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1. Introduction

Modeling and estimating stochastic dependencies has attracted increasing atten-
tion over the last decades in various fields of applications, including mathematical
finance, actuarial science or hydrology, among others. Of particular interest, espe-
cially in risk management, is a sensible quantitative description of the dependence
between extreme events, commonly referred to as tail dependence; see for example
Embrechts et al. (2003). A formal definition of this concept is given in Section 2
below.

In applications, tail dependence is often assessed by fitting a parametric copula
family to the data and by subsequently extracting the tail behavior of that particu-
lar copula. Examples can be found in Breymann et al. (2003) and Malevergne and
Sornette (2003), among others. Fitting the copula typically requires some sort of
goodness-of-fit testing. Recent reviews on these methods are given by Genest et al.
(2009) and Fermanian (2013). More robust methods to assess tail dependence are
based on the assumption that the underlying copula is an extreme-value copula.
The class of these copulas can be regarded as a nonparametric copula family in-
dexed by a function on the unit simplex (Gudendorf and Segers, 2010). Since the
copula is a rather general measure for stochastic dependence, the estimation tech-
niques for both of the latter approaches are usually based on the entire available
dataset (see, for instance, Genest et al. (1995); Chen and Fan (2006) for parametric
families or Genest and Segers (2009) for extreme-value copulas). However, due to
the fact that the center of a distribution does not contain any information about
the tail behavior, these techniques might in general yield biased estimates for the
tail dependence. We refer to Frahm et al. (2005) for a more elaborated discussion
of this issue. In order to circumvent the problem and to obtain estimators that
are robust with respect to deviations in the center of the distribution, there are
basically two important approaches: either one could extract the tail dependence
from subsamples of block maximal data, for which extreme-value copulas provide
a natural model (McNeil et al., 2005, Section 7.5.4), or one could rely on extreme-
value techniques some of which are presented in Section 2 below. Applications of
these procedures can be found in Breymann et al. (2003); Caillault and Guégan
(2005); Jäschke et al. (2012); Jäschke (2014), among others.

Most of the aforementioned applications to time series data are based on the
implicit assumption that the tail dependence remains constant over time. Whereas
nonparametric testing for constancy of the whole dependence structure, as for in-
stance measured by the copula, has recently drawn some attention in the literature
(Remillard, 2010; Busetti and Harvey, 2011; Krämer and van Kampen, 2011; Bücher
and Ruppert, 2013; Bücher et al., 2014; Wied et al., 2014), there does not seem to
exist a unified approach to testing for constancy of the tail dependence. It is the
main purpose of the present paper to fill this gap. Our proposed testing procedures
are genuine extreme-value methods depending only on the dependence between the
tails of the data and are hence robust with respect to potential (non-)constancy
of the dependence between the centers of the distributions. In particular, the pre-
sented tests do not rely on the assumption of a constant copula throughout the
sample period.

Our procedures are based on new limit results for the sequential empirical tail
copula process, formally defined in Section 3.1. We derive its asymptotic distri-
bution under the null hypothesis and propose several variants to approximate the
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required critical values. When restricting to the case of testing for constancy of the
simple tail dependence coefficient, the limiting process can be easily transformed
into a Brownian bridge. In this case, the asymptotic critical values of the tests can
be obtained by direct calculations or simulations. In the more complicated case of
testing for constancy of the whole extremal dependence structure as measured by
the tail copula, we propose a multiplier bootstrap procedure to obtain approximate
asymptotic quantiles. The finite-sample performance of all proposals is assessed in
a simulation study, which reveals accurate approximations of the nominal level and
reasonable power properties.

We apply our methods to two real datasets. The first application revisits a
recent investigation in Jäschke (2014) on the tail dependence between WTI and
Brent crude oil spot log-returns, which is based on the implicit assumption that
the tail dependence remains constant over time. Our testing procedures show that
this assumption cannot be rejected. The second application concerns the tail de-
pendence between Dow Jones Industrial Average and the Nasdaq Composite time
series around Black Monday on 19th of October 1987, it reveals a significant break
in the tail dependence. However, our results do not show clear evidence for the
hypothesis that this break takes place at the particular date of Black Monday.

