.0400} {0.0400} {0.0380} {0.0370}

spatial weight matrix: M2,n (6 or 4 neighbors)
−0.8 -0.0081 -0.0018 -0.0015 -0.0008 -0.0001 -0.0001

(0.0575) (0.0568) (0.0544) (0.0522) (0.0516) (0.0515)
{0.0440} {0.0420} {0.0480} {0.0540} {0.0570} {0.0570}

−0.4 -0.0095 -0.0021 -0.0019 -0.0014 -0.0008 -0.0008
(0.0573) (0.0564) (0.0546) (0.0538) (0.0537) (0.0537)
{0.0450} {0.0430} {0.0480} {0.0580} {0.0560} {0.0560}

0.0 -0.0096 -0.0022 -0.0020 -0.0020 -0.0014 -0.0014
(0.0508) (0.0497) (0.0490) (0.0490) (0.0489) (0.0489)
{0.0460} {0.0430} {0.0480} {0.0490} {0.0500} {0.0500}

0.4 -0.0081 -0.0019 -0.0018 -0.0019 -0.0016 -0.0016
(0.0381) (0.0371) (0.0374) (0.0371) (0.0370) (0.0370)
{0.0470} {0.0440} {0.0470} {0.0460} {0.0410} {0.0410}

0.8 -0.0044 -0.0011 -0.0010 -0.0011 -0.0011 -0.0011
(0.0183) (0.0176) (0.0186) (0.0175) (0.0174) (0.0174)
{0.0470} {0.0430} {0.0460} {0.0410} {0.0410} {0.0410}

Notes: See Table 4.
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Table 6: Bias and (RMSE) for the spatial autoregressive model, n = 100

ρ̂ β̂
ρ ML MLAM1 GS2SLS ML MLAM1 GS2SLS

β = 1
−0.8 0.0105 –0.0100 –0.0175 0.0105 –0.0100 –0.0175

(0.1250) (0.1527) (0.2984) (0.1033) (0.1039) (0.1171)
−0.4 0.0042 0.0003 –0.0389 –0.0043 –0.0051 –0.0164

(0.1374) (0.1536) (0.2966) (0.0994) (0.0992) (0.1090)
0.0 –0.0118 –0.0111 –0.0249 –0.0001 –0.0008 –0.0077

(0.1326) (0.1402) (0.2755) (0.1005) (0.1004) (0.1063)
0.4 -0.0200 –0.0107 –0.0372 –0.0118 –0.0111 –0.0249

(0.1016) (0.1056) (0.2430) (0.1028) (0.1031) (0.1078)
0.8 -0.0108 –0.0044 –0.0201 0.0047 0.0015 –0.0028

(0.1059) (0.1066) (0.1091) (0.0523) (0.0565) (0.1313)
β = 0.5

−0.8 0.0159 –0.0075 –0.0774 0.0020 0.0003 –0.0270
(0.1442) (0.1718) (0.9158) (0.1022) (0.1019) (0.1317)

−0.4 –0.0015 –0.0083 –0.1404 –0.0010 –0.0016 –0.0249
(0.1593) (0.1750) (1.0009) (0.1028) (0.1030) (0.1500)

0.0 –0.0144 –0.0080 –0.1819 –0.0020 –0.0021 –0.0272
(0.1413) (0.1455) (0.9676) (0.0970) (0.0971) (0.1419)

0.4 –0.0175 –0.0045 –0.1646 –0.0056 –0.0062 –0.0241
(0.1160) (0.1182) (0.9583) (0.0997) (0.0997) (0.1368)

0.8 –0.0158 –0.0051 –0.0589 0.0014 –0.0011 –0.0078
(0.0565) (0.0613) (0.8154) (0.0999) (0.1000) (0.1249)

β = 0.1
−0.8 0.0164 –0.0114 0.5711 –0.0021 –0.0024 –0.0378

(0.1517) (0.1812) (4.3060) (0.0990) (0.0990) (0.2910)
−0.4 –0.0020 –0.0086 0.7920 0.0014 0.0015 –0.0185

