
Modelling different kinds of spatial dependence in

stock returns

Matthias Arnold, Sebastian Stahlberg and Dominik Wied∗

Fakultät Statistik, TU Dortmund, Germany

January 27, 2014

Abstract

The paper modifies previously suggested GMM approaches to spatial autore-

gression in stock returns. Our model incorporates global dependencies, de-

pendencies inside industrial branches and local dependencies. As can be seen

from Euro Stoxx 50 returns, this combination of spatial modelling and finance

allows for superior risk forecasts in portfolio management.

Keywords. GMM estimation, heteroscedasticity, spatial dependence, stock

returns, Value at Risk

JEL subject classifications: C13, C51, G12.

∗Corresponding author: Dominik Wied, Fakultät Statistik, TU Dortmund, 44221 Dortmund,

Germany, email: wied@statistik.tu-dortmund.de, Phone: +49/231/755 3869, Fax: +49/231/755

5284.

1



1 Introduction and summary

Although spatial modelling of dependence structures has become very popular over

the last years (see e.g. Anselin, 1988, Cressie, 1991, LeSage and Pace, 2009, Baltagi

and Pirotte, 2011 and the references therein), it is not yet very popular in financial

applications. There is some literature on information spillovers where proximity

to innovation clusters or patent activity plays an important role (see e.g. Boasson

and MacPherson, 2001 or Boasson et al., 2005) and in which stock performance is

used as a measure for economic success. Another contribution is Eckel et al. (2011)

who measure the effects of geographical distance on stock market correlation via

a regression approach. Fernandez (2011) uses similarities of financial indicators to

define spatial linkages of stocks and estimates a spatial version of the capital asset

pricing model. Asgharian et al. (2011) also consider different linkages like economic

and monetary integration between countries to explain the propagation of country

specific shocks to other countries. The two latter papers are most closely connected

to our approach.

However, while both of them are mainly interested in investigating which spatial

linkages are the most relevant ones, our main contribution is in risk management. We

modify previously suggested spatial autoregressive models for stock returns in order

to compare three different kinds of spatial dependence and show by an out-of-sample

study of Euro Stoxx 50 returns that this can lead to more accurate forecasts for risk

measures than standard approaches like a factor model or the sample covariance

matrix.

Our model includes three different types of spatial dependence. The first one is a

general dependence which affects all stocks in the same way like previous perfor-

mances of stock markets in the USA or Asia. The second one is global in nature

and applies to firms that belong to the same industrial branch: Since global input

factors like commodity prices should have a similar effect on firms belonging to the

same branch, the corresponding stock returns should display a similar behavior. The

third one is a local form of dependence: Firms that are located in the same country

should display similar behavior because they are exposed to the same institutional

conditions like regulatory frameworks or the country-specific business cycle. It is
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natural to assume such a dependence structure and we can expect it to catch a lot

of cross sectional dependence despite its small number of parameters.

Many papers in the literature propose alternative kinds of spatial autoregressive

models. Among them are LeSage and Pace (2008) and Lee and Liu (2010) who

consider models with several weighting matrices, Lin and Lee (2010), Kelejian and

Prucha (2010) and Anselin (1988) who consider heteroscedastic errors or Badinger

and Egger (2011) who consider both of these aspects. The latter authors provide

a general higher-order cross-sectional spatial model with additional exogenous vari-

ables, spatial error autocorrelation and heteroscedastic innovations. Our approach

overlaps with their approach: It is partly a simplification of it fitting to our empir-

ical question, i.e. we provide a simple 3-order spatial lag model with no exogenous

variables or spatial error autocorrelation. However, as a new contribution we also

consider a time component what makes it necessary to also allow for serial depen-

dence in the data.

The parameters of the model are estimated by an easy to implement two stage

procedure. We circumvent the large number of variance parameters by choosing

our moment conditions in such a way that the variance parameters are not needed.

The parameters of spatial dependence are estimated by GMM similar to Kelejian

and Prucha (1999) and Kapoor et al. (2007). In a second step, given these GMM

estimates, estimation of the variance parameters is straightforward. Using results

of Hansen (1982), the GMM estimators of the correlation parameters can be shown

to be consistent and asymptotically normal, which allows for asymptotic confidence

intervals. In addition, we show how to estimate the variance parameters consistently.