The structure of the paper is as follows: in Section 2, we briefly summarize the
concept of tail dependence and corresponding nonparametric estimation techniques.
The new testing procedures for constancy of the tail dependence are introduced in
Section 3. In particular, we derive the asymptotic distribution of the sequential
empirical tail copula process, propose a multiplier bootstrap approximation of the
latter and show consistency of various asymptotic tests. Additionally, we deal with
the estimation of break-points in case the null hypothesis is rejected and make use
of a data-adaptive process for the necessary parameter choice, common to inference
methods in extreme-value theory. A comprehensive simulation study is presented
in Section 4, followed by the two elaborate empirical applications in Section 5. All
proofs are deferred to an Appendix.

2. The concept of tail dependence and its
nonparametric estimation

Let (X,Y ) be a bivariate random vector with continuous marginal cumulative dis-
tribution functions (c.d.f.s) F and G. Lower or upper tail dependence concerns
the tendency that extremely small or extremely large outcomes of X and Y occur
simultaneously. Simple, widely used and intuitive scalar measures for these ten-
dencies are provided by the well-established coefficients of tail dependence (TDC),
defined as

λL = lim
t↘0

P{F (X) ≤ t | G(Y ) ≤ t}, λU = lim
t↗1

P{F (X) ≥ t | G(Y ) ≥ t} (1)

see for instance Joe (1997); Frahm et al. (2005), among others.
It is well-known that the joint c.d.f. H of (X,Y ) can be written in a unique way

as

H(x, y) = C{F (x), G(y)}, x, y ∈ R, (2)

where the copula C is a c.d.f. on [0, 1]2 with uniform marginals. Elementary calcu-
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lations show that the conditional probabilities in (1) can be written as

λL = lim
t↘0

C(t, t)

t
, λU = lim

t↘0

C (t, t)

t
,

where C denotes the survival copula of (X,Y ). Therefore, the coefficients of tail
dependence can be regarded as directional derivatives of C or C at the origin with
direction (1, 1). Considering different directions, we arrive at the so-called tail
copulas, defined for any (x, y) ∈ E = [0,∞]2 \ {(∞,∞)} by

ΛL(x, y) = lim
t↘0

C(xt, yt)

t
, ΛU (x, y) = lim

t↘0

C (xt, yt)

t
, (3)

see Schmidt and Stadtmüller (2006). Note that the upper tail copula of (X,Y ) is
the lower tail copula of (−X,−Y ), whence there is no conceptual difference between
upper and lower tail dependence.

Several variants of tail copulas have been proposed in the literature on mul-
tivariate extreme-value theory. For instance, L(x, y) = x + y − ΛU (x, y) denotes
the stable tail dependence function, see, e.g., de Haan and Ferreira (2006). The
function A(t) = 1 − ΛU (1 − t, t), which is simply the restriction of L to the unit
sphere with respect to the ‖ · ‖1-norm, is called Pickands dependence function, see
Pickands (1981). All these variants are one-to-one and are known to characterize
the extremal dependence of X and Y , see de Haan and Ferreira (2006). In the
present paper we restrict ourselves to the case of tail copulas.

