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Abstract

We suggest an improved GMM estimator for the autoregressive parameter of a spa-

tial autoregressive error model by taking into account that unobservable regression

disturbances are different from observable regression residuals.
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1 Introduction and Summary

Disturbances of regression models are typically not observable, so inference on the dis-

turbances must rely on the regression residuals. It is well known that under general

conditions, the residuals converge to the disturbances when the sample size increases,

see e.g. Rao and Toutenburg (1995). However, the statistical properties of the distur-

bances and the residuals are different in finite samples.

This paper considers a linear regression model where the disturbances are generated

by a spatial autoregressive model introduced by Cliff and Ord (1973) and where the

parameter of main interest is the spatial autoregressive parameter.

Since the calculation of the maximum likelihood estimator can be computationally

expensive, Kelejian and Prucha (1999) suggest a generalized method of moments (GMM)

estimator, which uses three theoretical moments of the disturbances and equates them to
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the corresponding empirical moments of the residuals. This estimator has been applied

to industrial specialization by Tingvall (2004), to microlevel data by Bell and Bockstael

(2000) and to agricultural data by Schlenker et al. (2006) and Anselin et al. (2004). It

has also been extended in several ways, for example to panel data by Druska and Horrace

(2004) and to systems of simultaneous equations by Kelejian and Prucha (2004).

We suggest a variation of this estimator that is motivated by the following argument:

If the empirical moments must rely on the residuals, the theoretical moments should

be calculated in terms of the residuals, too. The computational costs are of the same

order of magnitude for both estimators. Although both estimators coincide as sample

size increases, our version is superior in finite samples, both in terms of bias and mean

squared error. As a consequence, significance tests for the regression coefficients are less

distorted because estimation of the corresponding covariance matrix is more accurate.

An empirical example illustrates our results. For a data set of Indonesian rice farms

previously analyzed by Erwidodo (1990) and Druska and Horrace (2004), statistically

significant effects of some of the covariates disappear if we implement the proposed

modification.

In the following, we restrict ourselves to ordinary least squares regression in order to

keep notation as simple as possible. The main idea however also applies to generalized

least squares or nonlinear regression.

2 The Model and the Main Result

We consider a linear regression model

y = Xβ + u, (1)

where y is the (n × 1)-vector of observations on the dependent variable, X is the non-

stochastic (n × k)-matrix on the explanatory variables and β is the (k × 1)-vector of

unknown model parameters. We assume that u, the (n × 1)-vector of disturbances, is

generated by a spatial autoregressive model,

u = ρWu+ ε, (2)

where W (n× n) is a weighting matrix of known constants, ρ is a scalar parameter and

ε is an (n× 1)-vector of innovations. We impose the following assumptions.

Assumption 1. (a) All diagonal elements of W are zero. (b) The row sums of W are

equal to one,
∑n

j=1wij = 1 ∀ i = 1, . . . , n. (c) |ρ| < 1.

Assumption 2. The innovations ε1, . . . , εn are independently and identically distributed

with zero mean and variance σ2, where the variance is bounded by some positive constant

b, 0 < σ2 < b <∞. Additionally, E(ε4i ) <∞ ∀ i ∈ {1, . . . , n}.
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Assumption 3. The elements of X are nonstochastic and bounded in absolute value by

some 0 < cX <∞. Further, X has full column rank, and the matrix QX = limn→∞
1
n
X

′
X

is finite and nonsingular.

Assumption 1 ensures that the matrix I − ρW is nonsingular so that we have u =

(I − ρW )−1ε and

Cov(u) = σ2(I − ρW )−1(I − ρW ′
)−1. (3)

Since u is not observable, estimation of ρ and σ2 must rely on û, the vector of

regression residuals. For the case of OLS-regression, û is given by û = y − Xβ̂ = Mu,

where M = I −X(X
′
X)−1X

′
, and β̂ = (X

′
X)−1X

′
y is the OLS-estimator of β.

In this situation, Kelejian and Prucha (1999) suggest a GMM estimator for ρ and σ2

that uses three moments of ε, namely

E

(
1

n
ε
′
ε

)
= σ2, E

(
1

n
ε
′
W

′
Wε

)
=
σ2

n
tr
(
W

′
W
)
, E

(
1

n
ε
′
W

′
ε

)
= 0. (4)

With the help of equation (2), the sample counterpart of (4) can be written as

G
(
ρ, ρ2, σ2

)′
− g = v

(
ρ, σ2

)
,

where

G =


2
n
û

′
Wû − 1

n
û

′
W

′
Wû 1

2
n
û

′
W

′
WWû − 1
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û

′
W

′
W

′
WWû 1

n
tr
(
W

′
W
)

1
n
û

′ [
W +W

′]
Wû − 1
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û

′
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′
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and

g =

(
1

n
û

′
û,

1

n
û

′
W

′
Wû,

1

n
û

′
Wû

)′

.

