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1. Introduction and Summary

In this paper we consider a panel regression model where the disturbances are correlated
both spatially and time-wise. To estimate the parameters of this correlation structure,
Kapoor et al. (2007) suggest a GMM estimator which is a generalization of the estimator
suggested by Kelejian and Prucha (1999) for the cross-sectional case. It has been used
in empirical applications by many authors. Applications include multinational enterprise
activity (Badinger and Egger, 2010b), export performance of Mexican states (Gamboa,
2010), effects of active labor market policies in Germany (Hujer et al., 2009) and the
impact of knowledge capital stocks on total factor productivity in Europe (Fischer et al.,
2009).
The statistical properties of the GMM estimator proposed by Kapoor et al. (2007) have
been investigated by Larch and Walde (2009), who run a simulation study to compare
the GMM estimator with the ML estimator. Under normality, the GMM estimator is
competitive with respect to ML. For non-normally distributed errors, the GMM estimator
outperforms the quasi-ML estimator.
This paper follows up on the work on finite sample properties, i.e. we generalize an idea
of Arnold and Wied (2010) for the spatial autoregressive error model for cross-sectional
data to the panel case in order to improve the estimator in small and moderate samples.
Baltagi and Liu (2011) carry over this idea to the spatial moving average error model in
recent work. The main point is the following: When calculating the GMM estimator, the
unobservable disturbances of the regression model have to be replaced by the regression
residuals. But then one should also calculate the theoretical moment conditions in terms
of the residuals, not in terms of the disturbances. In doing so, the bias of the estimators
can be essentially reduced. Although this remains true for all sample sizes, the effect is
especially relevant for moderate sample sizes. In return, this helps to improve significance
tests for the regression coefficients in the sense that actual rejection probabilities are closer
to the nominal level. We point this out by some Monte Carlo evidence as well as by an
analytical illustration.
As a second contribution, we derive asymptotic normality of the GMM estimators, an
issue that several authors worked on in other contexts, see e.g. Lee (2004) for (quasi)
ML estimation of spatial autoregressive models, Lee and Yu (2010) for ML estimation
of spatial autoregressive panel data models with fixed effects and Kelejian and Prucha
(2010), Badinger and Egger (2010a) and Lee and Liu (2010) for GMM estimation of
spatial autoregressive models with autoregressive and heteroscedastic disturbances. Due
to the nonlinear structure of the estimators, the exact finite sample distribution is un-
known so that inference on the parameters has to depend on asymptotic approximations.
However, the asymptotic distribution provides a good approximation to the finite sample
distribution even for small sample sizes.
The remainder of the paper is organized as follows: Section 2 presents the spatial model,
the estimation procedure and the analytic illustration, Section 3 provides the asymptotic
results, Section 4 gives some Monte Carlo evidence and Section 5 presents an empirical
application to Indonesian rice farming data which reveals the importance of our approach.
Proofs are deferred to the Appendix.
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2. The Model and the estimator

This paper considers a panel regression model with n observation units and T time points
and spatially correlated disturbances as follows:

yN = XNβ + uN ,

uN = ρ(IT ⊗Wn)uN + εN ,

εN = (eT ⊗ In)µn + νN ,

νN = [νn(1)
′
, . . . , νn(T )

′
]
′
,

yN = [yn(1)
′
, . . . , yn(T )

′
]
′
,

XN = [Xn(1)
′
, . . . , Xn(T )

′
]
′
,

uN = [un(1)
′
, . . . , un(T )

′
]
′
,

εN = [εn(1)
′
, . . . , εn(T )

′
]
′
,

where for each time period t = 1, . . . , T , yn(t) is the n × 1 vector of observations on
the dependent variable, Xn(t) is the non-stochastic n × k matrix of observations on the
exogenous regressors with the corresponding k× 1 vector β of regression coefficients and
un(t) is the n × 1 vector of spatially correlated disturbances with spatial correlation
parameter ρ and spatial weighting matrix Wn = (wij,n)1≤i,j≤n. The serial dependence is
captured by an error component structure for the innovation vector εN , where eT is a
T ×1 vector of ones, IT and In are identity matrices of the respective dimension, the n×1
vector of individual effects µn = (µ1,n, . . . , µn,n) is constant for all time periods and the
N × 1 vector νN with νn(t) = (ν1t,n, . . . , νnt,n), t = 1, . . . , T , captures the remainder error
terms which vary over both the cross-sectional units and the time periods. Note that
N = n · T and that the quantities form triangular arrays. The model is similar to the
model used in Kapoor et al. (2007). Mutl and Pfaffermayr (2011) consider a refinement
by e.g. including an additional spatial autoregressive term λWNyN in the equation for
yN . For ease of exposition, we just consider the case λ = 0, i.e. we assume that there is
only a spatial error component, no spatial lag.
We impose the following assumptions:

Assumption 1. a) For all i ∈ {1, . . . , n}, n ≥ 1, the µi,n are independent identically
distributed with zero mean, variance σ2

µ, 0 < σ2
µ < bµ <∞ and finite fourth moments.

b) For all i ∈ {1, . . . , n}, n ≥ 1, t ∈ {1, . . . , T}, the νit,n are independent identically
distributed with zero mean, variance σ2

ν, 0 < σ2
ν < bν <∞ and finite fourth moments.

c) For all i ∈ {1, . . . , n}, n ≥ 1, t ∈ {1, . . . , T}, the νit,n and µi,n are independent.

Assumption 2. a) For all i ∈ {1, . . . , n}, n ≥ 1, wii,n = 0 and
∑n

j=1wij,n = 1. For all
i, j ∈ {1, . . . , n}, wij,n ≥ 0.
b) |ρ| < 1.

Assumption 2 restricts the degree of cross-sectional correlation between the model dis-
turbances and serves for the next lemma.

Lemma 1. Under Assumption 2, the matrix In − ρWn is nonsingular.

With Lemma 1,

Cov(uN) = Ωu,N =
[
IT ⊗ (In − ρWn)−1

]
Ωε,N

[
IT ⊗ (In − ρW

′

n)−1
]

(1)
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with Ωε,N = σ2
µ(JT ⊗ In) + σ2

νIN , where JT = eT e
′
T is a T × T matrix with all elements

equal to one. Kapoor et al. (2007) decompose Ωε,N as

Ωε,N = σ2
νQ0,N + σ2

1Q1,N ,

where

Q0,N =

(
IT −

JT
T

)
⊗ In,

Q1,N =
JT
T
⊗ In,

and σ2
1 = σ2

ν + Tσ2
µ. They provide GMM estimators for ρ, σ2

ν and σ2
1. Basically, we build

on this approach, but with two modifications. First, we do not follow their reparameteri-
zation but estimate ρ, σ2

ν and σ2
µ directly. Of course, our estimators for σ2

ν and σ2
µ provide

an estimator for σ2
1 just as well as the estimators of Kapoor et al. (2007) for σ2

ν and σ2
1

can be used to estimate σ2
µ. The second modification exploits the difference between un-

observable disturbances and observable regression residuals. For the cross-sectional case,
this idea was introduced by Arnold and Wied (2010), and it also applies to the panel case
considered here. The main idea is as follows: Since the disturbance vector uN is typically
not observable, estimation has to rely on the residual vector

ũN = yN −XN β̃N ,

where β̃N is an estimator of β. Typical examples for β̃N are the OLS estimator and the
feasible GLS estimator:

β̂OLS = (X
′

NXN)−1X
′

NyN

β̂FGLS = (X
′

N Ω̂−1
u,NXN)−1X

′

N Ω̂−1
u,NyN ,

where Ω̂u,N is an estimator for Ωu,N , typically a plug-in estimator in which the true
parameter values ρ, σ2

µ and σ2
ν are replaced by consistent estimates.