Nonparametric estimation of L and Λ has been addressed in Huang (1992); Drees
and Huang (1998); Einmahl et al. (2006); de Haan and Ferreira (2006); Bücher
and Dette (2013); Einmahl et al. (2012) for i.i.d. samples (Xi, Yi)i∈{1,...,n}. For
instance, in the case of lower tail copulas, the considered estimators are slight
variants, differing only up to a term of uniform order O(1/k), of the function

(x, y) 7→ 1

k

n∑
i=1

1
(
Ri ≤ kx, Si ≤ ky

)
(4)

where Ri (resp. Si) denotes the rank of Xi (resp. Yi) among X1, . . . , Xn (resp.
Y1, . . . , Yn), and where k = kn → ∞ denotes an intermediate sequence to be cho-
sen by the statistician. Under suitable assumptions on kn and on the speed of
convergence in (3) the estimators are known to be

√
kn-consistent. Additionally,

under certain smoothness conditions on Λ, the corresponding process
√
kn(Λ̂− Λ)

converges to a Gaussian limit process.

3. Testing for constant tail dependence

3.1. Setting and test statistics Let (Xi, Yi)i∈{1,...,n} be an independent
sequence of bivariate random vectors with joint c.d.f. Hi and identical continuous
marginal c.d.f.s F and G, respectively. According to Sklar’s Theorem, see (2), we
can decompose

Hi(x, y) = Ci{F (x), G(y)}, x, y ∈ R,
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where Ci(u, v) = P(Ui ≤ u, Vi ≤ v) with Ui = F (Xi) and Vi = G(Yi). We assume
that the corresponding lower tail copulas

Λi(x, y) = lim
t→∞

tCi(x/t, y/t) (5)

exist for all (x, y) ∈ E = [0,∞]2 \ {(∞,∞)} and all i = 1, . . . , n.
At first sight, the assumption of serially independent time series may appear

somewhat restrictive. However, the assumption does not seem to be too problem-
atic because of the following argument. In Section 5, the role of (Xi, Yi) will be
played by the unobservable, serially independent innovations of common time se-
ries models such as AR or GARCH processes. We will apply the proposed tests to
the observable, standardized residuals (obtained by univariate filtering) and con-
sider these residuals as marginally almost i.i.d. Our extensive simulation study
in Section 4 indicates that the additional estimation step does not influence the
asymptotic behavior of our test statistics, i.e., the asymptotic distribution of the
estimator based on residuals is the same as the one based on the unobservable, seri-
ally independent innovations. Note that this observation is supported by the results
in Chen and Fan (2006); Remillard (2010); Chan et al. (2009), where it is shown
that the asymptotic distributions of both semi- and nonparametric estimators in
copula models are not influenced by marginal filtering.

Also, the assumption of strict stationarity of the marginal distributions may
appear restrictive. Note that, in the literature on testing for constant copulas,
it can be considered as a common practice hitherto, see for instance Busetti and
Harvey (2011); Remillard (2010); Bücher and Ruppert (2013); Bücher et al. (2014).
In Section 3.7, we adapt our methods to a more general setting that allows for
potential breaks in the marginal distributions. Note that, as we are only interested
in strict stationarity in the following (calculation of ranks, see (4), originating from
different distributions is of doubtful validity), we drop the adjective strict.

Throughout this paper, it is our aim to develop tests for detecting breaks in the
tail dependence, i.e., to test for

HΛ
0 : there exists Λ > 0 such that Λi ≡ Λ for all i = 1, . . . , n

against alternatives involving the non-constancy of Λi. A special case of this null
hypothesis is given by considering the conventional lower tail dependence coefficient
λi = Λi(1, 1). The corresponding null hypothesis reads as

Hλ
0 : there exists λ > 0 such that λi = λ for all i = 1, . . . , n.

In order to motivate our test statistics, let us first recapitulate the empirical
tail copula from Schmidt and Stadtmüller (2006) as the basic nonparametric esti-
mator for Λ under HΛ

0 , see also (4) and the corresponding citations. Replacing the
unknown copula in (5) by the empirical copula Ĉn, it is defined as

Λ̂n(x, y) =
n

k
Ĉn

(
kx

n
,
ky

n

)
=

1

k

n∑
i=1

1
(
Ûi ≤ kx/n, V̂i ≤ ky/n

)
, (6)
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where (Ûi, V̂i) denote pseudo-observations from the copula C, defined by