The nonlinear least squares estimator of Kelejian and Prucha (1999) for ρ and σ2 is

defined as(
ρ̂KP , σ̂

2
KP

)
= argmin

{
v
(
ρ, σ2

)′
v
(
ρ, σ2

)
: ρ ∈ [−a, a], σ2 ∈ [0, b]

}
, (5)

where a ≥ 1 and b <∞.

Our version proceeds as follows: If the unobservable disturbances u have to be re-

placed by the regression residuals û, why not calculate the moment conditions (4) also

in terms of ε̂ = Mε = Mu − ρMWu instead of ε? Therefore, we suggest an estimator

that is based on the moments of Mε corresponding to (4):

E

(
1

n
(Mε)

′
Mε

)
=

σ2

n
tr(M), (6)

E

(
1

n
(WMε)

′
WMε

)
=

σ2

n
tr
(
MW

′
W
)
, (7)

E

(
1

n
(WMε)

′
Mε

)
=

σ2

n
tr(WM), (8)
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where we use the fact that M is an orthogonal projector. If we multiply (2) by M and

WM , respectively, we get

Mε = Mu− ρMWu, (9)

WMε = WMu− ρWMWu. (10)

Plugging equations (9) and (10) into the moment conditions (6)-(8) yields

1

n
E
(
u

′
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)
− 2ρ

n
E
(
u

′
MWu

)
+
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n
E
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u
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n
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Finally, for every (n × n)-matrix A, the theoretical moments E
(
u

′
Au
)

are replaced by

their sample counterparts û
′
Aû. SinceMu = û and tr(M) = n−k

n
, the sample counterpart

to (6) - (8) can be written as

H
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and h = g. Our nonlinear least squares estimator for ρ and σ2 is defined as(

ρ̂RB, σ̂
2
RB

)
= argmin

{
w
(
ρ, σ2

)′
w
(
ρ, σ2

)
: ρ ∈ [−a, a], σ2 ∈ [0, b]

}
, (11)

where a ≥ 1 and b <∞.

The following theorem states the asymptotic equivalence of (ρ̂KP , σ̂
2
KP ) and

(ρ̂RB, σ̂
2
RB).

Theorem. Under assumptions 1-3, for n→∞(
ρ̂RB, σ̂

2
RB

)
−
(
ρ̂KP , σ̂

2
KP

) P−→ 0.

Proof. Because of assumption 3, for large n the elements of X
(
X

′
X
)−1

X
′

are bounded

by the corresponding elements of
kc2X
n
Q−1X

n→∞−→ 0 so that M = I − X
(
X

′
X
)−1

X
′ n→∞−→

I and thus H
P−→ G as n → ∞. Since g = h, w(ρ, σ2)

P−→ v(ρ, σ2), so that the

minimization problems (11) and (5) coincide for n → ∞ because w (ρ, σ2) and v (ρ, σ2)

are continuous functions of ρ and σ2.
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As a consequence of our theorem, (ρ̂RB, σ̂
2
RB) shares the asymptotic properties of

(ρ̂KP , σ̂
2
KP ) given in theorems 1 and 2 of Kelejian and Prucha (1999): (ρ̂RB, σ̂

2
RB) is a

consistent estimator for (ρ, σ2), the feasible GLS estimator β̂FG is a consistent estimator

for β and the asymptotic covariance matrix of β̂FG can be estimated consistently, too.

However, the finite properties of both estimators are different since (ρ̂RB, σ̂
2
RB) ac-

counts for the difference between disturbances u and residuals û. To illustrate this

effect, we solve (5) with G and g replaced by their expectations, respectively. Let

A :=E
(
G

′)
E(G) and a := E

(
G

′)
E(g), then(

[E(G)]
(
ρ, ρ2, σ2

)′
− E(g)

)′ (
[E(G)]

(
ρ, ρ2, σ2

)′
− E(g)

)
= a22ρ

4 + (a12 + a21)ρ
3 + (a11 − 2a2)ρ

2 + (a23 + a32)ρ
2σ2

+(a13 + a31)ρσ
2 − 2a1ρ+ a33σ

4 − 2a3σ
2, (12)

where aij and ai, i, j = 1, 2, 3, are the elements of the matrix A and the vector a,

respectively. In general, the formulas for the minimizing values of ρ and σ2 in (12) are

complicated, but for ρ = 0, (12) reduces to a33σ
4 − 2a3σ

2. In this case, the minimizing

value for σ2 is given by

σ̃2 =
a3
a33

= σ2 ·
n(n− k) + tr

(
W

′
W
)

tr
(
W

′
WM

)
n2 + tr (W ′W )2

< σ2.