Our two stage procedure should not be confused with the two stage procedure of

e.g. Badinger and Egger (2011) who estimate the common regression parameters

in two stages but due to the missing time component cannot estimate the variance

parameters consistently.
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2 Two step estimation procedure

In this section, we present the spatial autoregressive model for stock returns and

prove some results on the parameter estimates.

For t = 1, . . . , T , let yt be an n-dimensional random vector. In the cross-sectional

dimension, the components of yt are assumed to be spatially correlated where we

allow for three different kinds of spatial dependence:

yt = ρgWgyt + ρbWbyt + ρlWlyt + εt, t = 1, . . . , T. (1)

ρg denotes the general dependence parameter, ρb the parameter of dependence inside

branches and ρl the local dependence parameter. Wg,Wb and Wl are the respective

weighting matrices which are specified later. For the rest of this section and the

proofs, we change the notation for ease of exposition, i.e. we write W1 := Wg,W2 :=

Wb,W3 := Wl. Let A′ be the transpose of a given matrix A.

Define ρ := (ρg, ρb, ρl)
′. We maintain the following assumptions.

Assumption 1. 1. The sequence (yt : t ∈ Z) has zero mean, is stationary and

ergodic.

2. For i ∈ {1, 2, 3}, r = 1, . . . , n, s = 1, . . . , n, Wi,rs ≥ 0, Wi,rr = 0.

3. For i ∈ {1, 2, 3} and r = 1, . . . , n,
∑n

s=1Wi,rs = 1.

4. The parameter space S is defined as S = {ρ ∈ R3, |ρg|+ |ρb|+ |ρl| < 1}.

5. For t ∈ Z, Cov (εt) = diag{σ2
1, . . . , σ

2
n} =: Σ.

The spatial weight matrices W1, W2 and W3 are known; the elements on the main

diagonals are zero and the matrices are row-standardized. We assume that the whole

amount of spatial dependence is captured by the three types of spatial dependence

so that the innovations, i.e. the elements of εt, can be assumed to be uncorrelated.

However, they may be heteroscedastic. In our model, we do not include any ex-

planatory variables, but generalizations to cases where the expectation of yt is not 0

are straightforward under additional assumptions on the regressors since the spatial
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correlation structure (1) could then be applied to the disturbances of the corre-

sponding regression model. However, in the context of daily stock returns, the zero

mean assumption is plausible, see also Aue et al. (2009).

Partly, our model is a simplification of Badinger and Egger (2011) who allow for

an arbitrary number of weighting matrices, explicitely consider exogenous variables

and additionally allow for autoregression in the error terms. However, they do not

include a time component and therefore do not include any serial dependence as

we do with our ergodicity assumption. While they provide asymptotics in n, we

consider the case T →∞.

As long as Assumption 1.3 holds, the inverse of the matrix (In−ρgW1−ρbW2−ρlW3)

exists and our model leads to

Cov(yt) = (In − ρgW1 − ρbW2 − ρlW3)
−1 Σ (In − ρgW ′

1 − ρbW ′
2 − ρlW ′

3)
−1

=: V. (2)

Of course, the parameters could be estimated by way of maximum likelihood. As-

suming normality and independence over time, the likelihood function would be

L(ρg, ρb, ρl,Σ) = (2π)−
nT
2 (detV )−

T
2 exp

(
−1

2

T∑
t=1

y′tV
−1yt

)
.

Altogether, our model contains n + 3 parameters, the three correlation parameters

ρg, ρb and ρl and n parameters of variance, σ2
i . Thus, the calculation of the maxi-

mum likelihood estimates can be computationally expensive, especially if n is large.

For a model with only one kind of spatial dependence but additional regressors,

Lin and Lee (2010) show that maximum likelihood estimation is inconsistent if the

heteroscedasticity is not taken into account.