Ûi =
n

n+ 1
Fn(Xi), V̂i =

n

n+ 1
Gn(Yi),

with Fn and Gn denoting the marginal empirical c.d.f.s. Additionally, k = kn →∞,
k = o(n) as n→∞, represents a sequence of parameters discussed in detail below.
The ratio k/n can be interpreted as the fraction of data that one considers as
being in the tail and thus taken into account to estimate the tail dependence in
Equation (6). Under suitable regularity conditions some of which are given in
the subsequent Section 3.2, it is known that Λ̂n is

√
k-consistent for Λ and that

the corresponding empirical tail copula process (x, y) 7→
√
k{Λ̂n(x, y) − Λ(x, y)}

converges weakly to a Gaussian limit process.
Now, in order to test for HΛ

0 , it is natural to consider a suitable sequential
version of Λ̂n. We define

Λ̂◦n(s, x, y) =
1

k

bnsc∑
i=1

1
(
Ûi ≤ kx/n, V̂i ≤ ky/n

)
as the sequential empirical tail copula. Under HΛ

0 , Λ̂◦n should be regarded as an
estimator for Λ◦(s, x, y) = sΛ(x, y). Note that Λ̂◦n(1, x, y) = Λ̂n(x, y). The crucial
quantity for all test procedures in this paper is now given by the sequential empirical
tail copula process {Gn(s, x, y), s ∈ [0, 1], (x, y) ∈ E} with

Gn(s, x, y) =
√
k
{

Λ̂◦n(s, x, y)− sΛ̂◦n(1, x, y)
}
. (7)

Note that, despite its name, the sequential empirical tail copula process is not
completely sequential. More precisely, the unknown marginal distributions are
estimated based on all the available marginal information, whereas only the quantity
of interest, the dependence, is assessed sequentially.

Now, some simple calculations show that, for s ∈ (0, 1), Gn can be written as

Gn(s, x, y) =
√
k{s(1− s)}

 1

ks

bnsc∑
i=1

1
(
Ûi ≤ kx/n, V̂i ≤ ky/n

)

− 1

k(1− s)

n∑
i=bnsc+1

1
(
Ûi ≤ kx/n, V̂i ≤ ky/n

) .

Since ks ≈ bksc, ns ≈ bnsc and k/n ≈ bksc/bnsc for any s ∈ (0, 1), the two
summands in the brackets on the right-hand side can be interpreted as (slightly
adapted) empirical tail copulas of the subsamples (X1, Y1), . . . , (Xbnsc, Ybnsc) and
(Xbnsc+1, Ybnsc+1), . . . , (Xn, Yn), respectively, with corresponding sequence of pa-

rameters k′ = bksc and k′′ = bk(1 − s)c. Under HΛ
0 , one would expect that the

difference between these two estimators converges to 0. Therefore, any statistic
that can be interpreted as a distance between Gn and the function being constantly
equal to 0 is a reasonable candidate for a test statistic for the null hypothesis. A
simulation study similar to one presented in Section 4 showed that a Cramér-von
Mises functional yields the best finite-sample performance, which is why we restrict
ourselves to this case in the subsequent presentation. Consequently, in case of the
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simple null hypothesis Hλ
0 , we propose the test statistic

Sn := λ̂−1
n

∫ 1

0
{Gn(s, 1, 1)}2 ds, (8)

where λ̂n = Λ̂◦n(1, 1, 1), and to reject the null hypothesis whenever Sn is larger than
an appropriate critical value to be determined later on.

For the construction of a test for the null hypothesis HΛ
0 , we make use of the

fact that, by homogeneity, the lower tail copula is uniquely determined by its values
on the sphere S(c) = {x ∈ [0,∞)2 : ‖x‖ = c}, where ‖ · ‖ denotes an arbitrary fixed
norm on R2 and where c > 0 is an arbitrary fixed constant. The most popular
choice in bivariate extreme value theory is c = 1 together with the ‖ · ‖1-norm
resulting in the function Λ||·||1 : [0, 1] → [0, 1/2] : t 7→ Λ||·||1(t) = Λ(1 − t, t). Note
that Λ||·||1(t) = 1−A(t) with the Pickands dependence function A, see, e.g., Segers
(2012).