Carrying out the corresponding calculations for the new estimator with B :=E
(
H

′)
E(H)

and b := E
(
H

′)
E(h), we find that the objective function in (11) with H and h replaced

by their expectations is minimized by

σ̃2 =
b3
b33

=
σ2

n2

(
[tr(M)]2 + tr

(
MW

′
W
)

tr
(
MW

′
WM

)
+ tr(WM)tr

(
MW

′
M
))

1
n2

(
[tr(M)]2 + [tr (MW ′W )]2 + [tr(WM)]2

) = σ2,

where we made use of the fact that the trace of a matrix product is invariant against

cyclic permutations of the matrices.

The next section compares the finite sample performance of (ρ̂RB, σ̂
2
RB) and (ρ̂KP , σ̂

2
KP )

by way of Monte Carlo simulation.

3 Some finite sample Monte Carlo evidence

We compare the finite sample properties of (ρ̂RB, σ̂
2
RB) and (ρ̂KP , σ̂

2
KP ) for n = 20, 100,

400, ρ = −0.5, 0, 0.5 and σ2 = 1. The matrix W is specified such that each element of

ui is directly related to the three elements immediately after and immediately before it.

For the first three and the last three elements of u, we imply a circular setting such that

for example u1 is directly related to u2, u3, u4, un−2, un−1 and un. The row sums of W
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are standardized to one. Thus, in each row of W , six elements are equal to 1
6

and the

other elements are equal to zero. With respect to the regression model (1), we consider

X =

 1 . . . . . . . . . . . . . . . . . . 1

1 . . . . . . 1 0 . . . . . . 0

1 0 . . . . . . . . . . . . 1 0


′

,

the model matrix of a regression on an intercept and two binary regressors. For each

combination of n and ρ, we generated 10, 000 realizations of the disturbance vector u

corresponding to the spatial autoregressive model (2), where the components of ε are

i.i.d. N(0, 1).

- Table 1 here -

The left part of Table 1 shows the simulated bias and MSE of both estimators for

ρ. For all sample sizes, the bias of ρ̂RB is 65− 80% smaller than the bias of ρ̂KP . As a

consequence, the MSE can also be reduced by around 45% for n = 20, 20% for n = 100

and 5% for n = 400 if we use ρ̂RB instead of ρ̂KP to estimate ρ.

With respect to the estimators for σ2, the middle part of Table 1 shows the same

positive effect for the bias and the MSE. The bias reductions are in line with analyt-

ical findings because the
”
expected“ objective function (12) is minimized by the true

parameters.

The last three columns show empirical null rejection probabilities for significance tests

on the regression coefficients. To perform such tests, the disturbance covariance matrix

is estimated by plugging in an estimator for ρ and σ2 in (3). Consequently, a less biased

estimation of ρ and σ2 results in a more accurate estimation of (3). The size distortion

of these tests can be reduced by 50% if we use (ρ̂RB, σ̂
2
RB) instead of (ρ̂KP , σ̂

2
KP ). We

conclude that finite sample properties can be improved if we account for the differences

between residuals and disturbances: The bias of the estimators for ρ and σ2 can be

reduced by approximately 75% and half of the size distortion of significance tests can be

avoided, and these effects stay stable even for larger sample sizes.

Kelejian and Prucha (1999) use this kind of spatial weighting matrix W labeled
”
3

ahead and 3 behind“ among others for their simulations. We also ran simulations for

other matrices W called
”
1 ahead and 1 behind“ or

”
5 ahead and 5 behind“. The

results of these simulations agree with the ones presented in table 1 with respect to our

modification.

4 Application to Indonesian rice farming

We illustrate our results with an empirical analysis of Indonesian rice farming data. It

comprises data of 171 rice farms over six growing seasons. The farms are located in six

6



different villages. We use a standard fixed effects model to regress the output (ln(rice))

on the covariates seed, urea, phosphate (TSP), labor and land as well as dummies for pes-

ticides (DP), high yield varieties (DV1), mixed varieties (DV2) and wet growing seasons

(DSS). For a detailed description of the data see Erwidodo (1990). The disturbances are

assumed to be spatially correlated across cross-sectional units where the typical element

wij of the spatial weighting matrix W is positive if observations i and j belong to (a)

farms located in the same village and (b) the same growing season. The row sums of W

are standardized to one.

First, we only use data of the three wet growing seasons so that n = 513. We estimate

ρ and σ2 in two ways, once following Kelejian and Prucha (1999) and once by our new

residual based approach. For each case, the regression results of the corresponding

feasible GLS procedure are given. Secondly, we repeat this analysis by using the total

of n = 1026 data points.