As an alternative, we suggest a two step estimation procedure which is easy to

compute. First, we estimate the correlation parameters by generalized method of

moments along the lines of Kelejian and Prucha (1999) or Kapoor et al. (2007). We

will show that this step does not depend on the parameters of variance. Second,

given the estimated correlation parameters it is straightforward to estimate the

variance parameters.

The GMM estimator for the correlation parameters uses the following three moment
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conditions:

E (ε′tW1εt) = tr(W1Σ) = 0,

E (ε′tW2εt) = tr(W2Σ) = 0,

E (ε′tW3εt) = tr(W3Σ) = 0.

Note that the variance parameters σ2
i do not enter the moment conditions. Replacing

εt by

εt = (In − ρgW1 − ρbW2 − ρlW3) yt

and making use of the weak-sense stationarity of the yt gives the theoretical system

of equations

Γλ+ γ = 0,

where

λ := λ(ρ) :=
(
ρg, ρb, ρl, ρ

2
g, ρ

2
b , ρ

2
l , ρgρb, ρgρl, ρbρl

)′
and for i, j ∈ {1, 2, 3}, the elements of Γ ∼ (3× 9) and γ ∼ (3× 1) are defined by

Γi,j = E (−y′t (Wi +W ′
i )Wjyt) , (3)

Γi,3+j = E
(
y′tW

′
jWiWjyt

)
, (4)

Γi,7 = E (y′tW
′
1 (Wi +W ′

i )W2yt) , (5)

Γi,8 = E (y′tW
′
1 (Wi +W ′

i )W3yt) , (6)

Γi,9 = E (y′tW
′
2 (Wi +W ′

i )W3yt) , (7)

γi = E (y′tWiyt) .

Let G and g be the empirical counterparts of Γ and γ, i.e., for i ∈ {1, 2, 3}, j ∈

{1, . . . , 9}, Gi,j and gi are given by Γi,j and γi with the expectation operator replaced

by a sample average, respectively. The GMM estimator for ρg, ρb and ρl is defined

as

ρ̂GMM := (ρ̂g, ρ̂b, ρ̂l)
′
GMM := arg min

ρ∈S
||Gλ+ g||.

The theoretical term Γλ + γ is equal to zero for the true parameter values. Our

GMM estimator is calculated by finding the values for ρg, ρb and ρl for which the
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corresponding empirical system Gλ + g is closest to zero. Compared to the ML

estimator of the model parameters, this GMM estimator is easy to calculate: We

just have to minimize ||Gλ+ g|| with respect to ρg, ρb and ρl. Even for large n, this

is easy to handle. In particular, the parameters of variance σ2
i are not needed to

calculate the GMM estimator for the correlation parameters. The following theorem

states consistency and asymptotic normality of the GMM estimator for T →∞. For

the proof, we need an additional assumption.

Assumption 2. 1. The true parameter ρ0 ∈ S is the unique solution of the

theoretical system of equations, i.e.

Γλ+ γ = 0⇔ ρ = ρ0.

2. The matrix E
(
∂(Gλ+g)

∂ρ
(y1, ρ0)

)
= d0 = Γλ(1) with

λ(1) =



1 0 0

0 1 0

0 0 1

2ρg 0 0

0 2ρb 0

0 0 2ρl

ρb ρg 0

ρl 0 ρg

0 ρl ρb



.

exists, is finite and has full rank.

3. For

f(yt, ρ0) =


ε′tW1εt

ε′tW2εt

ε′tW3εt

 ,

it holds that, for j →∞, E(f(yt, ρ0)|f(yt−j, ρ0), f(yt−j−1, ρ0), . . .) converges in

mean square to zero and that, for

vj := E(f(yt, ρ0)|f(yt−j, ρ0), f(yt−j−1, ρ0), . . .)

−E(f(yt, ρ0)|f(yt−j−1, ρ0), f(yt−j−2, ρ0), . . .),
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the infinite sum
∑∞

j=0 E(v′jvj)
1/2 is finite.

Theorem 2.1. Under Assumptions 1 and 2, for T →∞,

1. ρ̂GMM →p ρ0

2.
√
T (ρ̂GMM − ρ0)→d N(0, d−10 SW (d−10 )′) with

SW =
∞∑

t=−∞

E(f(y1, ρ0)f(yt, ρ0)
′).

