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We investigate and develop methods for structural break detection, considering time se-
ries from thermal spraying process monitoring. Since engineers induce technical malfunctions
during the processes, the time series exhibit structural breaks at known time points, giving
us valuable information to conduct the investigations.

First, we consider a recently developed robust online (also real-time) filtering (i.e. smooth-
ing) procedure that comprises a test for local linearity. This test rejects when jumps and trend
changes are present, so that it can also be useful to detect such structural breaks online. Sec-
ond, based on the filtering procedure we develop a robust method for the online detection
of ongoing trends. We investigate these two methods as to the online detection of structural
breaks by simulations and applications to the time series from the manipulated spraying pro-
cesses. Third, we consider a recently developed fluctuation test for constant variances that can
be applied offline, i.e. after the whole time series has been observed, to control the spraying
results. Since this test is not reliable when jumps are present in the time series, we suggest
data transformation based on filtering and demonstrate that this transformation makes the
test applicable.

Keywords: time series; jumps; trends; variance changes; Repeated Median regression;
thermal spraying processes

1. Introduction

Industrial production processes are often supervised by the ongoing measurement
of several variables. For example, the quality of thermally sprayed coatings can
be controlled by monitoring the particle properties of the spray jet. Technical
malfunctions typically lead to structural breaks like jumps and trend changes in
the time series. They can also involve sudden or gradual changes in the variance of
the time series. If such structural breaks can be detected online, i.e. in real time,
the engineer can react so that production failures can be avoided. Furthermore, it is
reasonable to assess the quality of the coating result offline, i.e. after the spraying
process has finished, by watching for structural changes in the observed time series
of the particle properties.
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Reviews on mainstream methods for process surveillance and detection of struc-
tural breaks can be found in [2, 16], for instance. Recent articles in the Journal of
Applied Statistics related to this topic are given by [3, 6, 10, 13, 14].
Scientists in engineering, mathematics and statistics of the Collaborative Re-

search Center 823 of the Deutsche Forschungsgemeinschaft develop and investigate
procedures for the on- and offline analysis of dynamic processes. In this study, the
spraying processes are manipulated by the engineers to imitate critical technical
failures. Hence, the time series of the particle properties exhibit structural breaks
at known time points, giving us valuable information to assess the performance of
detection procedures. We aim at three goals in this paper:
First, we consider the recently developed Slope Comparing Adaptive Repeated

Median (SCARM) [5], a procedure for online filtering (i.e. smoothing) based on
robust Repeated Median (RM) [18] regression in a moving window sample. The
SCARM adapts the width of the time window to the current data situation at each
time point by means of a test for local linearity. We assess the performance of this
test as to the online-detection of jumps and trend changes by means of simulations
and applications to the time series from the manipulated spraying processes.
Second, we propose a new robust procedure for the online-detection of ongoing

trends, which is based on the SCARM filter. The performance of the trend-detection
procedure is investigated by means of simulations and applications to the given time
series.
Third, we consider a recently developed fluctuation test for the offline-detection

of changes in the variance of time series [22]. This test assumes mean-stationarity
of the process, which is not given for the considered spraying processes. There-
fore, we propose data transformation based on robust RM regression to obtain
mean-stationary time series that still exhibit the variance structure of the original
time series. We demonstrate that this data transformation enables us to apply the
fluctuation test and expect reliable results.
Section 2 explains the experimental set-up including the actions to imitate the

technical malfunctions and the resulting time series data. In Section 3 we intro-
duce the SCARM and its test for local linearity. Furthermore, we present the new
trend-detection procedure and investigate the two methods as to the detection of
jumps and (changing) trends by means of simulations and applications to the given
time series. In Section 4.1 we introduce the fluctuation test for constant variances.
Furthermore, we present the data transformation approach and demonstrate that
this transformation makes the test applicable. Section 5 concludes and gives an
outlook.

2. Experimental set-up and data

The experiments are conducted using a spray gun of type WokaJet 400 c⃝ from
Sulzer Metco with a MultiCoat c⃝ control module. This module allows a continuous
electronic monitoring of several variables. A TWIN 120AH c⃝ powder feeder pro-
vides a permanent powder supply to the hot gas jet by two radial powder injectors.
An agglomerated and sintered WC-Co c⃝ powder with particle sizes between 15 and
45µm is chosen as feedstock. For all spray plume measurements an AccuraSpray c⃝

g3 system from Tecnar is employed.
The AccuraSpray c⃝ g3 provides several different types of data. However, we

merely consider the following four variables, since these are known to have great
impact on the coating quality [15, 19, 20]:

Xtemp: the temperature of the spray particles in ◦C,
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Table 1. Possible process malfunctions and the actions to imitate them.

Situation Action to imitate

A: ‘Failure of one powder injector’ Switching off the injector on one side only

B: ‘Pressure drop of the carrier gas’ Lowering the carrier gas pressure by 5%

C: ‘Failure of the air cooling’ Switching off the compressed air supply

D: ‘Worn-out acceleration nozzle’ Replacement of nozzle by a worn-out nozzlea

aSpraying process interrupted to replace the nozzle.

Xvel: the particle velocity in m/s,
Xwid: the width of the spray jet in mm,
X int: the intensity of the spray jet in %.

The four variables are measured with a frequency of one observation per second
over periods ranging from 855 to 904 seconds in four different experiments. The
resulting time series are shown in Figures 1 – 4.
The four experiments were run with equal start settings. However, in each ex-

periment the settings are altered after 420 seconds to imitate a certain technical
malfunction of the spraying process. Table 1 shows the four considered malfunc-
tions A–D and the actions to imitate them. These malfunctions are likely to occur
in practice and can severely affect the spraying process and thus the coating quality.
The effect of the malfunctions is reflected by the time series of the four variables,

see Figures 1 – 4. Most of the time series show visible jumps or trends after the
malfunction has been imitated, indicating that the process is defective or out of
control, respectively.
The situation A: ‘Failure of one powder injector’ is imitated by switching off the

injector on one side only. This does not affect the process immediately since the
second powder injector is still working. The situation D: ‘Worn-out acceleration
nozzle’ is imitated by replacing the well-functioning nozzle by a worn-out nozzle,
involving an interruption of the spraying process. Note that a degeneration of the
nozzle usually proceeds slowly, yet it is impossible to run the machines until the
usual degeneration exceeds a reasonable level. Moreover, the progress of degener-
ation can usually be described as a steady process that does not show structural
changes. Therefore, our statistical analysis of this situation mainly focuses on gen-
eral differences in the structure of the time series when a well-functioning or a
worn-out nozzle is used.