The corresponding regression residuals ũN are given by

ũN = MNuN = MNyN ,

whereMN depends on β̃N . For example, OLS corresponds toMN = IN−XN(X
′
NXN)−1X

′
N

and FGLS corresponds to MN = IN−XN(X
′
N Ω̂−1

u,NXN)−1X
′
N Ω̂−1

u,N . Whereas efficient GLS
estimation would require knowledge of the parameters, our residual based approach ex-
ploits the difference between unobservable disturbances and observable regression resid-
uals. This difference can be characterized by MN , respectively, and is always known in
applications because it only depends on the choice of estimator for β. In practice, we typ-
ically perform a two-stage estimation procedure in which we first use the OLS residuals
to obtain initial estimates and the FGLS-estimator after this. The procedure is described
in detail below.
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Let

ε̃N = MNεN ,
¯̃εN = (IT ⊗Wn)ε̃N = (IT ⊗Wn)MNεN .

Since the unobservable disturbances of the model have to be replaced by the regression
residuals, we suggest to also calculate the theoretical moment conditions in terms of the
residuals.
Consequently, we use the following six moment conditions:

E

(
1

n(T − 1)
ε̃
′

NQ0,N ε̃N

)
=

σ2
µ

n(T − 1)
tr(M

′

NQ0,NMN(JT ⊗ In))

+
σ2
ν

n(T − 1)
tr(M

′

NQ0,NMN) =: c∗1,N (2)

E

(
1

n(T − 1)
¯̃ε
′

NQ0,N
¯̃εN

)
=

σ2
µ

n(T − 1)
tr[M

′

N(IT ⊗W
′

n)Q0,N(IT ⊗Wn)MN(JT ⊗ In)]

+
σ2
ν

n(T − 1)
tr[M

′

N(IT ⊗W
′

n)Q0,N(IT ⊗Wn)MN ]

=: c∗2,N (3)

E

(
1

n(T − 1)
¯̃ε
′

NQ0,N ε̃N

)
=

σ2
µ

n(T − 1)
tr[M

′

N(IT ⊗W
′

n)Q0,NMN(JT ⊗ In)]

+
σ2
ν

n(T − 1)
tr[M

′

N(IT ⊗W
′

n)Q0,NMN ] =: c∗3,N (4)

E

(
1

n
ε̃
′

NQ1,N ε̃N

)
=

σ2
µ

n
tr(M

′

NQ1,NMN(JT ⊗ In))

+
σ2
ν

n
tr(M

′

NQ1,NMN) =: c∗4,N (5)

E

(
1

n
¯̃ε
′

NQ1,N
¯̃εN

)
=

σ2
µ

n
tr[M

′

N(IT ⊗W
′

n)Q1,N(IT ⊗Wn)MN(JT ⊗ In)]

+
σ2
ν

n
tr[M

′

N(IT ⊗W
′

n)Q1,N(IT ⊗Wn)MN ] =: c∗5,N (6)

E

(
1

n
¯̃ε
′

NQ1,N ε̃N

)
=

σ2
µ

n
tr[M

′

N(IT ⊗W
′

n)Q1,NMN(JT ⊗ In)]

+
σ2
ν

n
tr[M

′

N(IT ⊗W
′

n)Q1,NMN ] =: c∗6,N . (7)

Let

ũN = MNuN = MNyN ,
¯̃uN = (IT ⊗Wn)MNuN = (IT ⊗Wn)MNyN ,

˜̄uN = MN(IT ⊗Wn)uN ,
¯̄̃uN = (IT ⊗Wn)MN(IT ⊗Wn)uN .
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Substituting ε̃N and ¯̃εN by

ε̃N = MNεN = MNuN − ρMN(IT ⊗Wn)uN ,

= ũN − ρ˜̄uN ,
¯̃εN = (IT ⊗Wn)MNεN = (IT ⊗Wn)MNuN − ρ(IT ⊗Wn)MN(IT ⊗Wn)uN ,

= ¯̃uN − ρ ¯̄̃uN ,

expanding and collecting terms, our residual based theoretical system of equations is
given by

ΓN · (ρ, ρ2, σ2
µ, σ

2
ν)

′ − γN = 0, (8)

where

ΓN =



γ0
11,N γ0

12,N γ0
13,N γ0

14,N

γ0
21,N γ0

22,N γ0
23,N γ0

24,N

γ0
31,N γ0

32,N γ0
33,N γ0

34,N

γ1
11,N γ1

12,N γ1
13,N γ1

14,N

γ1
21,N γ1

22,N γ1
23,N γ1

24,N

γ1
31,N γ1

32,N γ1
33,N γ1

34,N

 , γN =



γ0
1,N

γ0
2,N

γ0
3,N

γ1
1,N

γ1
2,N

γ1
3,N

 .

For i = 0, 1, the elements of ΓN and γN are

γi11,N =
2

n(T − 1)1−iE
[
ũ

′

NQi,N ˜̄uN

]
, γi21,N =

2

n(T − 1)1−iE
[
¯̃u
′

NQi,N
¯̄̃uN

]
,

γi31,N =
2

n(T − 1)1−iE
[
¯̃u
′

NQi,N ˜̄uN + ¯̄̃u
′

NQi,N ũN

]
,

γi12,N =
−1

n(T − 1)1−iE
[
˜̄u
′

NQi,N ˜̄uN

]
,

γi22,N =
−1

n(T − 1)1−iE
[
¯̄̃u
′

NQi,N
¯̄̃uN

]
, γi32,N =

−1

n(T − 1)1−iE
[
¯̄̃u
′

NQi,N ˜̄uN

]
,

γi13,N =
1

n(T − 1)1−i tr
[
M

′

NQi,NMN(JT ⊗ In)
]
, γi14,N =

1

n(T − 1)1−i tr
[
M

′

NQi,NMN

]
,

γi23,N =
1

n(T − 1)1−i tr
[
M

′

N(IT ⊗W
′

n)Qi,N(IT ⊗Wn)MN(JT ⊗ In)
]
,

γi24,N =
1

n(T − 1)1−i tr
[
M

′

N(IT ⊗W
′

n)Qi,N(IT ⊗Wn)MN

]
,

γi33,N =
1

n(T − 1)1−i tr
[
M

′

N(IT ⊗W
′

n)Qi,NMN(JT ⊗ In)
]
,

γi34,N =
1

n(T − 1)1−i tr
[
M

′

N(IT ⊗W
′

n)Qi,NMN

]
, γi1,N =

1

n(T − 1)1−iE
[
ũ

′

NQi,N ũN

]
,

γi2,N =
1

n(T − 1)1−iE
[
¯̃u
′

NQi,N
¯̃uN

]
, γi3,N =

1

n(T − 1)1−iE
[
¯̃u
′

NQi,N ũN

]
.

The true parameter values provide the unique solution of the theoretical system of equa-
tions (8). Since ΓN and γN are not observable, (8) is replaced by an empirical counterpart.
To that purpose, we leave out the expectation operator and replace ˜̄uN and ¯̄̃uN , which
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are not observable, by

˜̃̄uN = MN(IT ⊗Wn)MNuN = MN(IT ⊗Wn)MNyN ,
¯̄̃
ũN = (IT ⊗Wn)MN(IT ⊗Wn)MNuN = (IT ⊗Wn)MN(IT ⊗Wn)MNyN ,

respectively. The corresponding empirical system of equations can then be written as

GN · (ρ̃, ρ̃2, σ̃2
µ, σ̃

2
ν)

′ − gN = δN(ρ̃, σ̃2
µ, σ̃

2
ν), (9)

where

GN =



g0
11,N g0

12,N g0
13,N g0

14,N

g0
21,N g0

22,N g0
23,N g0

24,N

g0
31,N g0

32,N g0
33,N g0

34,N

g1
11,N g1

12,N g1
13,N g1

14,N

g1
21,N g1

22,N g1
23,N g1

24,N

g1
31,N g1

32,N g1
33,N g1

34,N

 , gN =



g0
1,N

g0
2,N

g0
3,N

g1
1,N

g1
2,N

g1
3,N

 ,

gi11,N =
2

n(T − 1)1−i

[
ũ

′

NQi,N
˜̃̄uN

]
, gi21,N =

2

n(T − 1)1−i

[
¯̃u
′

NQi,N
¯̄̃
ũN

]
,

gi31,N =
1

n(T − 1)1−i

[
¯̃u
′

NQi,N
˜̃̄uN +

¯̄̃
ũ

′

NQi,N ũN

]
,

gi12,N =
−1

n(T − 1)1−i

[
˜̃̄u
′

NQi,N
˜̃̄uN

]
, gi22,N =

−1

n(T − 1)1−i

[
¯̄̃
ũ

′

NQi,N
¯̄̃
ũN

]
,

gi32,N =
−1

n(T − 1)1−i

[
¯̄̃
ũ

′

NQi,N
˜̃̄uN

]
, gi1,N =

1

n(T − 1)1−i

[
ũ

′

NQi,N ũN

]
,

gi2,N =
1

n(T − 1)1−i

[
¯̃u
′

NQi,N
¯̃uN

]
, gi3,N =

1

n(T − 1)1−i

[
¯̃u
′

NQi,N ũN

]
.