In order to test for overall constancy of Λi it is sufficient to test for constancy
of Λi on some sphere S(c). In Section 3.5, we will propose a data-adaptive procedure
for the choice of the parameter k, which will suggest to use a sphere that contains
the point (1, 1). For that reason, we introduce the following test statistic

Tn :=

∫
[0,1]2

{Gn(s, 2− 2t, 2t)}2 d(s, t),

whose support corresponds to the ‖ · ‖1-norm and c = 2, and let HΛ
0 again be

rejected when Tn is larger than an appropriate critical value.
In order to determine the critical values, we will derive the asymptotic null

distributions of the tests in the next subsection. For both statistics, they will rely
on a limit result for the sequential empirical tail copula process.

3.2. Asymptotic null distributions Let B∞([0, 1]× E) denote the space of
all functions f : [0, 1] × E → R which are uniformly bounded on every compact
subset of [0, 1] × E (here and throughout, we understand E = [0,∞]2 \ {(∞,∞)}
as the one-point uncompactification of the compact set [0,∞]2), equipped with the
metric

d(f, g) :=
∞∑
m=1

2−m(‖f − g‖Sm ∧ 1),

where a ∧ b = min(a, b), where the sets Sm are defined as Sm = [0, 1]× Tm with

Tm := [0,m]2 ∪ ({∞} × [0,m]) ∪ ([0,m]× {∞})

and where ‖ · ‖S denotes the sup-norm on a set S. Note that convergence with
respect to d is equivalent to uniform convergence on each Sm.

In the following we are going to show weak convergence of Gn as an element of
the metric space (B∞([0, 1]×E), d). Similar as in related references on the estimation
of tail copulas (see Section 2), we have to impose several regularity conditions.
First, we need a second order condition quantifying the speed of convergence in (5)
uniformly in i and (x, y).
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Assumption 3.1. We have Λi 6≡ 0 and

Λi(x, y)− tCi(x/t, y/t) = O(S(t)), t→∞, (9)

uniformly on {(x, y) ∈ [0, 1]2 : x + y = 1} (and hence uniformly on each Tm)
and uniformly in i ∈ N, where S : [0,∞) → [0,∞) denotes a function satisfying
limt→∞ S(t) = 0.

Second, the following conditions have to be imposed on the sequence k = kn.

Assumption 3.2. For some α > 0, the non-decreasing sequence k = kn → ∞
satisfies the conditions

(a) kn/n ↓ 0, (b)
√
knS(n/kn) = o(1),

as n tends to infinity.

Condition (a) is needed anyway to define a meaningful estimator. Condition (b)
allows to control appearing bias terms in the non-sequential empirical tail copula
process, see also Schmidt and Stadtmüller (2006) and Bücher and Dette (2013).

With these assumptions we can now state the main result of our paper.

Proposition 3.3. Suppose that Assumptions 3.1 and 3.2 hold. Then, under HΛ
0 ,

Gn  GΛ in (B∞([0, 1]× E), d),

where GΛ(s, x, y) = BΛ(s, x, y)−sBΛ(1, x, y). Here, BΛ is a tight centered Gaussian
process with continuous sample paths and with covariance structure

E[BΛ(s1, x1, y2)BΛ(s2, x2, y2)] = (s1 ∧ s2)Λ(x1 ∧ x2, y1 ∧ y2).

As stated above, Assumption 3.2 (b) is needed to control bias terms occurring
when estimating Λ by Λ̂n. As the process Gn does not involve the true tail copula Λ,
the assertion of Proposition 3.3 actually holds if (b) is replaced by a quite technical,
but less restrictive assumption, see Remark A.3 in the appendix. However, as an
application of the proposed test procedures in this paper will usually be followed by
the application of estimation techniques relying on (b), we do not feel that imposing
this condition is too restrictive.