3. The online detection of jumps and (changing) trends

The recently developed Slope Comparing Adaptive Repeated Median (SCARM) is
a procedure for online filtering (i.e. smoothing) of non-stationary time series [5].
The SCARM fits Repeated Median (RM) regression lines [18] to moving window
samples, whose widths are adapted to the current data situation at each time
point t. The window width adaption is based on a test for local linearity of the
signal, presented in Section 3.1. This test rejects when jumps and trend changes are
present and is therefore a promising tool for online break detection. The SCARM
test is constructed to detect distinct, sudden changes of the trend, but it cannot
detect slight, ongoing trends. Therefore, we develop a new procedure for the online-
detection of trends in time series in Section 3.2 which uses the information given
by the SCARM. In order to investigate the SCARM and the new trend-detection
procedure as to their ability to detect jumps and (changing) trends and as to their
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liability to false detections, we determine their average run lengths (ARLs) by
means of simulations in Section 3.3. Finally, the capabilities of the two procedures
are demonstrated by applications to the given time series from thermal spraying
processes in Section 3.4.

3.1 The SCARM and its test for local linearity

The SCARM assumes that the observations xt of the time series (xt) are drawn
from

Xt = µt + εt + ηt, t ∈ N, (1)

where µt denotes the unknown underlying signal which is smooth but may exhibit
sudden jumps and trend changes. Furthermore, εt is an error process consisting of
independent random variables with zero expectation and time-dependent variance
σ2
t , and ηt is an outlier process that occasionally generates large absolute values

but is zero most of the time. The noise variance σ2
t may change over time, but

changes of the variance are assumed to occur gradually, so that σt can be treated
as locally constant. That is, even if the fluctuation test from Section 4.1 rejects the
hypothesis of constant variance of the whole time series, we may apply the SCARM,
provided that no sudden variance changes are given. Following the approach of [17],
[5] assume that the signal can be approximated well by a line in a short window of
size n:

µt−n+i ≈ µt + βt · (i− n), i = 1, . . . , n, (2)

where βt is the slope of the line. Under this assumption of local linearity, the
SCARM fits an RM regression line to the window sample xt := (xt−n+1, . . . , xt)
by estimating βt and µt:

β̂t :=β̂(xt) = med
i∈{1,...,n}

{
med
j ̸=i

{
xt−n+i − xt−n+j

i− j

}}
,

µ̂t :=µ̂(xt) = med
i∈{1,...,n}

{
xt−n+i − β̂t · (i− n)

}
.

(3)

The level µ̂t is then the estimate of the signal µt.
Since the SCARM adapts the size of the window sample xt at each time point

t, the window width is denoted as nt in the following. The window width adaption
is based on a test for local linearity of the underlying signal µt−nt+1, . . . , µt:

H0 : µt−nt+i = µt + βt · (i− nt), i = 1, . . . , nt,

H1 : µt−nt+i =

{
µold
t + βold

t · (i− nt), i = 1, . . . , t0

µnew
t + βnew

t · (i− nt), i = t0 + 1, . . . , nt
,

where t0 ∈ {1, . . . , nt − 1} and µold
t ̸= µnew

t and/or βold
t ̸= βnew

t . The alternative
H1 means that a level shift and/or trend change takes place in the time window of
size nt.
In order to perform the SCARM test, the window sample xt ∈ Rnt is split into

two separate parts, the left-hand sample xleft
t = (xt−nt+1, . . . , xt−r) and the right-

hand sample xright
t = (xt−r+1, . . . , xt), so that xt = (xleft

t ,xright
t ). The size r of the

right-hand sample is fixed, whereas the size of the left-hand sample is ℓt := nt− r,
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i.e. ℓt varies over time. LetXt,X
left
t andXright

t denote the referring random vectors,

and let β̂right
t := β̂(Xleft

t ) and β̂left
t := β̂(Xright

t ) denote the left-hand and right-hand
RM slopes, cf. (3). The test statistic of the SCARM is then given by

Tt := T (Xt) =
Dt√

V̂ar(Dt)

, Dt := β̂right
t − β̂left

t , (4)

where V̂ar(Dt) is an estimator of the variance of the slope difference Dt from (6),
see below. [5] investigate the distribution of the SCARM test statistic T under H0

and find that it can be approximated well by a tf -distribution for several error
distributions. Hence, [5] reject H0 if |T (xt)| is larger than the 1 − α/2-quantile of
the tf -distribution, where the degrees of freedom f = f(ℓt, r) depend on the sample
sizes ℓt and r, and α is the level of significance.
Given independent Gaussian errors, the expected number of type I errors, i.e.

falsely detected signal changes, in a time series of length N is αN . However, please
note that the SCARM test is applied sequentially in moving window samples.
In this case, the test should be regarded in an explorative rather than in an
inferential sense [21]. Its task is to detect structural breaks in real time to help the
engineer or any other process surveillant to decide whether the ongoing process is
defective or out of control.