For the third and fourth columns of GN , we simply take the corresponding elements of
ΓN because they are observable.
It is well known that GMM estimators can be improved by a suitable weighting of the
moment conditions. The optimal weighting matrix is given by the inverse of the covariance
matrix of the moment conditions. Therefore, we proceed by calculating the covariance
matrix of our empirical moment conditions. Since ε̃N = MNεN , ¯̃εN = (IT ⊗Wn)MNεN ,
the random variates on the left hand side of our moment conditions can be written as
quadratic forms in εN ,

ε
′

NCj,NεN ,
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where

C1,N =
1

n(T − 1)
M

′

NQ0,NMN ,

C2,N =
1

n(T − 1)
M

′

N(IT ⊗W
′

n)Q0,N(IT ⊗Wn)MN ,

C3,N =
1

n(T − 1)
M

′

N(IT ⊗W
′

n)Q0,NMN ,

C4,N =
1

n
M

′

NQ1,NMN ,

C5,N =
1

n
M

′

N(IT ⊗W
′

n)Q1,N(IT ⊗Wn)MN ,

C6,N =
1

n
M

′

N(IT ⊗W
′

n)Q1,NMN .

Let C̃j,N = Ω
1
2
ε,NCj,NΩ

1
2
ε,N where Ω

1
2
ε,N is the square root of the matrix Ωε,N with Ω

1
2
ε,N ·

Ω
1
2
ε,N = Ωε,N . Using a spectral decomposition of C̃j,N , we have

ε
′

NCj,NεN = ξ
′

N C̃j,NξN =
N∑
i=1

λji,Nζ
2
i,N

and

ε
′

NCj,NεN − E(ε
′

NCj,NεN) = ξ
′

N C̃j,NξN − E(ξ
′

N C̃j,NξN) =
N∑
i=1

λji,N(ζ2
i,N − 1), (10)

where ξN = Ω
− 1

2
ε,NεN , the λji,N are the eigenvalues of C̃j,N and the ζ2

i,N are independent
random variables with expectation 1, see e.g. Rotar (1973), de Jong (1987) or Mikosch
(1991) and the references therein. Note that E(ε

′
NCj,NεN) = c∗j,N with the c∗j,N from

equations (2) - (7).
Let SN be the corresponding covariance matrix of our properly scaled empirical moment
conditions which depends on the distribution of the εN . For normally distributed εN , for
i, j = 1, . . . , 6 the elements of SN are given by

SN,ij = Cov(
√
nε

′

NCi,NεN ,
√
nε

′

NCj,NεN) = 2 · n · tr(Ci,NΩε,NCj,NΩε,N).

As discussed in Kapoor et al. (2007), p.108, in the absence of normality, this matrix will
not be strictly optimal, but it has the advantage of simplicity and can be viewed as an
approximation to the more complex true covariance matrix. Furthermore, note that the
asymptotic results below do not depend on the normality assumption.
We define our weighted GMM estimator for θ := (ρ, σ2

µ, σ
2
ν) as

θ̂ := (ρ̂, σ̂2
µ, σ̂

2
ν) = argmin

{
RN(θ̃) : ρ̃ ∈ [−1, 1], σ̃2

µ ∈ [0, bµ], σ̃2
ν ∈ [0, bν ]

}
(11)

with θ̃ = (ρ̃, σ̃2
µ, σ̃

2
ν) and RN(θ̃) := δN

(
ρ̃, σ̃2

µ, σ̃
2
ν

)′
SW,NδN

(
ρ̃, σ̃2

µ, σ̃
2
ν

)
.
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For the weighting matrix SW,N , one can choose any matrix which converges against a
symmetric positive definite matrix SW for n → ∞. Given the explanations from above
and assuming the invertibility of S−1

N , it would be efficient to use SW,N = S−1
N which would

require knowledge of the true parameter values contained in S−1
N . However, a two-stage

approach is possible, i.e. we first use GMM estimation with SW,N calculated from initial
values for the parameters. To be more precise, we suggest to take σ2

ν = 1 and σ2
µ = 0

which corresponds to no panel structure. This yields consistent GMM estimates which
do not require any a priori information. For calculating GN and gN , in this stage we
use the matrix MN which corresponds to OLS. After that, we use the initial estimates
to obtain better estimates with the estimated matrix S−1

N and use the matrix MN which
corresponds to FGLS for obtaining GN and gN in the second stage. As we will prove in
Section 3, our GMM approach provides consistent estimates, a feature it shares with the
approach by Kapoor et al. (2007). The main advantage of the residual based approach
presented here is a bias reduction for finite samples. To shed light on this, we give a
small analytical illustration. To this purpose, we replace the elements of GN and gN in
our empirical moment conditions by their respective expectations:

Gi
jk := E(gijk,N), j = 1, 2, 3, k = 1, 2, 3, 4, i = 0, 1 gij := E(gij,N), j = 1, 2, 3, i = 0, 1.

Afterwards, we calculate the minimizing values for ρ, σ2
µ and σ2

ν in this “expected” em-
pirical system of equations. Although explicit formulas for these minimizing values could
in principle be derived, these formulas are more or less useless because they are very
intricate. We can nonetheless get some insight by considering the special case of ρ = 0.
The jth row of the empirical system of equations (j = 1, 2, 3) is then given by

σ2
µG

0
j3 + σ2

νG
0
j4 = g0

j ⇔ σ2
µ =

g0
j − σ2

νG
0
j4

G0
j3

,

so e.g. the first row yields

E
(
σ̂2
µ

)
≈

E(g0
j )− σ2

νG
0
j4

G0
j3

=
tr
(
M

′
NQ0,NMN [σ2

µ(JT ⊗ In) + σ2
νIN ]

)
− σ2

νtr(M
′
NQ0,NMN)

tr(M
′
NQ0,NMN(JT ⊗ In))

= σ2
µ. (12)

Similar calculations for the other five rows yield the same result so that we can expect
the bias of the estimator to be small. For the purpose of comparison, we perform the
corresponding calculations for the first and fourth moment conditions of Kapoor et al.
(2007). Here, we find that

E
(
σ̂2
µ

)
≈

σ2
µ

n(T − 1)
tr [(T − 1)MNQ1,NMNQ1,N −MNQ0,NMNQ1,N ] (13)

+
σ2
ν

nT (T − 1)
tr [(T − 1)MNQ1,NMN −MNQ0,NMN ]

9



so that we can expect this estimator to be biased in finite samples.

3. Asymptotic results

This section proves the consistency and asymptotic normality of the GMM estimators
as the number of observation units n tends to infinity and T remains fixed. Remember
that N = n · T . To derive the asymptotic results, some additional assumptions will be
imposed, at first some conditions on the regressor matrix.

Assumption 3. a) For the entries (xij,N), i = 1, . . . , N , j = 1, . . . , k, of XN it holds
|xij,N | < kX , where kX does not depend on N .
b) limn→∞

1
n
X ′NΩu,NXN =: QX′ΩX and limn→∞

1
n
X ′NXN =: QX′X , where QX′ΩX and

QX′X are positive definite matrices.
c) limn→∞ ΓN =: Γ0, where Γ0 is a constant (6× 4)-matrix.
d) limn→∞ γN =: γ0, where γ0 is a constant (6× 1)-vector.