- Table 2 here -

Table 2 shows that for both models, the residual based estimates of ρ and σ2 are

larger than in the standard approach. This corresponds to the simulation findings that

downward bias is reduced. In consequence, the resulting t-statistics are smaller when

we account for the differences between residuals and disturbances. Although the sample

sizes are even larger than in our simulations, the results implied are essentially different:

For the wet seasons, the use of phosphate (TSP) is no longer statistically significant on

a 5%-level if we use residual based estimates. The same holds true for the whole data

set on a 1%-level with respect to the effects of high yielding varieties (DV1) and TSP.

Again, this corresponds to our simulation findings that overrejection probabilities can be

reduced by half if one accounts for the differences between residuals and disturbances.
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Table 1: Bias, MSE and empirical null rejection probabilities, α = 0.05 nominal level

n ρ Bias MSE Bias MSE tβ1 tβ2 tβ3

20 −0.5 ρ̂KP -0.607 1.039 σ̂2KP -0.276 0.159 0.048 0.089 0.042

20 −0.5 ρ̂RB -0.151 0.547 σ̂2RB -0.094 0.137 0.034 0.058 0.051

20 0 ρ̂KP -0.683 1.107 σ̂2KP -0.273 0.154 0.084 0.144 0.042

20 0 ρ̂RB -0.181 0.588 σ̂2RB -0.100 0.129 0.053 0.084 0.054

20 0.5 ρ̂KP -0.650 0.917 σ̂2KP -0.224 0.138 0.196 0.232 0.041

20 0.5 ρ̂RB -0.147 0.507 σ̂2RB -0.069 0.129 0.111 0.118 0.053

100 −0.5 ρ̂KP -0.101 0.063 σ̂2KP -0.060 0.024 0.054 0.074 0.050

100 −0.5 ρ̂RB -0.030 0.052 σ̂2RB -0.019 0.022 0.049 0.060 0.052

100 0 ρ̂KP -0.095 0.049 σ̂2KP -0.049 0.021 0.065 0.076 0.050

100 0 ρ̂RB -0.030 0.038 σ̂2RB -0.017 0.020 0.054 0.061 0.051

100 0.5 ρ̂KP -0.073 0.025 σ̂2KP -0.032 0.021 0.086 0.099 0.052

100 0.5 ρ̂RB -0.026 0.019 σ̂2RB -0.009 0.021 0.065 0.075 0.053

400 −0.5 ρ̂KP -0.023 0.012 σ̂2KP -0.016 0.005 0.051 0.055 0.054

400 −0.5 ρ̂RB -0.006 0.012 σ̂2RB -0.005 0.005 0.050 0.052 0.054

400 0 ρ̂KP -0.022 0.009 σ̂2KP -0.012 0.005 0.057 0.055 0.048

400 0 ρ̂RB -0.007 0.008 σ̂2RB -0.005 0.005 0.054 0.050 0.048

400 0.5 ρ̂KP -0.014 0.004 σ̂2KP -0.009 0.005 0.057 0.056 0.048

400 0.5 ρ̂RB -0.004 0.004 σ̂2RB -0.003 0.005 0.052 0.052 0.048
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Table 2: Regression results with standard deviations in paranthesis and t-statistics below

the estimates
wet seasons (n = 513) all seasons (n = 1026)

KP RB KP RB

ρ̂ 0.7388 0.8743 0.7161 0.8358

σ̂2 0.0556 0.0634 0.0650 0.0757

Seed 0.1383 (0.041) 0.1366 (0.044) 0.1024 (0.023) 0.1006 (0.025)

3.360 3.096 4.405 4.022

Urea 0.0908 (0.028) 0.0916 (0.030) 0.0907 (0.017) 0.0904 (0.018)

3.272 3.081 5.476 5.066

TSP 0.0363 (0.017) 0.0315 (0.018) 0.0323 (0.011) 0.0268 (0.012)

2.153 1.738 2.898 2.215

Labor 0.2248 (0.039) 0.2225 (0.042) 0.2383 (0.027) 0.2379 (0.029)

5.714 5.262 8.907 8.232

Land 0.4664 (0.044) 0.4712 (0.047) 0.4877 (0.028) 0.4913 (0.031)

10.685 10.066 17.141 16.016

DP 0.0241 (0.037) 0.0165 (0.040) -0.0222 (0.026) -0.0276 (0.028)

0.643 0.409 -0.844 -0.971

DV1 0.1042 (0.061) 0.0965 (0.066) 0.1064 (0.036) 0.0975 (0.039)

1.697 1.454 2.982 2.523

DV2 0.0530 (0.064) 0.0447 (0.069) 0.1042 (0.045) 0.0980 (0.049)

0.859 0.651 2.298 2.006

DSS - - 0.0805 (0.056) 0.0831 (0.105)

- - 1.428 0.793
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