Proposition 3.3 immediately yields the asymptotic null distributions of Sn and Tn.

Corollary 3.4. Suppose that Assumptions 3.1 and 3.2 hold. Then, under HΛ
0 ,

Sn  S :=

∫ 1

0
{B(s)}2ds,

where B is a one-dimensional standard Brownian bridge, and

Tn  T :=

∫
[0,1]2

{GΛ(s, 2− 2t, 2t)}2 d(s, t),

where GΛ is defined in Proposition 3.3.

Note that, in fact, the weak convergence of Sn can be derived under a relax-
ation of HΛ

0 , as it suffices that Λi(x, y) 6≡ 0 exists and is constant in time in a
neighborhood of (1, 1). This is, however, a bit more than assumed in Hλ

0 .
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Since the limiting distribution for Sn in Corollary 3.4 is pivotal, we directly
obtain an asymptotic level α test for Hλ

0 .

TDC-Test 1. Reject Hλ
0 for Sn ≥ qC1−α, where qC1−α denotes the (1 − α)-quantile

of the Cramér-von Mises distribution, the latter being defined as the distribution
of the random variable

∫ 1
0 {B(s)}2 ds.

In order to derive critical values for the test based on Tn, some more effort is
needed. Its limiting distribution in Corollary 3.4 is not pivotal and cannot be easily
transformed to a distribution which is independent of Λ. Therefore, we propose an
appropriate bootstrap approximation for GΛ which will also allow for the definition
of an alternative test for Hλ

0 .
Let B ∈ N be a large integer and let ξ(1)1 , . . . , ξ(1)n , . . . , ξ(B)

1 , . . . , ξ(B)
n be an inde-

pendent sequence of n×B i.i.d. random variables with mean 0 and variance 1 which
are independent of the data (X1, Y1), . . . , (Xn, Yn) and possess finite moments of any
order. We will refer to ξ(b)i as a multiplier. Similar in spirit as in Remillard (2010);
Bücher and Dette (2013) we define, for any (s, x, y) ∈ [0, 1]×E and b ∈ {1, . . . , B},

Gn,ξ(b)(s, x, y) = Bn,ξ(b)(s, x, y)− sBn,ξ(b)(1, x, y), (10)

where

Bn,ξ(b)(s, x, y) :=
1√
k

bnsc∑
i=1

ξ
(b)
i

{
1
(
Ûi ≤ kx/n, V̂i ≤ ky/n

)
− Ĉn(kx/n, ky/n)

}

=
1√
k

bnsc∑
i=1

ξ
(b)
i

{
1
(
Ûi ≤ kx/n, V̂i ≤ ky/n

)
− k/n× Λ̂◦n(1, x, y)

}
.

The following proposition essentially states that, for large n, Gn,ξ(1) , . . . ,Gn,ξ(B)

can be regarded as almost independent copies of Gn. To prove the result, one addi-
tional technical assumption on the sequence kn is required, which can be regarded
as very light.

Assumption 3.5. There exists some p ∈ N such that n/kpn = o(1).

Proposition 3.6. Suppose that Assumptions 3.1, 3.2 and 3.5 hold. Then, un-
der HΛ

0 ,
(Gn,Gn,ξ(1) , . . . ,Gn,ξ(B)) (GΛ,G(1)

Λ , . . . ,G(B)

Λ )

in (B∞([0, 1]× E), d)B+1, where G(1)
Λ , . . . ,G(B)

Λ are independent copies of GΛ.

For b = 1, . . . , B, define Sn,ξ(b) and Tn,ξ(b) by

Sn,ξ(b) = λ̂−1
n

∫ 1

0
{Gn,ξ(b)(s, 1, 1)}2ds, Tn,ξ(b) =

∫
[0,1]2
{Gn,ξ(b)(s, 2− 2t, 2t)}2d(s, t).