Assumptions 3 a) and b) are standard in the spatial econometrics literature and corres-
pond to Assumption 3 in Kapoor et al. (2007). Among other reasons, these assumptions
are needed to control the difference between residuals and error terms, see the proofs
of Lemma 2. Assumptions 3 c) and d) ensure that the expressions in the theoretical
system of equations have a well-defined limit. This is needed to derive the asymptotic
covariance matrix of the estimator θ̂. These are no strong assumptions because it follows
from construction that e.g. ΓN is O(1). Note that, with Assumptions 3 a) and b), Γ0 and
γ0 do not depend on the concrete choice of MN (OLS- or FGLS), see Lemma 2. This
fact ensures the validity of our two-stage approach, namely that we can already obtain
consistent initial estimates for θ with MN corresponding to the OLS estimator which in
the second step are refined by MN corresponding to the FGLS estimator.
Next, we impose an identifiability condition which is crucial for consistency and asymp-
totic normality.

Assumption 4. For the probability limit SW of SW,N , the matrix Γ′0SWΓ0 is positive
definite and SW is symmetric.

If we denote R0(θ̃) = (Γ0(ρ̃, ρ̃2, σ̃2
µ, σ̃

2
ν)

′ − γ0)′SW (Γ0(ρ̃, ρ̃2, σ̃2
µ, σ̃

2
ν)

′ − γ0), Assumption 4
yields, for arbitrary ε > 0, the inequality

inf
{θ̃:|θ̃−θ|≥ε}

∣∣∣R0(θ̃)−R0(θ)
∣∣∣ > 0

and thus guarantees the identifiability of θ, see also Kelejian and Prucha (1999). As-
sumption 4 e.g. rules out the case that XN contains only a constant such that XN = eN .
In this case, OLS would lead to MN = IN − 1

N
JN and the first three moment conditions

would collapse because Q0,NMN = 0. Consequently, the matrix Γ0 would contain rows
in which all elements are equal to 0 so that Γ′0SWΓ0 would not have full rank.
We also need an eigenvalue condition which corresponds to the expression in equation
(10). This condition ensures that not some eigenvalues of C̃j,N are too large compared to
the others.

10



Assumption 5. For j = 1, . . . , 6, the random variables from equation (10) fulfill the
Ljapunov condition, i.e., for some δ > 0 it holds

lim
n→∞

n1+ δ
2

N∑
i=1

|λji,N |2+δE|ζ2
i,N − 1|2+δ = 0.

The following lemma gives information about the existence of certain limits.

Lemma 2. Let Assumption 1 - 5 be true.
a) The matrices Γ0 and γ0 do not depend on the concrete choice of the sequence (MN :
N = 1, 2, . . .).
b) For n→∞, GN − ΓN = OP(n−1).
c) For n→∞, gN − γN = OP(n−1).

Now, we can derive consistency.

Theorem 1. Under Assumptions 1 - 5, for n → ∞ and for any sequence of matrices
(SW,N : N = 1, 2, . . .) with SW,N →p SW ,

(ρ̂, σ̂2
µ, σ̂

2
ν)

P→ (ρ, σ2
µ, σ

2
ν).

Again, the fact that SW,N is arbitrary justifies the validity of our two stage approach
because it ensures that we can obtain initial consistent estimates for θ.
Finally, we prove asymptotic normality with an additional lemma.

Lemma 3. Under Assumptions 1 - 5, for n → ∞,
√
n(GN · (ρ, ρ2, σ2

µ, σ
2
ν)
′ − gN) →d

N(0, S0), where S0 := limn→∞ SN is a constant symmetric (6× 6)-matrix.

Theorem 2. Under Assumptions 1 - 5, for n → ∞ and for any sequence of matrices
(SW,N : N = 1, 2, . . .) with SW,N → SW , the asymptotic distribution of (ρ̂, σ̂2

µ, σ̂
2
ν) as

n→∞ is given by

√
n

 ρ̂− ρ
σ̂2
µ − σ2

µ

σ̂2
ν − σ2

ν

→d N

(
0,
(
Q

′
Γ

′

0SWΓ0Q
)−1

Q
′
Γ

′

0SWS0SWΓ0Q
(
Q

′
Γ

′

0SWΓ0Q
)−1
)
,

where

Q[(ρ, σ2
µ, σ

2
ν)] := Q :=


1 0 0
2ρ 0 0
0 1 0
0 0 1

 .

By choosing SW,N = S−1
N , we would get SW = S−1

0 and the asymptotic covariance matrix

would simplify to
(
Q

′
Γ

′
0S
−1
0 Γ0Q

)−1
.

However, S−1
N depends on the unknown parameters. So, in applications, Γ0 can be re-

placed by GN , whereas Q and S−1
0 can be estimated by a plug-in method in which the true

parameter values are replaced by the GMM estimators for ρ, σ2
µ and σ2

ν . This provides a
consistent estimator for the asymptotic covariance matrix.
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4. Finite sample Monte Carlo evidence

This section compares the finite sample properties of the GMM estimators for the often
used Columbus data set which contains information about crime rates from 49 neighbor-
hoods in Columbus, Ohio, 1980, see Anselin (1988). The weighting matrix W is specified
such that entry (i, j) is nonzero if neighborhoods i and j share a common border and
the row sums are standardized to one. With n = 49, we analyze values of T ∈ {2, 5, 10}
(leading to N ∈ {49, 245, 490}), ρ ∈ {−0.5, 0, 0.5} and σ2

µ = σ2
ν ∈ {1, 2}.

We use eight regressors x1, . . . , x8 from the original data set and stack the data from 1980
to get a panel structure. x1 is the intercept, x2 describes the housing value in $1,000, x3

describes the household income in $1,000, x4 describes the percentage of housing units
without plumbing, x5 describes the distance to the Central Business District, x6 is a north-
south dummy (north=1), x7 is an east-west dummy (east=1) and x8 is a core-periphery
dummy (core=1), see the documentation of the function columbus in the R-package spdep,
R Development Core Team (2012). For each of the corresponding settings (varying T , ρ,
σ2
µ and σ2

ν), we generate 1000 realizations of our regression model and calculate parameter
estimates in two different ways, first as in Kapoor et al. (2007) and second as in (11). In
both cases, we perform a two stage estimation procedure.
To keep the simulation setting as realistic as possible, the true parameter values are not
used in the estimation procedure. In the first stage, OLS-residuals are used to estimate
ρ, σ2

µ and σ2
ν , i.e., MN = IN −XN(X

′
NXN)−1X

′
N . The optimal weighting matrices for the

moment conditions also depend on the true parameter values so we take starting values
which correspond to a scalar covariance matrix for the disturbances (ρ = 0, σ2

µ = 1,
σ2
ν = 1). This yields two sets of initial parameter estimates, one for the approach of

Kapoor et al. (2007) and one for our approach.
In the second stage, FGLS-residuals are used to improve the estimates, i.e., now we take
MN = IN −XN(X

′
N Ω̂−1

u,NXN)−1X
′
N Ω̂−1

u,N . Both Ω̂u,N and the respective optimal weighting
matrices are calculated by plugging in the parameter estimates of the first stage. Tables
1 and 2 give the resulting biases and mean square errors of the estimators, multiplied by
100.

- Table 1 here -

- Table 2 here -

Table 1 reveals the following aspects for the bias:
i) In almost all cases, the bias of our modified estimator is substantially reduced by some
80− 90% compared to the KKP estimator.
ii) In the second stage, the bias is generally smaller for the KKP estimator and our
modified estimator, except for σ2

ν in small samples and for zero correlation. Note that
the weighting matrix in the first stage is calculated with the starting value ρ = 0 which
coincides with the true value in the case of zero correlation. Moreover, the bias of ρ̂, σ̂2

ν

nearly vanishes. For σ̂2
µ, the bias vanishes rather fast for our estimator, but not for the

KKP estimator.
iii) The bias of σ̂2

µ and of σ̂2
ν increases with the true variances by a factor of 2.

Calculating the analytical expressions in (13) for the true parameter values essentially
yields the same results.
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Table 2 reveals the following aspects for the MSE:
i) In basically all cases except for positive correlation ρ in the first stage, the MSE of our
modified estimator is reduced compared to the KKP estimator although the improvement
is not as large as for the bias. For σ2

ν , the MSE’s are more or less equal.
ii) The second stage reduces the MSE for both estimators, especially for ρ̂.
iii) The MSE of σ̂2

µ and of σ̂2
ν increases with the true variances by a factor of 4.