If H0 is rejected, it is assumed that the underlying signal has changed in the time
window. Hence, in this case the window width nt is set down to a reasonable small
value nmin which has to be chosen beforehand. [5] recommend to choose nmin ≈ r/3
in order to estimate µt only on observations that come after t0.
If H0 cannot be rejected, it is justifiable to assume that the signal is (at least

approximately) linear in the window of width nt, so that nt is not adapted. After
the signal has been estimated by fitting the RM line to the window sample of
(possibly adapted) width nt, the new incoming observation xt+1 is included into
the window sample, so that nt+1 = nt + 1. That is, the window width can merely
grow gradually, provided that H0 is not rejected over a period of time. Furthermore,
an upper bound nmax for nt limits the computing time: if nt+1 = nt+1 > nmax, the
oldest/leftmost observation of the window sample is excluded, so that nt+1 = nmax.
Afterwards the time index is updated by setting t← t+ 1.
Note that if the window width is set down to a small value nmin at time t∗, at the

following time points t∗+1, t∗+2, . . . the windows possibly do not contain enough
observations for sensible test decisions. Therefore, [5] choose a minimum value
ℓmin for ℓt, such that the test is only performed if nt ≥ ℓmin + r; [5] recommend to
choose ℓmin = r. That is, if the test rejects at time point t and nmin < ℓmin + r,
the test is not performed again until time t + ℓmin + r − nmin. For more details
about the SCARM-algorithm and the choice of the input arguments r, ℓmin, nmin,
nmax and α, see [5].

In order to estimate Var(Dt), [5] use that

Var(Dt) = Var(β̂left
t ) + Var(β̂right

t ) = σ2
t · vℓ + σ2

t · vr = σ2
t · (vℓ + vr) (5)

under H0 and given that εt is a white noise process. Here vℓ and vr denote respec-
tively the variance of the RM slope for samples of size ℓ and r, where the error
follows a specified distribution with variance one. [5] obtain approximations v̂n by
means of simulations using standard normal noise and estimate the error scale σt.
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Assuming that σt is locally constant, i.e. constant in the time window of width nt,
[5] estimate σt by means of the model-free and robust scale estimator Qadj [12]. The
Qadj is applied directly to the data and does not require a preceding regression fit.
This leads to a gain in power of the SCARM test since large estimations of Var(Dt)
are prevented [5]. Given a random vector Xt, the Qadj scale estimator of the noise

scale is σ̂t := Qadj
δ (Xt), where

Qadj
δ (xt) = cn · h(t−n+⌊δ(n−2)⌋).

Here h(t−n+⌊δ(n−2)⌋) is the δ-quantile of the vertical heights ht−n+i, i = 2, . . . , n−1,
of the n − 2 triangles which are built by each triplet of subsequent observations
xt−n+i−1, xt−n+i, xt−n+i+1:

ht−n+i =

∣∣∣∣xt−n+i −
xt−n+i−1 + xt−n+i+1

2

∣∣∣∣ .
The factor cn ensures the unbiasedness of the estimator for a sample of size n with
errors coming from a specified distribution. [12] suggest to choose δ = 0.5 to obtain
reasonable robustness and efficiency of the Qadj estimator.
[5] obtain approximations v̂n and constants cn by means of simulations using

standard normal errors. However, if the data are positively (negatively) autocorre-
lated, these values are too small (too large), so that the proposed estimator

V̂ar(Dt) = cn · h(t−n+⌊n/2−1⌋) · (v̂ℓ + v̂r) , (6)

has a downwards (upwards) bias. We therefore use constants v̂φn and cφn which are
obtained by means of simulations on data from an AR(1)-process with parame-
ter φ ∈ (−1, 1) and standard normal error. The constants v̂φn and cφn can then
be chosen w.r.t. the parameter φ. Since the thermal spraying time series exhibit
autocorrelations at lag one of around 0.6, we use φ = 0.6 for the application in
Section 3.4.
Next, we present a new procedure for the online-detection of trends. This method

is based on the fact that at each time point t the SCARM delivers a window width
nt such that the assumption of a linear signal is justifiable.

3.2 A SCARM-based procedure for online trend detection

Our new procedure is based on the same assumptions as the SCARM. We further
assume that there is a window width nt for all t, so that (2) holds exactly:

µt−nt+i = µt + βt · (i− nt)

⇔ Xt−nt+i = µt + βt · (i− nt) + εt−nt+i + ηt−nt+i,
(7)

with i = 1, . . . , nt. The equivalence is true because of (1), where εt denotes the
error process with variance σ2

t and ηt is the outlier process. If (7) is given, we can
interpret βt as the current slope of the signal, and constitute that a trend is given iff
βt ̸= 0. Since the SCARM adapts a window width nt at each time t, it is justifiable
to assume that (7) is true. That is, for all t the SCARM delivers an adequate window

width nt, so that β̂(Xt), the RM slope estimator on Xt = (Xt−nt+1, . . . , Xt), is



January 27, 2014 Journal of Applied Statistics 2nd˙Revision˙accepted

On- and offline detection of structural breaks 7

adequate for βt. We therefore propose the trend-detection statistic

T ∗
t := T ∗(Xt) =

β̂(Xt)√
V̂ar

[
β̂(Xt)

] , (8)

where the estimator V̂ar[β̂(Xt)] is given by

V̂ar
[
β̂(Xt)

]
= σ̂2

t · v̂nt
= cnt

· h(t−nt+⌊nt/2−1⌋) · v̂nt

in accordance with (5) and (6) and the window width nt is delivered by the SCARM.

Note that the estimator V̂ar[β̂(Xt)] can be adapted to errors from an AR(1)-process
with parameter φ, for instance, by using suitable constants cφnt and v̂φnt , see above.
If a sample xt results in a large value of |T ∗(xt)|, we must assume that βt ̸= 0,

meaning that a trend is currently present in the time series (where the sign of
T ∗(xt) indicates the direction of the trend). Similar to the SCARM test one could
develop a test procedure based on the trend-detection statistic T ∗

t by investigating
its distribution under the null hypothesis βt = 0. However, if a (test) statistic
is computed sequentially in moving window samples of time series observations,
it should be regarded as a rather explorative than inferential tool for decision
support [21]. Therefore, we refrain from developing a test procedure based on the
trend-detection statistic T ∗

t from 8. Instead, we suggest to use a decision rule, e.g.