Remark. For i, j ∈ {1, 2, 3}, the entries of E(G) = Γ given in (3)-(7) can be

calculated as

Γi,j = tr ((Wi +W ′
i )WjV ) ,Γi,3+j = tr

(
W ′
jWiWjV

)
,

Γi,7 = tr (W ′
1 (Wi +W ′

i )W2V ) ,Γi,8 = tr (W ′
1 (Wi +W ′

i )W3V ) and

Γi,9 = tr (W ′
2 (Wi +W ′

i )W3V ) .

To calculate confidence intervals in finite samples, d0 and SW can be replaced by

consistent estimates. We suggest using G and the estimated correlation parameters

for the matrix d0 as well as a kernel-based variance estimator for SW , see e.g. de Jong

and Davidson (2000). The latter requires choosing a kernel and a bandwidth.

The proof for Theorem 2.1 is basically an application of Hansen (1982). Details

are given in the appendix. Simulation results which are not reported here but are

available from the corresponding author upon request show that the estimation

method works well even in small samples.

Given the estimates for the correlation parameters, estimation of the parameters of

variance in the second step is straightforward: We just take the averages over the

estimated ε̂2i,t:

σ̂2
i :=

1

T

T∑
t=1

ε̂2i,t :=
1

T

T∑
t=1

[(In − ρ̂gW1 − ρ̂bW2 − ρ̂lW3) yt]
2
i

=
1

T

T∑
t=1

e′i (In − ρ̂gW1 − ρ̂bW2 − ρ̂lW3) yty
′
t (In − ρ̂gW ′

1 − ρ̂bW ′
2 − ρ̂lW ′

3) ei,

where ei is the i-th unit vector. Consistency then mainly follows with the ergodic

theorem:

Theorem 2.2. Under assumptions 1 and 2, for T →∞ and i = 1, . . . , n, σ̂2
i →p σ

2
i .
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3 Application to stock returns

We analyze spatial dependencies in the daily stock returns of the Euro Stoxx 50

members in the composition of January 2010 for the period from 2003 until 2009,

using adjusted stock prices from Datastream which we transfer to log returns.

Table 1 shows the partitioning of the Euro Stoxx 50 members into branches and

countries.

- Table 1 here -

Nokia and CRH are the only representatives of their home countries, respectively,

but in order to avoid singularities, groups must not consist of only one member.

We consider two different groupings. In model 1, we impose a group called
”
others“

for Finland and Ireland, where only one company is part of the Euro Stoxx 50,

respectively. In model 2, we put Nokia and CRH to the Benelux group which would

then be labeled
”
small countries“. According to these groupings, the adjacency

matrices are constructed in the following way.

The off-diagonal elements of the general adjacency matrix Wg are chosen as the

weights of the firms in the Euro Stoxx 50. In Wb and Wl, the element in the

ith row and jth column is nonzero if the corresponding stocks belong to the same

branch (Wb) or country (Wl). In each row, the nonzero entries again consist of the

stock weights in the Euro Stoxx 50. Finally, the three adjacency matrices are row-

standardized. There are two reasons for choosing the non-zero elements proportional

to market capitalizations: First, we expect big stocks to have stronger influence on

“neighboring” stock returns than small stocks. Second, this provides the following

economic interpretation. For each day t, t = 1, . . . , T , the spatial autoregressive

model

yt = ρgWgyt + ρbWbyt + ρlWlyt + εt (8)

regresses the stock returns on three components: The weighted market return of

the same day (as measured by Wgyt), the weighted market return of the respective

industrial branches (Wbyt) and the weighted local market return of the respective

countries (Wlyt).
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The elements of the innovation vector εt are heteroscedastic, but there is no spa-

tial correlation among the innovations. We checked this assumption by performing

Moran’s I tests on the model residuals for the matrices Wg, Wb and Wl, respectively.

These tests do not reveal evidence for spatial correlation among the innovations.

For ρb = ρl = 0, the spatial model (8) would correspond to a one factor model

yit = αi + βiymt + ηit

with constant βi for all stocks, where ymt is the market return on day t. The spatial

model replaces the 50 different βi of the factor model by only two additional spatial

lags, one for dependencies inside industrial branches and one for local dependencies.