The reduction of bias and MSE in the second stage, respectively, is partly caused by the
fact that FGLS-residuals are a better replacement for the unobservable disturbances as
compared to the OLS-residuals of the first stage. The second and more important reason
are the optimal weighting matrices for the moment conditions, which in the second stage
can be consistently estimated, whereas in the first stage, we only use starting values for
the parameters.
Basically, one could try to further improve the estimates in a third stage with an updated
optimal weighting matrix, calculated from the estimates of the second stage. To assess
the room for improvement of additional iterations, we also ran simulations with the
optimal weighting matrices which would not be known in practical applications. These
simulations revealed that further MSE reduction is limited to about 5% for T = 2, 4%
for T = 5 and 3% for T = 10 in most situations (for positive correlation the effect is
partially larger) so that more than one iteration seems to be more or less superfluous.
We do not report detailed results of these simulations here, but they are available from
the authors upon request.
There may be situations in which the parameters ρ, σ2

µ and σ2
ν are of interest in their own

right. However, in most applications one is interested in these parameters only because
they are needed for significance tests for the regression coefficients contained in β. By
our finite sample adjustment, these significance tests, which are performed by plugging
the parameter estimates into (1), can be improved. Table 3 compares the performance of
the estimation approaches with respect to empirical rejection probabilities of the F -tests
for statistical significance of all parameters, where the nominal level is α = 0.05. For
OLS regression in the first stage, we use

Ĉov(β̂) =
(
XT
NXN

)−1
XT
N Ω̂u,NXN

(
XT
NXN

)−1
;

for the second stage, the usual FGLS standard errors are computed.

- Table 3 here -

We can see that the empirical rejection probabilities exceed the nominal level of 0.05,
especially for positive correlation ρ, and also forN = 490 (further simulations with subsets
of the data indicate that for given N the overrejection probabilities are the smaller the
larger n and the smaller the amount of regressors is). For our modified estimator, these
overrejection probabilities are always smaller, and this is true for both OLS regression
in the first stage and FGLS regression in the second stage. We conclude that our small
sample adjustment helps to avoid false rejections.
In addition to the first simulation example, we have performed simulations for the data
example from Kapoor et al. (2007). Here, we keep T = 5 and σ2

µ = σ2
ν = 1 fixed and let

n and ρ vary. We consider two different weighting matrices Wn. The first one is specified
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such that each element of un is directly related to the elements immediately after and
immediately before it. For the first and the last elements of un, we imply a circular
setting such that for example u1,n is directly related to the second and last element of
un. This weighting matrix is marked by J = 2 since there are two nonzero elements in
each row of Wn. The second weighting matrix is labeled by J = 6. Here, each element
of un is directly related to the three elements immediately after and the three elements
immediately before it. For both weighting matrices, the row sums are standardized to
one. We use two regressors x1 and x2 which are the same as in Kapoor et al. (2007): x1 is
the intercept and x2 is per capita income in contiguous counties in Virginia in the years
1996-2000.
The results are reported in Table 4, Table 5 and Table 6.

- Table 4 here -

- Table 5 here -

- Table 6 here -

Basically, the results are more or less similar to the other setting although the bias
improvement is not that large and although the MSE of the KKP estimator is slightly
smaller as compared to our estimator. We conjecture that the amount of regressors plays
an important role. In contrast to the other setting, the empirical rejection probabilities
are close to the nominal level forN = 200. Tables 4 and 5 suggest that for both estimators,
bias and MSE are of order 1/n which is in line with the analytical illustration (13). The
relative improvement caused by the modification does not seem to depend on the sample
size, and this holds true not only for the bias reduction but also for the overrejection
probabilities presented in Table 6. In contrast to this, in the Columbus example where n
is fixed, the biases of all estimators and the MSE of ρ̂ do not decrease with T , while the
MSE of σ̂2

µ and of σ̂2
ν do decrease.

5. Application to Indonesian rice farming

We illustrate our results with an empirical analysis of Indonesian rice farming data which
is used in several contexts in the econometric literature, see e.g. Horrace and Schmidt
(2000), Druska and Horrace (2004), Feng and Horrace (2007) or Arnold and Wied (2010).
2 We have data of 171 rice farms over six growing seasons. The farms are located in six
different villages. We use a standard random effects model for the data related to the wet
growing seasons to regress the output (ln(rice)) on the covariates seed, urea, phosphate
(TSP), labor and land as well as dummies for pesticides (DP), high yield varieties (DV1)
and mixed varieties (DV2). With this, we have N = n · T = 171 · 3 = 513. For a
detailed description of the data see Erwidodo (1990). The disturbances are assumed to
be spatially correlated across cross-sectional units where the typical element wij,n of the
spatial weighting matrix Wn is positive if observations i and j belong to (a) farms located
in the same village. The row sums of Wn are standardized to one. We estimate ρ, σ2

µ

and σ2
ν in two ways, once following Kapoor et al. (2007) and once by our residual based

2The data set is available in the data archive of the Journal of Applied Econometrics corresponding
to the article by Horrace and Schmidt (2000).

14



approach. Initial estimates are obtained from OLS. In a second step, these estimates
are used to perform FGLS regression with updated GMM estimates for ρ, σ2

µ and σ2
ν ,

where the optimal weighting matrices are estimated by plugging in the estimates of the
first stage. As to the regression coefficients, the results of the random effects specification
mostly agree with the results of a fixed effects model like in Druska and Horrace (2004) or
Arnold and Wied (2010). However, there is a considerable discrepancy in the estimates for
ρ. Whereas the residual based approach produces an estimate of 0.78, which is very much
in line with previous studies of these data, the approach of Kapoor et al. (2007) yields
an estimate of 1.23, which is not only far away from previous results but also outside the
parameter space. To illustrate this, Figure 1 presents “profile” target functions RN for
both estimators for different values of ρ, where the variance parameters are replaced by
their respective estimates (σ̂2

ν = 0.066 and σ̂2
1 = 0.102 for Kapoor et al. (2007), σ̂2

µ = 0.012
and σ̂2

ν = 0.065 for the residual based approach).

- Figure 1 here -

For Kapoor et al. (2007), the minimizing value (ρ = 1.23) is not included in the parameter
space. If the search is restricted on the parameter space, the optimum would be the
boundary (ρ = 1) which is not a good choice either because Ω̂u,N would then be singular.
For the residual based approach, such problems do not occur. Although there is a local
minimum about 1.23, the global minimum is ρ = 0.78. We conclude that the residual
based modification of the GMM estimators can also circumvent optimization problems.

6. Summary and conclusions

This paper provides a finite sample adjustment for a GMM estimator in a spatial panel
regression model suggested by Kapoor et al. (2007). The main idea is to explicitly take
into account that observable regression residuals are different from the true but unobserv-
able disturbances. The resulting modified moment conditions improve the finite sample
properties of the GMM estimator in the sense that the bias of the estimators is largely
reduced.
We illustrate the effect of this improvement in three ways. First, an analytical illustration
shows that in contrast to the estimator of Kapoor et al. (2007), the modified expected
system of equations is in fact solved by the true parameter values. Second, this finding is
confirmed by simulation results. Finally, an empirical application to Indonesian rice data
indicates that optimization problems regarding solutions which are outside the parameter
space might be circumvented with the improvement.
As a second contribution, we derive asymptotic normality for the case that the number of
observation units tends to infinity and provide a consistent estimator for the asymptotic
covariance matrix of the estimators. This allows for asymptotically valid tests.
Consequently, our results should be useful for practitioners working in spatial economet-
rics.
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7. Appendix section

Proof of Lemma 1
It suffices to show that the eigenvalues of In − ρWn are different from zero. Let λ be an
arbitrary eigenvalue and v 6= 0 the corresponding eigenvector. Denote the row sum norm
of a matrix with || · ||R and the maximum norm of a vector with || · ||∞, then

(In − ρWn)v = λv

⇒ |1− λ|||v||∞ = ||ρWnv||∞ ≤ |ρ|||Wnv||∞ < ||Wnv||∞ ≤ ||Wn||R||v||∞ = ||v||∞
⇒ |1− λ| < 1,

which proves the lemma. �

Proof of Lemma 2
a) Let Γ∗N be the matrix ΓN with all matrices MN in ΓN replaced by IN and γ∗N be the
vector γN with all matrices MN in γN replaced by IN . To prove the result, we show that
ΓN − Γ∗N → 0 and γN − γ∗N → 0. Then, for each chosen MN the resulting matrices ΓN
and Γ∗N have the same limit with the following formal argument: Define Γ1

N based on
matrices M1

N and Γ2
N based on matrices M2

N , then Γ1
N − Γ2

N = (Γ1
N − Γ∗N) + (Γ∗N − Γ2

N).
Both summands converge to the same limit and thus Γ1

N has the same limit as Γ2
N .