R(xt) =


0, |T ∗(xt)| ≤ c1

1, c1 < |T ∗(xt)| ≤ c2

2, c2 < |T ∗(xt)|
, (9)

where 0 < c1 < c2. Here the situations R = 0, R = 1 and R = 2 could be
interpreted respectively as ‘no trend’, ‘warning: slight trend’ and ‘alarm: distinct
trend’. Of course also other decision rules could be applied, e.g. using only one
threshold c = 3, in accordance with the common six-sigma-rule.
The proposed trend-detection procedure offers the same beneficial proper-

ties as the SCARM: it is robust against outliers since robust RM regres-
sion and robust Qadj scale estimation is used; it only needs negligible small
extra computing time since it uses the outputs given by the SCARM; and
its algorithm can be implemented easily in an online system so that it
is feasible in online practice. We provide an R function of the SCARM-
based trend-detection procedure, termed scarm.detection, on the website
https://www.statistik.tu-dortmund.de/1543.html.

3.3 Average run lengths

In the following we investigate the SCARM statistic Tt from Section 3.1 and the
trend-detection statistic T ∗

t from 3.2 as to their ability to detect structural breaks
and their liability to false detections. Results regarding the power of the SCARM
test to detect jumps and trend changes can be found in [5]. We determine the
out-of-control and in-control average run lengths (ARLs) of the two procedures.
The in-control ARL is the mean time until a break is detected by mistake, and
the out-control ARL is the mean time until a given break is detected. The ARLs
are determined by simulations using R, version 3.0.1; the simulation programs are
available on the website https://www.statistik.tu-dortmund.de/1543.html.
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Table 2. In-control ARLs of Tt and T∗
t for

several types of errors.

Error Tt T ∗
t

type c = 2 c = 3 c = 4

I 1899 311 2017 10771
II 1975 308 1899 10112
III 2920 558 4715 22538
IV 6451 1113 11129 30099
V 5390 742 7830 31728

We apply the SCARM using the R function scarm.filter from the R package
robfilter [9] and choose the input arguments α = 0.001, r = ℓmin = 30, nmin = 10
and nmax = 200, in accordance with the suggestions by [5]. The application of the
trend detection procedure is carried out using the R function scarm.detection,
which is provided on the above mentioned website, too.

3.3.1 In-control ARLs

We generate stationary time series (xt)t∈N from Xt = µt + εt with µt = 0 and
independent errors εt, considering five types of error distributions:

• Error type I: standard normal errors;

• Error type II: skewed errors from a standardized Weibull distribution with scale
and shape parameter two and one;

• Error type III: heavy-tailed errors from a standardized t-distribution with three
degrees of freedom;

• Error type IV: errors from a contamination model: εt ∼ 0.9N(0, 1)+0.1N(10, 1);

• Error type V: errors from a contamination model: εt ∼ 0.9N(0, 1)+0.1N(0, 100).

For each error type I–V we generate N time series (xt), and for each time series
we store the time until |Tt| is larger than the critical value and until |T ∗

t | is larger
than a certain threshold c. That is, we store the time until a break is detected
by mistake. Thus, we can estimate the in-control ARL by the mean of the N
respective run lengths, where N = 1000 for error type I–III and N = 500 for error
type IV and V. The results for Tt and for T ∗

t with c = 2, 3, 4 are shown in Table 2.
Apparently, the in-control ARLs of the SCARM and the trend-detection procedure
are comparable for the noise types I and II, i.e. for standard normal and skewed
Weibull noise. The ARLs for the noise types III–V are larger, i.e. the SCARM
rejects less frequently for heavy-tailed or contaminated noise. This is because the
Qadj scale estimator from (3.1) has an explosion breakdown point of about 1/6 if
δ = 0.5, as recommended by [12]. Roughly speaking, this means that the estimator
can become arbitrarily large if 1/6 of the observations in a sample are replaced
by arbitrarily extreme values. That is, the Qadj estimator is biased upwards due
to the extreme observations in the time series with errors of type III-V. Thus, the
empirical variances of the statistics Tt and T ∗

t are smaller than one, so that their
in-control ARLs are longer than the ARLs for standard normal errors.

3.3.2 Out-of-control ARLs

Next we determine the out-of-control ARLs of the trend-detection procedure, i.e.
the mean time needed to detect trends with different slopes. We do not present
the out-of-control ARLs of the SCARM here as these can be found in [5]. We
only remark that, depending on the severity of the break and the chosen input
arguments, the out-of-control ARL of the SCARM is roughly about r/4 to 3r/4
time points, where r is the chosen right-hand width.
In order to determine the out-of-control ARL of the trend-detection procedure,
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Table 3. Out-of-control ARLs of T∗
t for trends with slope b.

b c = 2 c = 3 c = 4 b c = 2 c = 3 c = 4

0.01 57.6 87.1 111.0 0.1 18.7 26.2 33.2
0.02 40.9 58.9 73.2 0.2 12.3 16.9 20.2
0.03 33.8 48.6 60.4 0.3 10.0 12.7 14.9
0.04 29.8 43.1 53.7 0.4 8.6 10.7 12.3
0.05 26.7 38.6 48.6 0.5 7.9 9.5 10.8
0.06 24.2 35.3 45.1 0.6 7.6 8.8 9.8
0.07 22.6 32.4 41.7 0.7 7.3 8.4 9.2
0.08 21.1 30.5 38.1 0.8 7.1 8.2 8.8
0.09 19.7 28.2 35.7 0.9 7.0 8.1 8.6
0.10 18.7 26.2 33.2 1.0 6.9 7.9 8.5

we generate time series (xt) from Xt = µt + εt, where εt ∼ N(0, 1) and

µt =

{
0, t = −n,−n+ 1, . . . , 0

b · t, t = 1, 2, . . .
.