We obtain the following tests for Hλ
0 and HΛ

0 , respectively.

TDC-Test 2. Reject Hλ
0 for Sn ≥ q̂Sn,1−α, where q̂Sn,1−α denotes the (1 − α)-

sample quantile of Sn,ξ(1) , . . . ,Sn,ξ(B) .

TC-Test. Reject HΛ
0 for Tn ≥ q̂Tn,1−α, where q̂Tn,1−α denotes the (1 − α)-sample

quantile of Tn,ξ(1) , . . . , Tn,ξ(B) .
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The final result of this subsection shows that all proposed tests in this paper
asymptotically hold their level.

Corollary 3.7. Suppose that Assumptions 3.1 and 3.2 hold and that HΛ
0 is valid.

Then TDC-Test 1 is an asymptotic level α test for Hλ
0 . If, additionally, Assump-

tion 3.5 holds, then TDC-Test 2 and TC-Test are asymptotic level α tests for Hλ
0

and HΛ
0 , respectively, in the sense that, for any α ∈ (0, 1),

lim
B→∞

lim
n→∞

P(Sn ≥ q̂Sn,1−α) = α, lim
B→∞

lim
n→∞

P(Tn ≥ q̂Tn,1−α) = α.

3.3. Asymptotics under fixed alternatives In the present subsection we
are going to show consistency of the proposed test statistics under fixed alternatives.
We observe a triangular array of row-wise independent random vectors (Xi,n, Yi,n),
i = 1, . . . , n, such that Xi,n ∼ F and Yi,n ∼ G for all i and n and such that the
copula Ci,n of (Xi,n, Yi,n) may vary over time. Slightly abusing notation, we omit
the index n wherever it does not cause any ambiguity. For the sake of a clear
exposition, we first consider the following two simple alternatives for Hλ

0 and HΛ
0 .

Later on, we provide a discussion on how to detect multiple break-points and how
the test statistics behave in the presence of smooth changes.

Hλ
1 : there exists s̄ ∈ (0, 1), λ(1) 6= λ(2) such that

λi = λ(1) for i = 1, . . . , bns̄c and λi = λ(2) for i = bns̄c+ 1, . . . , n.

HΛ
1 : there exists s̄ ∈ (0, 1),Λ(1) 6≡ Λ(2) such that

Λi = Λ(1) for i = 1, . . . , bns̄c and Λi = Λ(2) for i = bns̄c+ 1, . . . , n.

Proposition 3.8. Suppose that Assumptions 3.1 and 3.2 hold.

(i) If Hλ
1 and HΛ

1 are true, then

sup
s∈[0,1]

∣∣∣∣ 1√
kn

Gn(s, 1, 1)−Aλ(s)

∣∣∣∣ = oP (1)

where Aλ(s) = s(1− s̄)(λ(1)−λ(2)) for s ≤ s̄ and Aλ(s) = s̄(1− s)(λ(1)−λ(2))
for s > s̄. Moreover, Sn converges to infinity in probability.

(ii) If HΛ
1 is true, then

sup
s∈[0,1],(x,y)∈Tm

∣∣∣∣ 1√
kn

Gn(s, x, y)−AΛ(s, x, y)

∣∣∣∣ = oP (1)

for any m ∈ N, where AΛ(s, x, y) = s(1− s̄){Λ(1)(x, y)− Λ(2)(x, y)} for s ≤ s̄
and AΛ(s, x, y) = s̄(1 − s){Λ(1)(x, y) − Λ(2)(x, y)} for s > s̄. Moreover, Tn
converges to infinity in probability.

As already mentioned after Corollary 3.4, it is not necessary to assume global
constancy of the tail copulas in the respective subsamples in part (i) of Proposi-
tion 3.8, constancy in a neighborhood of (1, 1) is sufficient. Moreover, Proposi-
tion 3.8 implies consistency of the proposed tests.