Consequently, the limit of ΓN does not depend on MN .
It remains to prove ΓN − Γ∗N → 0 and γN − γ∗N → 0. Since for an arbitrary matrix A,
E(u′NAuN) = tr(AΩu,N), each entry in each of these differences can be written as

c1 ·
1

n

m∑
d=1

tr(Dd,N),

where c1 is a constant, m is a finite number and Dd,N is a matrix product, where at least
one factor is equal to IN −MN and the other factors are bounded.
The result then follows from tr(Dd,N) ≤ rank(IN −MN) · c2 = k · c2 <∞, where c2 is a
constant, because with this, each entry in each of the differences ΓN −Γ∗N (and γN − γ∗N)
converges against 0. �

b) and c) The proof follows up on ideas of the proofs of Lemma A1, A2 and A3 in
Kapoor et al. (2007). We show the result exemplarily for GN as the proof can simply be
transferred to gN . Note that

GN − ΓN = (GN −G∗N) + (G∗N − ΓN) := AN +BN ,

where G∗N is the matrix GN with MNuN replaced by uN . We show that each component
of AN and BN converges to 0 in probability.
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Consider first AN . Each component can be written as

1

n
· c3 · (u′NM ′

NENMNuN − u′NENuN) =
1

n
· c3 · (u′N(M ′

NENMN − EN)uN)

=
1

n
· c3 · (u′N(M ′

N − IN)ENMNuN) +
1

n
· c3 · (u′NEN(MN − IN)uN),

where the entries of EN are OP (1) and c3 is a constant. The result then follows from the
fact that the entries of MN − IN are OP (n−1) and that the entries of uN , EN and MN

are OP (1). The convergence of BN follows from the fact that E(BN) = 0 by construction
and that V ar(BN) = 1

n2 tr(FN), where FN is a N × N matrix whose entries are OP (1),
converges against 0. �

Remark to the proof of Lemma 2.a) An example for Dd,N can be obtained by considering
γi11,N ,

tr [MNQi,NMN(IT ⊗Wn)Ωu,N ]− tr [INQi,NIN(IT ⊗Wn)Ωu,N ]

= {tr [MNQi,NMN(IT ⊗Wn)Ωu,N ]− tr [MNQi,NIN(IT ⊗Wn)Ωu,N ]}
+ {tr [INQi,NMN(IT ⊗Wn)Ωu,N ]− tr [INQi,NIN(IT ⊗Wn)Ωu,N ]}
= tr [MNQi,N(MN − IN)(IT ⊗Wn)Ωu,N ] + tr [INQi,N(MN − IN)(IT ⊗Wn)Ωu,N ] ,

so that in this case D1,N = MNQi,N(MN − IN)(IT ⊗Wn)Ωu,N and D2,N = INQi,N(MN −
IN)(IT ⊗Wn)Ωu,N . �

Remark to the proof of Lemma 2.b) and c) In the entry in the first row and first col-
umn (corresponding to g0

11,N), EN = Q0,NMN(IT ⊗Wn) and c3 = 2
T−1

(which does not
change with n). �

Proof of Theorem 1
This follows by standard arguments as e.g. presented in Poetscher and Prucha (1991),
Amemiya (1973) or Jennrich (1969), using the uniform convergence of RN(θ̃) to R0(θ̃)
and the identifiability condition. �

Remark to the proof of Theorem 1 The basic idea of the proof is that the uniform conver-
gence ofRN(θ̃) toR0(θ̃) allows for applying an “argmin-theorem” yielding the convergence
of argminθ̃∈S RN(θ̃) to argminθ̃∈S R0(θ̃), where the latter one is well-defined due to the
identifiability condition. �

Proof of Lemma 3
For j = 1, . . . , 6, the j-th row of

√
n(GN · (ρ, ρ2, σ2

µ, σ
2
ν)
′ − gN) is given by

√
n(ε′NCj,NεN − c∗j,N)
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with c∗j,N = E(ε′NCj,NεN) from equations (2) - (7). With equation (10), every linear

combination
∑6

j=1 cjC̃j,N with
∑6

j=1 c
2
j = 1 of this vector can be written as

√
n

N∑
i=1

6∑
j=1

cjλji,N(ζ2
i,N − 1).

With Assumption 5, this linear combination fulfills the Ljapunov condition, i.e., for some
δ > 0 it holds

lim
n→∞

N∑
i=1

E

∣∣∣∣∣√n
6∑
j=1

cjλji,N(ζ2
i,N − 1)

∣∣∣∣∣
2+δ

≤ lim
n→∞

n1+ δ
2

N∑
i=1

6∑
j=1

|λji,N |2+δE|ζ2
i,N − 1|2+δ = 0.

This directly allows for applying the central limit theorem from Davidson (1994), The-
orem 23.11. Consequently, the linear combinations are asymptotically normal so that
multivariate normality follows by the Cramér-Wold device. �

Proof of Theorem 2
Due to the smoothness of the target function the estimators are the zeros of the derivative

Ψ(ρ̃, σ̃2
µ, σ̃

2
ν) := 2 ·Q′[(ρ̃, σ̃2

µ, σ̃
2
ν)] ·G

′

N · SW,N · (GN · (ρ̃, ρ̃2, σ̃2
µ, σ̃

2
ν)
′ − gN).

With the mean value theorem for vector valued functions in integral form (see Amann
and Escher, 2008, Theorem 3.10) it holds

Ψ

 ρ̂
σ̂2
µ

σ̂2
ν

 = 0 = Ψ

 ρ
σ2
µ

σ2
ν

+

∫ 1

0

DΨ

 ρ+ s(ρ̂− ρ)
σ2
µ + s(σ̂2

µ − σ2
µ)

σ2
ν + s(σ̂2

ν − σ2
ν)

 ds ·
 ρ̂− ρ

σ̂2
µ − σ2

µ

σ̂2
ν − σ2

ν


⇔

 ρ̂− ρ
σ̂2
µ − σ2

µ

σ̂2
ν − σ2

ν

 = −

∫ 1

0

DΨ

 ρ+ s(ρ̂− ρ)
σ2
µ + s(σ̂2

µ − σ2
µ)

σ2
ν + s(σ̂2

ν − σ2
ν)

 ds
−1

Ψ

 ρ
σ2
µ

σ2
ν

 ,

For any (ρ̄, σ̄2
µ, σ̄

2
ν) between (ρ, σ2

µ, σ
2
ν) and (ρ̂, σ̂2

µ, σ̂
2
µ), DΨ is given by

DΨ

 ρ̄
σ̄2
µ

σ̄2
ν

 = 2Q
′
[(ρ̄, σ̄2

µ, σ̄ν)]G
′

NSW,NGNQ[(ρ̄, σ̄2
µ, σ̄ν)]

+2

(GN · (ρ̃, ρ̃2, σ̃2
µ, σ̃

2
ν)
′ − gN

)′
SW,NGN


0 0 0
2 0 0
0 0 0
0 0 0


⊗

 1
0
0

 .
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Due to the consistency of (ρ̂, σ̂2
µ, σ̂

2
ν), the process (Pn(s) : s ∈ [0, 1]), defined by

Pn(s) :=

 ρ+ s(ρ̂− ρ)
σ2
µ + s(σ̂2

µ − σ2
µ)

σ2
ν + s(σ̂2

ν − σ2
ν)

 , s ∈ [0, 1],

converges to (ρ, σ2
µ, σ

2
ν). Then, with the extended continuous mapping theorem, the

process (DΨ(Pn(s)), s ∈ [0, 1]) converges to 2Q
′
Γ

′
0SWΓ0Q. It follows

plim
n→∞

∫ 1

0

DΨ

 ρ+ s(ρ̂− ρ)
σ2
µ + s(σ̂2

µ − σ2
µ)

σ2
ν + s(σ̂2

ν − σ2
ν)

 ds =

∫ 1

0

plim
n→∞

DΨ

 ρ+ s(ρ̂− ρ)
σ2
µ + s(σ̂2

µ − σ2
µ)

σ2
ν + s(σ̂2

ν − σ2
ν)

 ds
=

∫ 1

0

2Q
′
Γ

′

0SWΓ0Qds = 2Q
′
Γ

′

0SWΓ0Q

.