That is, for the first n observations the time series is stationary, and then at time
t = 1 a trend of slope b starts. Here n is the width the SCARM uses to estimate
the slope and level at time t = 0. The width n is chosen with equal probability
from {10, 11, . . . , 200} in order to imitate the situation in practice, as the size
of the window sample to compute T ∗

t is chosen automatically by the SCARM.
We generate 1000 time series for b ∈ {0.01, 0.02, . . . , 0.1, 0.2, . . . , 1} and store the
time until |T ∗

t | > c, considering the thresholds c = 2, 3, 4. Hence, we obtain 1000
detection times for each slope b and each threshold c, so that the out-of-control
ARLs can be estimated by the mean of the 1000 respective detection times. Table
3 presents the results. As was to be expected, the out-of-control ARLs decrease
with increasing b and decreasing c. That is, distinct trends are detected earlier
than slight trends, and a small threshold c induces a short out-of-control ARL –
but at the cost of a short in-control ARL, see Table 2. Anyway, the obtained in-
control and out-of-control ARLs demonstrate the capabilities of the SCARM and
the new trend detection procedure, as they offer long in-control ARLs and short
out-of-control ARLs.

3.4 Application of the SCARM test and the trend-detection procedure

Next we apply the SCARM and the trend-detection procedure to the four time
series (xtemp

t ), (xvelt ), (xwid
t ) and (xintt ) for each of the four situations A–D

listed in Table 1 in order to investigate their performances as to the online-
detection of the existent structural breaks. The SCARM is applied using R,
version 3.0.1, and the R function scarm.filter from the package robfilter

[9]. The application of the trend detection procedure is carried out using
the R function scarm.detection, which can be downloaded on the website
http://www.statistik.tu-dortmund.de/1543.html. Both R functions are ap-
plied offline here, yet an online application would deliver the same results.
[5] recommend to choose a small significance level α for the SCARM test, as one

expects one type I error every 1/α time points under H0. Since [5] find that the
SCARM test yields good power also for small levels of significance, we use α =
0.001. Furthermore, we use the input arguments ℓmin = r = 40, nmin = ⌊r/3⌋ = 13
and nmax = 200, which is in accordance with the recommendations by [5]. The
trend-detection procedure is applied using the decision rule (9) with c1 = 2 and
c2 = 4.
Since the data are rounded to one decimal place, ties are likely to occur in the
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Figure 1. Time series (xtemp
t ), (xvel

t ), (xwid
t ) and (xint

t ) for situation A: ‘Failure of one powder injector’;
signal changes detected by the SCARM test are marked by vertical lines.

window samples. Ties can cause that the Qadj estimator becomes zero, so that the
R functions give infinite values of the statistics Tt and T ∗

t . Therefore, we ‘wobble’
the data [8] by adding white noise from a normal distribution with zero mean and
variance ς2. In each situation A–D and for each of the four time series, we choose
ς equal to half of the empirical standard deviation of the first 400 observations
of the transformed time series (x̃t) from Section 4.1. Due to the wobbling there
are no more ties in the data, yet signal changes are not covered by noise since the
wobbling scale is small enough.
The Figures 1 – 4 display the time series (xtemp

t ), (xvelt ), (xwid
t ), (xintt ) for each of

the four situations A–D. The time points of jumps of trend changes detected by the
SCARM test are marked by black vertical dashed lines. The time points when the
trend-detection procedure decides respectively for R = 1: ‘warning: slight trend’
and R = 2: ‘alarm: distinct trend’ are marked by vertical lines colored in light-grey
and dark-grey.
Due to the failure of one powder injector (Figure 1) at time t = 420, jumps occur

respectively around t = 420 in the time series (xvelt ), (xwid
t ) and (xintt ) and around

t = 550 in the time series (xwid
t ) and (xtemp

t ). Obviously, this malfunction has a
delayed effect on the temperature of the spraying process and an immediate effect
on the remaining variables. The SCARM test detects all the provoked changes
immediately. It also detects some further signal changes, where most of these deci-
sions are comprehensible but some of them must be regarded as type I errors, i.e.
false detections. Using the trend-detection statistic T ∗

t we detect slight trends in
all four time series. However, most of these ‘slight-trend-periods’ are rather short,
indicating that these are false detections in the sense of type I errors.
The time series for the situations B: ‘Pressure drop of the carrier gas’ (Figure 2)

and C: ‘Failure of the air cooling’ (Figure 3) show some similarities. In both cases B
and C, the series (xvelt ) and (xintt ) do not exhibit jumps or apparent trend changes
when the malfunctions are induced. The SCARM test detects some slight changes
at other time points, but these detections can be regarded as irrelevant warnings
in the sense of type I errors. Since in both cases B and C the time series (xvelt )
and (xintt ) show ongoing negative trends, the trend-detection statistics T ∗

t correctly
indicate longer time periods of slight or distinct trends. This is also the case for the
time series (xtemp

t ) in situation B. Furthermore, it seems that the manipulations B
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Figure 2. Time series (xtemp
t ), (xvel

t ), (xwid
t ) and (xint

t ) for situation B: ‘Pressure drop of the carrier gas’;
signal changes detected by the SCARM test are marked by vertical lines.
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Figure 3. Time series (xtemp
t ), (xvel

t ), (xwid
t ) and (xint

t ) for situation C: ‘Failure of the air cooling’; signal
changes detected by the SCARM test are marked by vertical lines.

and C do not affect the spray jet width Xwid. The SCARM detects only one signal
change in (xwid

t ) for situation B, and the trend-detection statistics T ∗
t display short

periods of slight trends in both situations B and C. However, these detections are
rather false decisions in the sense of type I errors.
In situation C, the particle temperature time series is quite unstable, showing

jumps and trends. The SCARM detects three jumps, including the jump induced
by the provoked malfunction, and there are two periods when the trend-detection
procedure gives alarms due to distinct trends.
In situation D (Figure 4), the time series (xtemp

t ), (xvelt ) and (xintt ) exhibit slight
positive trends and a distinct jump caused by the provoked malfunction. The trends
are indicated by the trend-detection procedure, and the jumps are detected imme-
diately by the SCARM. The time series of the spray jet width (xwid

t ) differs re-
markably from the other three series. It shows two distinct jumps that are detected
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Figure 4. Time series (xtemp
t ), (xvel

t ), (xwid
t ) and (xint

t ) for situation D: ‘Worn-out acceleration nozzle’;
signal changes detected by the SCARM test are marked by vertical lines.