3.1 Evolution of spatial dependencies

We estimate the dependence parameters ρg, ρb and ρl on rolling windows of 250

trading days and use part 2 of Theorem 2.1 to calculate pointwise asymptotic 95%

confidence intervals, thereby using the Bartlett kernel and bandwidth [log(T )] for

the long-run variance estimator.

Figure 1 shows the results.

- Figure 1 here -

For the whole data set, general dependence is the largest in both models. In model

2, where all companies of small countries are put together in one group, local de-

pendence is smaller than in model 1 (perhaps because the group of small countries

contains countries which are not really locally connected), whereas general depen-

dence increases correspondingly. Dependence inside industrial branches is basically

the same for both models. This leads to the fact that in model 2, dependence inside

branches is almost always higher than local dependence. Also in model 1, depen-

dence inside branches is mostly either similar or higher than local dependence.

The pointwise asymptotic confidence intervals very rarely include zero for the three

kinds of dependence over the whole time span. For both models, general dependence

strongly increases after insolvency of Lehman Brothers in September 2008, whereas

dependence between branches decreases correspondingly. This effect goes along with
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much wider confidence intervals for these two dependencies. It seems to be more

difficult to distinguish between general dependence and dependence inside industrial

branches in times of crises. Comparing models 1 and 2, we conclude that the results

are very similar so that sensitivity with respect to the choice of weight matrices

seems to be limited.

3.2 Risk estimation

We investigate the utility of our spatial approach to model stock returns by com-

paring the accuracy of predicted Values at Risk (VaR). Replacing the unknown

parameters in (2) by their estimates yields an estimate V̂spat for the stock returns’

covariance matrix V . This estimate can be compared to alternative estimates of V .

This study considers two alternative estimates of V : The sample covariance matrix

V̂samp = 1
T−1

∑T
t=1(yt − ȳ)(yt − ȳ)′ and the estimated covariance matrix resulting

from a one factor model described in e.g. Jorion (2001), p. 169 ff. The latter one

models the return of stock i by

yit = αi + βiymt + ηit, (9)

where ymt is the return of a market portfolio and the idiosyncratic terms ηit may

be heteroscedastic with variances σ2
ηi, but are assumed to be uncorrelated across

assets. The one factor model implies that the stock returns’ covariance matrix can

be written as

Vfact = ββ
′
σ2
m +Dη,

where β = (β1, . . . , βn)
′

and Dη = diag(σ2
η1, . . . , σ

2
ηn). To estimate Vfact, we take the

returns of the Euro Stoxx 50 index as market returns and estimate (9) separately

for all stocks.

Each of the three models suggests a different vector of portfolio weights to minimize

portfolio variance. The minimizing weights are given by

V̂ −1τ

τ ′V̂ −1τ
,

where τ denotes a vector of ones. The three different approaches to model depen-

dencies in stock returns can thus be compared in the following way: For each of
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the models, the resulting covariance matrix is calculated on a rolling window of 100

days. This provides minimal variance portfolio weights as well as an estimate for

the corresponding portfolio variance, which is given by

σ̂2
port :=

(
τ ′V̂ −1τ

)−1
.

The resulting Gaussian VaR at level α is

V̂ aRα := uα

√
σ̂2
port,

where uα is the α-quantile of the standard normal distribution. Alternatively, one

could use quantiles from some heavy tailed distribution. We stay with the normal

quantiles for two reasons. On the one hand, the portfolio returns are weighted

averages of 50 single returns so that deviations from the normal distribution should

be smaller than for single stock returns. On the other hand, the choice of some other

distribution would affect all models in the same way so that the comparison of the

models would remain the same.

For each α and each of the three models, we thus get daily updated estimated VaR.

We compare these with the realized portfolio returns of the following day. For a

good model, the percentage of days where the realized portfolio return is smaller

than V̂ aRα should be close to α. Consequently, we assess model performance by

comparing α to the share of days where the portfolio return falls below V̂ aRα. Figure

2 shows the results for α ∈ (0, 0.05).