(14)

With Lemma 3,
√
n(GN ·(ρ, ρ2, σ2

µ, σ
2
ν)
′−gN) converges to N(0, S0) so that

√
nΨ(ρ, σ2

µ, σ
2
ν)

converges to 2Q
′
Γ

′
0SWN(0, S0).

With this and (14),

√
n

 ρ̂− ρ
σ̂2
µ − σ2

µ

σ̂2
ν − σ2

ν

→d −(Q
′
Γ

′

0SWΓ0Q)−12QΓ0SWN(0, S0).

This completes the proof. �
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Figure 1: Profile target functions for ρ
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Table 1: Bias of the (Columbus) estimators for first stage (OLS-residuals, upper line) and for
the iterative procedure (FGLS-residuals, lower line), multiplied by 100

ρ̂ σ̂2
µ σ̂2

ν

N σ2
ν = σ2

µ ρ KKP AW KKP AW KKP AW

98 1 0.5 -7.3 -4.0 -24.9 -13.9 1.7 2.1
-2.7 -0.8 -23.3 -2.6 -1.6 -1.8

98 1 0 -16.2 -3.5 -30.7 -6.3 0.2 0.2
-4.8 0.6 -25.7 -3.3 -2.4 -1.9

98 1 -0.5 -22.2 -3.7 -35.3 -5.7 -3.9 -0.7
-8.9 -1.6 -27.7 -3.4 -3.8 -2.2

98 2 0.5 -6.6 -3.0 -54.9 -30.2 5.9 6.3
-1.0 -0.1 -50.1 -10.0 -1.3 -1.8

98 2 0 -17.4 -4.4 -59.8 -9.9 1.6 1.4
-6.0 -0.3 -50.0 -2.3 -3.3 -2.5

98 2 -0.5 -20.8 -2.2 -68.3 -8.7 -7.9 -1.5
-7.5 -0.5 -54.5 -5.0 -7.6 -5.5

245 1 0.5 -6.1 -3.3 -21.6 -11.9 3.6 3.5
-0.5 -0.4 -20.2 -4.3 -0.3 -0.2

245 1 0 -17.0 -4.1 -24.2 -4.3 1.0 0.9
-2.4 -0.4 -19.4 -0.4 -1.0 -0.9

245 1 -0.5 -20.6 -1.9 -28.2 -3.8 -2.7 0.6
-2.8 0.1 -20.4 -1.3 -1.3 -0.7

245 2 0.5 -7.2 -3.3 -42.1 -21.6 8.9 7.7
-1.4 -0.9 -39.6 -7.2 0.5 0.6

245 2 0 -17.3 -4.3 -48.8 -8.7 2.0 1.7
-2.5 -0.4 -39.5 -1.4 -1.8 -1.7

245 2 -0.5 -19.1 -0.8 -56.0 -7.5 -5.4 1.2
-3.0 -0.2 -41.9 -3.8 -2.8 -1.6

490 1 0.5 -7.6 -4.9 -18.8 -9.8 5.7 4.8
-0.5 -0.3 -17.6 -2.7 -0.3 -0.2

490 1 0 -19.1 -5.2 -23.2 -4.9 2.1 1.7
-1.2 -0.2 -18.0 -0.9 -0.1 -0.1

490 1 -0.5 -20.7 -1.2 -27.1 -4.6 -2.5 0.9
-1.4 0.1 -19.1 -2.2 -0.8 -0.5

490 2 0.5 -6.3 -4.1 -35.7 -20.7 9.6 8.0
0.0 0.0 -34.2 -4.8 -1.5 -1.6

490 2 0 -18.1 -3.9 -45.0 -8.3 3.3 2.8
-1.0 0.1 -35.1 -0.5 -0.9 -0.9

490 2 -0.5 -21.1 -1.3 -54.2 -8.7 -5.3 1.4
-1.2 0.2 -37.9 -4.2 -1.7 -1.1
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Table 2: MSE of the (Columbus) estimators for first stage (OLS-residuals, upper line) and for
the iterative procedure (FGLS-residuals, lower line), multiplied by 100

ρ̂ σ̂2
µ σ̂2

ν

N σ2
ν = σ2

µ ρ KKP AW KKP AW KKP AW

98 1 0.5 3.3 5.8 15.1 18.7 4.1 4.5
2.3 2.0 14.2 12.8 3.8 4.0

98 1 0 6.4 5.6 17.4 12.0 4.0 4.0
3.8 3.1 14.3 11.9 3.8 3.9

98 1 -0.5 8.6 5.3 20.0 12.6 3.9 3.9
4.3 3.3 15.1 12.8 3.9 3.8

98 2 0.5 3.2 5.7 65.9 79.0 18.2 19.9
2.9 1.8 60.5 51.4 17.3 17.4

98 2 0 7.2 5.9 65.9 45.0 16.5 16.6
4.0 3.3 54.0 44.7 15.9 16.4

98 2 -0.5 8.2 5.1 76.4 47.2 16.4 16.8
4.0 3.1 57.7 46.3 16.8 16.5

245 1 0.5 3.8 4.8 9.9 10.8 1.8 1.8
0.5 0.6 9.1 7.5 1.1 1.1

245 1 0 6.5 5.4 10.6 7.1 1.1 1.0
1.1 1.0 8.7 7.2 1.0 1.0

245 1 -0.5 7.9 5.2 12.8 8.0 1.2 1.3
1.2 1.2 9.2 7.6 1.1 1.1

245 2 0.5 4.4 5.2 37.5 43.6 8.6 8.7
0.5 0.9 35.0 27.8 4.4 4.8

245 2 0 6.4 5.2 42.3 28.7 4.2 4.2
1.0 0.9 35.2 28.7 3.9 4.0

245 2 -0.5 7.0 5.0 50.7 30.9 4.6 5.1
1.1 1.1 36.3 28.9 4.3 4.2

490 1 0.5 7.1 6.7 7.8 9.4 3.0 1.8
0.2 0.5 7.2 5.8 0.5 0.6

490 1 0 8.1 6.5 9.5 6.4 0.6 0.5
0.5 0.5 7.6 6.2 0.4 0.4

490 1 -0.5 8.4 5.9 11.1 6.3 0.6 0.8
0.5 0.5 7.6 5.8 0.5 0.4

490 2 0.5 6.7 6.5 31.7 41.0 8.1 6.4
0.3 0.3 29.3 25.1 2.0 2.3

490 2 0 7.5 6.3 36.0 24.4 2.3 2.2
0.5 0.4 29.3 24.3 1.9 1.9

490 2 -0.5 8.7 5.8 46.1 28.1 2.6 3.3
0.5 0.5 30.9 24.4 2.1 2.1
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Table 3: Empirical rejection probabilities of (Columbus) F -significance tests for the regres-
sion coefficients in percent for the first stage (OLS-residuals, upper line) and for the iterative
procedure (FGLS-residuals, lower line), nominal level α = 5%

σ2
µ = σ2

ν = 1 σ2
µ = σ2

ν = 2
N ρ KKP AW KKP AW
98 0.5 23.2 20.6 25.1 20.6

18.7 14.5 20.7 14.9
98 0 23.4 11.4 23.8 11.0

20.2 10.1 20.3 10.4
98 -0.5 18.3 8.7 19.7 8.7

24.0 13.1 21.3 10.3
245 0.5 22.7 18.5 22.1 18.4

16.7 13.0 15.9 12.5
245 0 23.0 10.5 25.2 12.1

17.9 10.1 18.3 9.8
245 -0.5 19.7 9.3 17.7 7.7

19.4 10.1 15.6 9.1
490 0.5 24.5 20.2 25.9 22.5

17.0 12.4 16.4 13.7
490 0 25.4 10.8 26.5 11.1

16.1 9.1 17.5 8.7
490 -0.5 19.2 9.6 19.5 8.8

17.6 10.0 15.4 8.5
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Table 4: Bias of the (Virginia) estimators for first stage (OLS-residuals, upper line) and for the
iterative procedure (FGLS-residuals, lower line), multiplied by 100