by the SCARM. The trend-detection procedure indicates slight trends, yet these
decisions can be regarded as irrelevant warnings, also because the warning periods
are rather short.
Finally, we point out that the SCARM detects all structural breaks that are

caused by all deliberately induced malfunctions. Yet it also detects more than the
provoked structural breaks. However, false or irrelevant detections are unavoidable,
especially if tests are applied sequentially in moving window samples. Altogether
the SCARM made about 20 type I errors. Given a total of 14052 time series obser-
vations the type I error rate is 20/14052 ≈ 0.0014. This complies with the chosen
level of significance α = 0.001.

4. A fluctuation test for constant variances

The recently developed fluctuation test by [22] offers the opportunity to detect
changes in the variance of time series. However, the fluctuation test requires weak
stationarity of the series. If this assumption is not fulfilled due to jumps and trends
(as is the case in the thermal spraying application due to the conducted manip-
ulations), the test tends to reject the null hypothesis, even if a constant variance
is given. Therefore, we transfer the original non-stationary time series into time
series which can be assumed to be mean-stationary and which reproduce the vari-
abilities of the original time series. Using this transformation we are able to apply
the fluctuation test and can expect reliable results.
In Section 4.1 we present the fluctuation test and its properties. In Section 4.2

we demonstrate how jumps affect the outcome of the fluctuation test and present
the data transformation. The fluctuation test is applied to the transformed time
series of the particle properties in Section 4.3.

4.1 The fluctuation test and its properties

Given a sequence of random variables (Xt, t ∈ N), which are assumed to have finite
absolute (4 + δ)th moments, δ ∈ R, the test problem of the fluctuation test for
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constant variances is

H0 : Var(X1) = . . . = Var(XT ) vs.H1 : ∃ t ∈ {1, . . . , T−1} : Var(Xt) ̸= Var(Xt+1).

The corresponding test statistic is

QT (X) = max
1≤j≤T

∣∣∣∣D̂ j√
T
([VarX]j − [VarX]T )

∣∣∣∣ , (10)

where

[VarX]l =
1

l

l∑
t=1

X2
t −

(
1

l

l∑
t=1

Xt

)2

=: X2
l −

(
X l

)2
is the empirical variance calculated from the first l observations. Furthermore, we
have

D̂ =
((

1,−2XT

)
D̂1

(
1,−2XT

)′)−1/2

with

D̂1 =
1

T

T∑
t=1

ÛtÛ
′
t + 2

T∑
j=1

k

(
j√
T

)
1

T

T−j∑
t=1

ÛtÛ
′
t+j

and

Ûl =

(
X2

l −X2
T

Xl −XT

)
, k(x) =

{
1− |x|, |x| ≤ 1

0, else
.

The test rejects the null hypothesis if the empirical variances fluctuate too much
over time. In order to derive a limiting null distribution the following assumptions
have to be stated, see [22]:

(A1) The sequence (Xt, t ∈ N) is weak-sense stationary.
(A2) For

Ut =

(
X2

t − E(X2
1 )

Xt − E(X1)

)
and Sj =

∑j
t=1 Ut, we have

lim
T→∞

E(
1

T
STS

′

T ) =: D1 is finite and positive definite.

(A3) The r-th absolute value of the components of Ut are uniformly bounded for
some r > 2.
(A4) The sequence (Xt, t ∈ N) is L2 near-epoch dependent with size −r−1/r−2,
with r from (A3), and constants (ct) on a sequence (Vt), t ∈ N, which is α−mixing
of size ϕ∗ := −r/r−2, such that

ct ≤ 2
(
{E|X2

t − E(X2
1 )|2 + E|Xt − E(X1)|2}

) 1

2 .
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Table 4. Empirical type I error.

τ α̂τ α̂τ with filtering
n = 11 n = 31 n = 51

0.5 0.18 0.029 0.029 0.037
2 1 0.032 0.030 0.027
5 1 0.019 0.007 0.001

The limiting null distribution of the test statistic QT can now be stated in the
following theorem, see [22].

Theorem 4.1 Under H0 and given (A1) to (A4) we have

QT (X)→ sup
z∈[0,1]

|B(z)|,

where B(z) is a one dimensional Brownian bridge.

Theorem 4.1 allows to determine quantiles of the null distribution in order to
apply the test. The quantiles for the null distribution are 1.224 for α = 0.1, 1.358
for α = 0.05 and 1.628 for α = 0.01.
[22] study the asymptotic local power of the test which is always larger than or

equal to α under certain conditions. Furthermore, they investigate the power for
different sample sizes and different variances in the first and second half of the time
series by means of Monte Carlo studies. The empirical power reaches values of at
least 0.886 already for a sample size of 800. It is basically observed that the power
increases with the sample size.
The fluctuation test can be used to assess the outcome of the thermal spraying

process by testing the observed time series of the particle properties for constant
variance. If the test rejects, the engineer should check the spraying result. How-
ever, we cannot expect the fluctuation test to deliver reliable results for the given
thermal spraying time series since these exhibit jumps and therefore do not fulfill
the assumption of weak-sense stationarity (A1), see Figures 1 – 4. In the following
we demonstrate how jumps affect the fluctuation test and present a data transfor-
mation approach that makes the test applicable.