- Figure 2 here -

Indeed, the spatial model seems to be more adequate to estimate risk than the other

two approaches. Consider e.g. the estimated VaR for α = 0.01. For the spatial

model, portfolio returns fall below V̂ aRα in 2.3% of all days, whereas this happens

much more frequently for the one factor model (6.9%) or the sample covariance

matrix (12.1%). This pattern can be found for all values of α considered here. For

α = 0.05, the actual quantiles are 12.7% for the one factor model and 19.3% for

the sample covariance matrix, whereas the portfolio returns fall below the V̂ aRα

produced by the spatial model in only 6.3% of all cases. We conclude that the

spatial approach can be useful to measure risk adequately.
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4 Discussion

We have proposed a spatial autoregressive model for financial data, which is a rather

novel approach in the literature, and have seen that a lot of cross sectional depen-

dence is captured by it.

The model contains three spatial lags which represent the market returns of (i)

the whole market, (ii) the industrial branches and (iii) the countries. In an out-of-

sample study to forecast VaR for minimum variance portfolios, the model performs

surprisingly well compared to a one factor model or the sample covariance matrix.

The reason why the spatial approach seems to be more adequate to estimate risk

might be that it is indeed able to capture a lot of cross sectional dependence while

at the same time, the model is comparatively sparse so that sampling errors for

the spatial model are smaller than for the other two models. To this end, note

that the number of unknown parameters to be estimated is different for the three

models: The sample covariance matrix does not imply any structure at all so that

50 ∗ 51/2 = 1275 parameters have to be estimated, whereas the one factor model

includes only 50 + 50 + 1 = 101 unknown parameters. This number is reduced

even further by the spatial model which imposes more structure and consists of

only 50 + 3 = 53 parameters. This is due to the fact that only three correlation

parameters have to be estimated instead of 50 β
′
is.

The results suggest that in order to estimate risk accurately, it pays off to impose a

sparse structure for the stock returns’ covariance matrix.
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A Proofs

Proof of Theorem 2.1.1

This follows by standard arguments as e.g. presented in Poetscher and Prucha

(1991), Amemiya (1973) or Jennrich (1969), using the uniform convergence of Gλ+g

to Γλ+ γ and the identifiability condition.

Proof of Theorem 2.1.2

For the asymptotic normality, we apply Theorem 3.1 of Hansen (1982), which pro-

vides a general result about the asymptotic normality of GMM estimators. Assump-

tion 3.1 of Hansen (1982) is fulfilled by our dependence assumption, Assumption

3.2 by our Assumption 1.4, Assumptions 3.3 and 3.4 by the fact that Γλ + γ is

a polynomial in ρ and our Assumption 2.2, Assumption 3.6 by choosing the unity

matrix. Assumption 3.5 is fulfilled because of our Assumption 2.3 and the fact that

S0
W := E (f(y1, ρ0)f(y1, ρ0)

′) exists and is finite, which can be seen by the following

calculations:
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For i, j ∈ {1, 2, 3},

S0
W,ij = E (ε′1Wiε1ε

′
1Wjε1)

= E

(
n∑
r=1

n∑
s=1

(ε1,rε1,sWi,rs) ·
n∑
u=1

n∑
v=1

(ε1,uε1,vWj,uv)

)

=
n∑
r=1

n∑
s=1

n∑
u=1

n∑
v=1

Wi,rsWj,uvE (ε1,rε1,sε1,uε1,v)

=
n∑
r=1

Wi,rrWj,rrE
(
ε41,r
)

+
n∑
r=1

n∑
s=1

Wi,rrWj,ssσ
2
rσ

2
s

+
n∑
r=1

n∑
s=1

Wi,rsWj,rsσ
2
rσ

2
s +

n∑
r=1

n∑
s=1

Wi,rsWj,srσ
2
rσ

2
s

− 3
n∑
r=1

Wi,rrWj,rr(σ
2
r)

2

=
n∑
r=1

n∑
s=1

Wi,rsWj,rsσ
2
rσ

2
s +

n∑
r=1

n∑
s=1

Wi,rsWj,srσ
2
rσ

2
s ,

where the last line follows from the fact that Wi,rr = 0 for all i and r. Since this is

a finite sum of entries of the weighting matrices and variances of ε (which are both

bounded), Assumption 3.5 follows.