(0.1665) (0.1773) (4.1379) (0.1012) (0.1014) (0.2764)
0.0 0.0006 0.0006 –0.0130 –0.0134 –0.0072 0.4847

(0.1613) (0.1666) (3.6199) (0.1020) (0.1021) (0.2428)
0.4 0.0034 0.0033 –0.0069 –0.0211 –0.0082 0.2432

(0.1230) (0.1347) (4.6602) (0.0986) (0.0988) (0.2474)
0.8 –0.0125 0.0040 0.2275 0.0026 0.0020 0.0007

(0.0585) (0.0910) (1.3377) (0.1005) (0.0990) (0.1320)

Notes: The data are generated by the model y = γWny + Xβ + ε, where ε ∼ N (0, I) and
Wn = M2,n (see table 1). Entries report bias (without brackets) and RMSE (round brackets).
ML indicates the maximum likelihood estimator as implemented in the Matlab Econometrics
Toolbox developed by James LeSage. The MLAM1 estimator is based on the moment equations
(30)–(32). GS2SLS is the GMM estimator based on the matrix of instruments Z = [X, WX, W2X].
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Appendix

Proof of Theorem 1

The moments of the MLAM estimator can be represented as

mk(ρ) = E

[
1
n

u′(I − ρMn)Ak,n(ρ)(I − ρM′n)u
]

= E

[
1
n

u′ Ãk,n(ρ)u
]

,

where

Ã1(ρ) = Mn − ρ(M′n Mn + M2
n) + ρ2M′n M2

n

Ã2(ρ) = Mn + ρ(M̃n −M2
n −M′n Mn) + ρ2(M′n M2

n − M̃n Mn −M′n M̃n) + ρ3M′n M̃n Mn.

A first order Taylor expansion around ρ0 yields

0 = mk,n(ρ̂) = mk,n(ρ0) + ψk,n(ρ̂− ρ0) + op(n−1/2),

where

ψk,n =
1
n

u′Dk,n(ρ0)u

and Dk,n(ρ0) =
∂Ãk,n(ρ)

∂ρ

∣∣∣∣∣
ρ=ρ0

.

It follows that

E[n(ρ̂− ρ0)
2] = E

[
nmk,n(ρ0)

2

ψ2
k,n

]
−→

n→∞

Vk

ψ2
k

,

where Vk is defined in (18) and ψk = lim
n→∞

E(ψk,n). The derivatives Dk,n(ρ0) can easily
be found by differentiating (14) and (15) yielding the results for ψk,n as presented in the
theorem.
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Proof of Theorem 2

Following Newey & McFadden (1994) the asymptotic distribution of the nonlinear
GMM estimator is given by

√
n(ρ̂opt − ρ0)

d→ N (0,Vρ),

where

Vρ =
[
D(ρ0)

′Υ(ρ0)D(ρ0)
]−1

,

D(ρ0) = lim
n→∞

E

(
∂mn(ρ)

∂ρ

)∣∣∣∣
ρ=ρ0

and Υ(ρ0) = lim
n→∞

Υn(ρ0).

Using the representation of the moment conditions as in 6 and 7 it follows that

∂mn(ρ)

∂ρ

∣∣∣∣
ρ=ρ0

=
∂

∂ρ

[
m1,n(ρ)
m2,n(ρ)

]∣∣∣∣
ρ=ρ0

=
1
n

∂

∂ρ

[
u′Bn(ρ)′MnBn(ρ)u
u′Bn(ρ)′MnBn(ρ)u

]∣∣∣∣
ρ=ρ0

=
1
n

∂

∂ρ

[
(u− ρMnu)′Mn(u− ρMnu)
(u− ρMnu)′Mn(u− ρMnu)

]∣∣∣∣
ρ=ρ0

=
1
n

[
u′(2ρ̂M′nM2

n −M′nMn −M2
n)u

u′(2ρ̂M′nMnMn −M′nMn −MnMn)u

]
.

The asymptotic variance follows straightforwardly.
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