4.2 The fluctuation test for non-stationary time series

In order to demonstrate that jumps affect the fluctuation test, we conduct a small
simulation study using R 3.0.1. The R programs are available on the website
https://www.statistik.tu-dortmund.de/1543.html. We generate 1000 time se-
ries of 1000 standard normal distributed values x1, . . . , x1000 and add τ ∈ {0.5, 2, 5}
to x501, . . . , x1000, so that a jump is present at time point t = 501. For all
τ = 0.5, 2, 5, we apply the fluctuation test with level of significance α = 0.05
to the 1000 different series, obtaining 1000 test decisions for each τ . The empirical
type I errors α̂τ are then the numbers of (false) rejections divided by 1000. These
are presented in Table 4, second column. The rate of empirical type I errors clearly
exceeds the chosen level of significance of 0.05 with α̂τ = 0.18 for the small jump
of height τ = 0.5 and α̂τ = 1 for the larger jumps of height τ = 2 and τ = 5.
Obviously, the fluctuation test for constant variances is not reliable when jumps

and trends are present in the time series. However, if the ‘signal-plus-noise-
assumption’ (1) was true and the underlying signal µt was known for all t, we
could subtract µt and obtain a mean-stationary time series (with zero mean) that
would offer the same (possibly changing) variability as the original time series, cf.
Appendix A. However, although the presence of an underlying signal is a com-



January 27, 2014 Journal of Applied Statistics 2nd˙Revision˙accepted

On- and offline detection of structural breaks 15

mon and justifiable assumption in many applications, the signal itself is generally
unknown, i.e. µt must be estimated for all t.
The signal µt could be estimated by the SCARM from Section 3.1. However, the

SCARM estimate µ̂t is the level of the RM regression line at the rightmost position
of the moving time window, because this point equates to the current time point
in an online application. Although this approach results in a ‘full-online’ signal
estimation, the course of the signal is traced with a certain time delay. That is, the
SCARM estimates µ̂t differ considerably from the true µt after jumps and trend
changes [5]. Hence, the SCARM is a rather improper method for our purpose.
However, since we want to apply the fluctuation test offline, we actually do not need
a ‘full-online’ signal estimation. Instead, we use a retrospective signal estimation
approach and fit RM regression lines to a moving window of odd width n = 2w+1
[7, 11]. The level of the regression line at the central window position w + 1 is
then the signal estimate at the referring time point t. We explain this offline signal
estimation in detail in Appendix A.
The positive effect of the data transformation is demonstrated in Table 4. Here

the third column contains the empirical type I errors of the fluctuation test applied
to the time series transformed by RM signal estimation with n = 11, 31, 51. The
empirical type I errors are lower than the significance level α = 0.05 for each
window width n, i.e. the test keeps the chosen level of significance if the time series
are transformed to mean-stationarity beforehand.

4.3 Application of the fluctuation test

Although the proposed data transformation helps to keep the level of signifi-
cance, we have to bear in mind that the chosen width n of the moving window
can have large impact on the signal estimation and thus on the resulting trans-
formed time series. That is, the results of the fluctuation test may depend on
the chosen window width n. Therefore, we apply the fluctuation test to the RM-
transformed time series (x̃temp

t ), (x̃velt ), (x̃wid
t ) and (x̃intt ) in each situation A–D

using several different window widths n for the RM-transformation. The applica-
tions are carried using R, version 3.0.1; the R program is available on the website
https://www.statistik.tu-dortmund.de/1543.html. Figure 5 displays the re-
sults of the fluctuation tests in situations A–D for n ∈ {11, 21, . . . , 201}. The solid
horizontal line marks the 0.95-quantile of the null distribution of the fluctuation
test. Figure 5 shows that in most cases the null hypothesis cannot be rejected at
the 0.05-level, meaning that we cannot detect a change in the variance of the time
series. However, the test rejects the null hypothesis for (x̃wid

t ) in the situations A
and B (except for n = 11, 21 in situation B). One might therefore suppose that a
failure of one powder injector (situation A) or a pressure drop of the carrier gas
(situation B) involve a change of the variance of the spray jet width. However, the
time series (x̃wid

t ) for the situation B (Figure 2) do not indicate that the variance
change is caused by the manipulation. A change is detected rather because of the
large fluctuations at the beginning of the time series.
Furthermore, Figure 5 indicates that the test results are independent of the cho-

sen window width n: The fluctuation test rejects the null hypothesis of a constant
variance at the 0.05-level either for all or for no values of n. The only exception is
the width of the spray jet in situation B. Here the test does not reject for n = 11, 21
but for all other values of n. This is because the signal estimates of the RM-filter
resemble the original data if n is small. Hence, the transformed time series do not
reproduce the large fluctuations at the beginning of the original time series. Due
to this finding, we recommend not to choose a too small window width n.
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Situation A: ’Failure of one powder injector’
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Situation B: ’Pressure drop of the carrier gas’
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Situation C: ’Failure of the air cooling’
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Situation D: ’Worn−out acceleration nozzle’
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Figure 5. Results of the fluctuation tests applied to the RM-transformed time series (x̃temp
t ), (x̃vel

t ),

(x̃wid
t ) and (x̃int

t ) using n ∈ {11, 21, . . . , 201} for the situations A–D; the solid horizontal line marks the
0.95-quantile of the null distribution.

5. Conclusion and outlook

We investigate and develop methods to find structural changes on- and offline
in time series of thermal spraying processes. Since technical malfunctions were
deliberately induced during the processes, we know that the time series exhibit
structural breaks and also when these breaks occur. We consider three methods:
First, the SCARM test by [5] for the online detection of jumps and trend changes;

second, a newly developed SCARM-based procedure for the online detection of
trends in time series; third, a fluctuation test by [22] for the offline detection of
changes in the variance. The new procedure for the online-detection of trends in
time series uses the output information given by the SCARM in order to estimate
the slope of the current trend. A simple decision rule is used to decide at each time
point t whether there is a (slight/distinct) trend or not.
We determine the in-control and out-of-control average run lengths (ARLs) of

the SCARM and the trend-detection procedure by means of simulations. The ARLs
indicate the capabilities of the two methods as they offer short out-of-control and
long in-control ARLs in all considered situations. The applications of the SCARM
and the trend-detection procedure to the given time series from thermal spraying
confirm these findings.
The fluctuation test for constant variance assumes the weak stationarity of the