ρ̂ σ̂2
µ σ̂2

ν

N J ρ KKP AW KKP AW KKP AW
50 2 0.5 -0.85 1.55 -33.60 -20.43 6.92 6.12

-0.48 0.60 -26.09 -11.02 -2.38 -1.62
50 2 0 -8.24 -2.12 -32.60 -14.92 3.80 4.89

-2.24 -1.21 -21.69 -4.90 -2.92 -1.64
50 2 -0.5 -17.45 -4.46 -34.15 -15.56 4.01 4.56

-1.78 -1.21 -22.30 -6.99 -4.97 -3.13
50 6 0.5 -0.34 -2.18 -28.47 -11.79 6.09 7.35

-0.39 -0.12 -21.71 -2.50 -2.55 -1.68
50 6 0 -8.44 -5.24 -29.75 -12.31 2.23 4.39

-0.55 1.36 -21.08 -3.23 -3.45 -2.29
50 6 -0.5 -21.86 -12.55 -33.24 -16.43 0.93 3.76

-2.74 -1.73 -22.06 -5.61 -3.71 -2.35
100 2 0.5 -1.76 -0.65 -17.15 -9.11 5.06 3.43

-0.84 -0.07 -11.97 -3.46 -1.34 -1.41
100 2 0 -5.44 -1.43 -16.97 -7.71 1.83 2.15

-1.96 -0.98 -11.13 -2.10 -1.17 -0.67
100 2 -0.5 -7.68 -1.04 -16.89 -6.82 1.41 2.35

-1.25 -0.71 -10.21 -1.60 -1.92 -1.04
100 6 0.5 -3.71 1.82 -12.95 -3.76 5.29 3.56

-2.39 0.33 -9.32 -0.12 -1.04 -1.06
100 6 0 -7.36 2.65 -15.90 -5.58 0.84 1.34

-2.37 2.01 -10.35 -1.32 -2.50 -1.79
100 6 -0.5 -8.07 3.85 -18.04 -7.72 -0.30 2.69

-2.24 2.44 -11.72 -2.87 -2.53 -1.11
200 2 0.5 -2.45 -1.25 -8.92 -4.57 2.47 1.79

-0.43 -0.13 -6.70 -1.98 -0.48 -0.59
200 2 0 -2.82 -0.85 -8.67 -3.87 0.79 1.04

-0.74 -0.27 -5.19 -0.52 -0.80 -0.55
200 2 -0.5 -1.51 0.67 -9.21 -4.10 0.62 1.92

-0.57 -0.17 -5.88 -1.50 -1.13 -0.59
200 6 0.5 0.51 0.99 -7.90 -3.67 3.46 1.79

-0.04 1.14 -5.90 -1.23 -0.13 -0.29
200 6 0 -5.73 -1.14 -9.48 -4.56 0.92 0.98

-1.14 0.68 -6.24 -1.66 -0.87 -0.59
200 6 -0.5 -5.75 0.00 -9.17 -4.15 -0.31 0.94

-0.54 1.42 -5.39 -1.21 -1.08 -0.44
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Table 5: MSE of the (Virginia) estimators for for first stage (OLS-residuals, upper line) and for
the iterative procedure (FGLS-residuals, lower line), multiplied by 100

ρ̂ σ̂2
µ σ̂2

ν

N J ρ KKP AW KKP AW KKP AW
50 2 0.5 11.27 11.04 33.12 34.15 10.89 9.06

1.92 2.92 28.93 34.04 5.23 5.59
50 2 0 10.19 11.45 30.65 33.60 6.34 7.00

2.82 3.20 27.43 34.95 4.99 5.33
50 2 -0.5 21.44 13.12 32.75 37.00 10.69 10.40

2.30 2.92 26.13 35.26 5.79 6.46
50 6 0.5 32.80 38.74 32.38 33.52 6.65 7.27

12.08 13.74 29.85 37.84 4.79 5.12
50 6 0 47.68 58.33 29.59 33.66 6.07 6.96

12.11 13.70 28.61 34.71 5.06 5.22
50 6 -0.5 69.91 64.59 30.77 34.67 6.88 8.11

11.35 15.56 26.43 34.90 4.95 5.06
100 2 0.5 5.12 4.08 15.06 15.27 4.69 4.19

0.72 0.93 13.31 14.86 2.71 2.76
100 2 0 4.76 4.66 15.72 16.26 3.27 2.86

1.16 1.29 14.65 16.72 2.53 2.59
100 2 -0.5 7.20 3.05 17.34 18.25 4.34 3.98

0.63 0.74 14.88 17.60 2.90 2.90
100 6 0.5 16.76 14.69 14.63 15.92 4.46 4.24

2.41 2.69 14.41 16.25 2.51 2.56
100 6 0 18.21 17.51 14.71 15.87 3.11 3.14

3.57 4.03 14.16 15.93 2.47 2.50
100 6 -0.5 19.25 20.65 15.34 16.10 3.37 4.26

5.15 5.46 14.24 15.89 2.77 2.81
200 2 0.5 1.39 1.42 7.90 7.95 2.04 2.01

0.34 0.36 7.34 7.71 1.39 1.41
200 2 0 2.17 2.23 7.80 7.80 1.26 1.27

0.53 0.54 7.32 7.90 1.15 1.16
200 2 -0.5 1.89 1.44 7.88 8.04 2.04 2.18

0.33 0.33 6.97 7.51 1.45 1.45
200 6 0.5 8.34 4.17 8.24 8.34 2.01 1.64

0.86 0.73 7.89 8.27 1.24 1.23
200 6 0 8.66 7.44 7.75 7.78 1.62 1.39

1.80 1.87 7.39 7.76 1.28 1.29
200 6 -0.5 8.50 8.68 7.60 7.76 1.53 1.65

2.20 2.33 6.86 7.35 1.38 1.38
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Table 6: Empirical rejection probabilities of (Virginia) significance tests for the regression coef-
ficients in percent for the first stage (OLS-residuals, upper line) and for the iterative procedure
(FGLS-residuals, lower line), nominal level α = 5%

J = 2 J = 6
β1 β2 β1 β2

N ρ KKP AW KKP AW KKP AW KKP AW
50 0.5 11.7 8.8 11.1 7.3 13.7 12.1 11.3 9.5

12.5 10.5 14.1 12.3 13.3 11.6 14.7 12.8
50 0 12.9 9.2 12.1 9.4 9.4 7.3 10.2 7.7

13.6 12.3 14.0 12.5 10.5 9.6 12.4 11.2
50 -0.5 8.5 6.9 8.6 6.7 10.2 8.3 10.3 8.3

13.1 12.3 12.9 12.1 10.0 9.4 10.6 9.5
100 0.5 7.3 5.5 7.4 5.2 7.4 6.5 7.0 6.0

7.6 6.8 7.2 7.0 7.9 6.9 9.2 8.2
100 0 8.3 6.9 8.1 7.1 8.0 6.5 8.0 6.8

8.4 8.0 8.9 8.0 9.0 8.1 10.1 9.1
100 -0.5 7.0 5.8 6.6 5.7 6.3 5.0 6.2 5.6

7.0 6.8 7.0 6.7 9.3 8.1 9.0 8.1
200 0.5 6.4 5.5 5.9 5.1 6.6 5.0 6.0 5.7

6.7 6.1 7.2 7.0 7.1 6.0 7.3 6.7
200 0 5.7 5.4 5.9 5.1 6.1 5.7 5.9 5.7

7.3 6.9 6.8 6.3 6.7 6.1 7.2 7.0
200 -0.5 6.4 5.9 6.6 6.0 5.7 5.3 5.6 4.8

5.2 5.0 5.3 4.9 6.8 6.7 7.2 6.9
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