Now, we get the convergence

√
T (ρ̂GMM − ρ0)→d N(0, d−10 SW (d−10 )′).

The matrix d0 is given by

E

(
∂f

∂ρ
(y1, ρ0)

)
= E

(
∂(Gλ+ g)

∂ρ
(y1, ρ0)

)
,

which anon is equal to E(G)λ(1) = Γλ(1). The expression for the entries in Γ in

the Remark then follows from the independence of the yt and a formula for the

expectation of quadratic forms, namely

E(ε′Aε) = tr(ACov(ε)) + E(ε)′AE(ε).

Weak consistency directly follows from the asymptotic normality. �

Proof of Theorem 2.2

First, we define the quantity

σ̃2
i =

1

T

T∑
t=1

ε2i,t =
1

T

T∑
t=1

[(In − ρgW1 − ρbW2 − ρlW3)yt]
2
i .
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We have

σ̂2
i − σ2

i = (σ̂2
i − σ̃2

i ) + (σ̃2
i − σ2

i ) =: A+B.

To show convergence of σ̂2
i − σ2

i against 0 in probability, we thus have to show that

A and B converge to 0 in probability. The latter follows from the ergodic theorem

and the identity E(ε2i,t) = σ2
i . For the convergence of A, write

A = e′i (In − ρ̂gW1 − ρ̂bW2 − ρ̂lW3)
1

T

T∑
t=1

yty
′
t (In − ρ̂gW ′

1 − ρ̂bW ′
2 − ρ̂lW ′

3) ei

− e′i (In − ρgW1 − ρbW2 − ρlW3)
1

T

T∑
t=1

yty
′
t (In − ρgW ′

1 − ρbW ′
2 − ρlW ′

3) ei.

The theorem then follows from the consistency of ρ̂GMM and the ergodic theorem

yielding 1
T

∑T
t=1 yty

′
t →p E(y1y

′
1). �
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Table 1: Partitioning of Euro Stoxx 50 members into branches and countries in model

1; groups
”
Benelux“ and

”
others“ are merged to the new group

”
small countries“ in

model 2

Finance Aegon, Allianz, AXA, Banco Bilbao, Banco Santander,

BNP, Crédit Agricole, Deutsche Bank, Deutsche Börse,

Generali, ING, Intesa, Münchener Rück,

Société Générale, Unicredit

Automobil Daimler, VW

Energy Alstom, E.ON, ENEL, ENI, Iberdrola, Repsol, RWE,

SUEZ, Total

Telecom and Media Deutsche Telekom, France Telecom, Telecom Italia,

Telefonica, Vivendi

Pharma and Chemicals Air Liquide, BASF, Bayer, Sanofi

Consumer Electronics Nokia, Philips, SAP, Siemens, Schneider

Consumer retail Anheuser Busch, Carrefour, Danone, L’Oreal, LVMH,

Unilever

Basic Industry Arcelor Mittal, CRH, Saint Gobain, Vinci

Benelux Aegon, Anheuser Busch, Arcelor, ING, Philips,

Unilever

France Air Liquide, Alstom, AXA, BNP, Carrefour, Crédit

Agricole, France Telecom, Danone, L’Oreal, LVMH,

Saint Gobain, Sanofi, Schneider, Société Générale,

SUEZ, Total, Vinci, Vivendi

Germany Allianz, BASF, Bayer, Daimler, Deutsche Bank,

Deutsche Börse, Deutsche Telekom, E.ON, Münchner

Rück, RWE, SAP, Siemens, VW

Italy Generali, ENEL, ENI, Intesa, Telecom Italia,

Unicredit

Spain Banco Bilbao, Banco Santander, Iberdrola, Repsol,

Telefonica

Others CRH, Nokia
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Figure 1: Three kinds of spatial dependence with pointwise confidence bounds,

estimated in rolling windows of 250 trading days, model 1 (above) and model 2

(bottom)
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Figure 2: Estimated VaR for different models
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