time series, which is in fact not fulfilled for the given time series due to the structural
breaks. We demonstrate that the empirical rates of type I errors of the fluctuation
test clearly exceed the level of significance if jumps are present. Therefore, we
suggest data transformation based on signal estimation by robust regression in a
moving time window of width n. The transformed time series can be regarded as
mean-stationary and reproduce the possibly changing variability of the original
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data. We demonstrate that the test keeps the level of significance if it is applied to
the transformed data so that we can expect reliable results. Furthermore, we find
that the influence of the window width n on the test results is negligible provided
that n is not unreasonable small.
The combination of the SCARM and the trend-detection procedure can be a

useful tool for the online-surveillance of thermal spraying processes, but also for
monitoring time series from any other kind of production process. When a warning
or an alarm is given, the process surveillant can check and react if necessary.
Hence, production failures could be avoided. Furthermore, the fluctuation test can
be applied for a final quality control of the production results after the process is
finished. If the test rejects the null hypothesis of a constant variance, the product
requires a closer inspection.

The thermal spraying processes have been monitored by measuring four variables:
the temperature and velocity of the spray particles and the width and intensity of
the spray jet. Since there are apparent dependencies between the four time series, a
multivariate (online or offline) analysis would be promising. A multivariate version
of the SCARM already exists [4], and the development of a multivariate extension
of the fluctuation test by [22] is an interesting task for further research. We intend
an analysis of the given time series with these and other multivariate methods (see
[1], for instance) for future research, including a comparison with the results from
the univariate analysis conducted here.
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[1] A. Aue, S. Hörmann, L. Horváth, and M. Reimherr, Break detection in the co-
variance structure of multivariate time series models, The Annals of Statistics
37 (2009), pp. 4046–4087.

[2] M. Basseville and I. Nikiforov, Detection of abrupt changes: theory and appli-
cation, PTR Prentice Hall, Englewood Cliffs, New York (1993).

[3] D. Bock, Aspects on the control of false alarms in statistical surveillance and
the impact on the return of financial decision systems, Journal of Applied
Statistics 35 (2008), pp. 213–227.

[4] M. Borowski, Echtzeit-Extraktion relevanter Information aus multivariaten
Zeitreihen basierend auf robuster Regression, Ph.D. thesis, Faculty of Statis-
tics, TU Dortmund University (in German), 2013.

[5] M. Borowski and R. Fried, Online signal extraction by robust regression in
moving windows with data-adaptive width selection, Statistics and Computing
(2013).

[6] G. Celano, Robust design of adaptive control charts for manual manufactur-
ing/inspection workstations, Journal of Applied Statistics 36 (2009), pp. 181–
203.

[7] P. Davies, R. Fried, and U. Gather, Robust signal extraction for on-line mon-
itoring data, Journal of Statistical Planning and Inference 122 (2004), pp.
65–78.



January 27, 2014 Journal of Applied Statistics 2nd˙Revision˙accepted

18 REFERENCES

[8] R. Fried and U. Gather, On rank tests for shift detection in time series, Com-
putational Statistics and Data Analysis 52 (2007), pp. 221–233.

[9] R. Fried, K. Schettlinger, and M. Borowski, robfilter: Ro-
bust time series filters, R package version 4.0 (2012), URL
http://CRAN.R-project.org/package=robfilter.

[10] M. Frisén, E. Andersson, and L. Schiöler, Evaluation of multivariate surveil-
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Appendix A. Signal estimation by robust Repeated Median regression

The signal estimation or filtering is based on the assumption that the data xt come
from an unknown signal µt, which is disturbed by an error process εt:

Xt = µt + εt, t ∈ N.
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Figure A1. Left plot: original time series (xtemp
t ) for situation A: ‘Failure of one powder injector’ (grey)

and RM signal estimation (black). Right plot: resulting RM-transformed time series x̃temp
t .

It is assumed that the signal is ‘smooth’ but might also show sudden jumps or
trend changes. The noise process has zero mean and time-dependent variance σ2

t .
The idea is to estimate the signal and to subtract the signal estimate µ̂t from the
original data:

x̃t = xt − µ̂t.

Let X̃t denote the random variable corresponding to x̃t. Given that µ̂t = µt for all
t ∈ N, it is

E(X̃t) = 0 and Var(X̃t) = Var(Xt) = σ2
t , (A1)

for all t ∈ N, i.e. the time series (x̃t) is mean-stationary with zero mean and has
the same (possibly changing) variability as the original time series (xt). Hence,
provided that the signal estimation µ̂t is adequate, it is justifiable to assume that
(A1) holds.
[7, 11] estimate the signal µt by fitting regression lines to moving window samples

(xt−w, . . . , xt, . . . , xt+w) of width n = 2w + 1:

µ̂t+i = µ̂t + β̂t · i, i = −w, . . . , w,

where β̂t is the slope of the regression line and µ̂t, the level at the central window
position t, is the estimate of the signal µt. We follow the suggestions of [7, 11] and
use robust Repeated Median (RM) regression [18] to obtain the signal estimation
series (µ̂t) and thus the transformed time series (x̃t). This is done by means of
the R-function rm.filter from the package robfilter, version 4.0, [9]. Figure A1
presents an exemplary application of the RM filter to the time series (xtemp

t ) for
the situation A: ‘Failure of one powder injector’. The left plot shows the original
time series (grey) and the RM signal estimation (black). The right plot shows the
resulting RM-transformed series (x̃temp

t ) using n = 31. Obviously, the variability of
the original time series is reproduced by the RM-transformed time series, yet the
RM-transformed time series can be assumed to be mean-stationary in contrast to
the original series. Therefore, we can expect reliable results applying the fluctuation
test to the RM-transformed time series (x̃t) — in contrast to applying the test to
the original non-stationary time series (xt).