Corollary 3.9. Suppose that Assumptions 3.1 and 3.2 are satisfied. Then TDC-
Test 1 is consistent for Hλ

1 . If, additionally, Assumption 3.5 holds, then TDC-
Test 2 and TC-Test are consistent for Hλ

1 and HΛ
1 , respectively, in the sense that,
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for any B ∈ N and α ∈ (0, 1),

lim
n→∞

P(Sn ≥ q̂Sn,1−α) = 1, lim
n→∞

P(Tn ≥ q̂Tn,1−α) = 1.

Under Hλ
1 and HΛ

1 , consistent estimators for the break-point s̄ are given by
ŝλ := argmaxs∈[0,1] |Gn(s, 1, 1)| and ŝΛ := argmaxs∈[0,1] supt∈[0,1] |Gn(s, 2 − 2t, 2t)|,
respectively.

Proposition 3.10. Suppose that Assumptions 3.1 and 3.2 hold.

(i) If Hλ
1 and HΛ

1 are true, ŝλ →p s̄.

(ii) If HΛ
1 is true, ŝΛ →p s̄.

Note that, if one of the alternatives Hλ
1 or HΛ

1 holds, then the other one cannot
hold with a different value for s̄. Hence, the break-point s̄ in Proposition 3.10 (i)
is well-defined.

Up to now, we have assumed the existence of at most one single break-point. As
is shown in the end of this subsection, an analog consistency result for the test can
be obtained in the case of an arbitrary finite number of break-points between which
the tail copula is constant, respectively. For example, a corresponding alternative
for Hλ

0 would then read as: there exists a finite number of points 0 = s0 < s1 <
. . . < s` < . . . < sL = 1 such that, for any ` ∈ {1, . . . , L}, the TDC of the sample
(Xbns`−1c+1, Ybns`−1c+1), . . . , (Xbns`c, Ybns`c) is given by λ(`), with λ(`) 6= λ(`+1).

Estimating the break-points s1, s2, . . . , sL−1 is slightly more complicated than
it is in the case of just one break-point. In principle, it is also possible to work with
the argmax-estimator ŝλ here, but, by construction, this estimator only estimates
a single break-point. The number and the location of the other break-points can
be estimated by a binary segmentation algorithm going back to Vostrikova (1981).
This procedure is for instance applied in Galeano and Wied (2014) to the prob-
lem of detecting changing correlations. The basic principle is as follows: at first,
the test is applied to the whole sample. If the null hypothesis gets rejected, the
argmax-estimator ŝλ can be shown to be a consistent estimator for the dominating
break-point (see Galeano and Wied, 2014). In the next step, the sample is divided
into two parts with the split point given by bnŝλc. The test is applied to both parts
separately to decide whether one gets additional break-points in the correspond-
ing subsamples. In that case, the respective subsample is further divided at the
corresponding estimated break-point. This procedure is repeated until no further
break-points are detected.

The setting with a fixed number of break-points as described above is a special
case of a general class of alternatives in which Λi (and thus also λi) is described by
a non-constant function g. More precisely, let G denote the class of all functions
g : [0, 1]×E→ R such that g(s, ·, ·) is a tail copula for any s ∈ [0, 1] and such that,
for any m ∈ N,

lim
n→∞

sup
(s,x,y)∈Sm

∣∣∣∣∣∣ 1n
bsnc∑
i=1

g

(
i

n
, x, y

)
−
∫ s

0
g(z, x, y) dz

∣∣∣∣∣∣ = 0.

The class G allows to consider the following general class of alternatives, see also
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Wied et al. (2012):

Hλ
1,g : there exists g ∈ G such that Λi = g(i/n, ·, ·) and such that∫ s

0
g(z, 1, 1) dz 6= s

∫ 1

0
g(z, 1, 1) dz for some s ∈ [0, 1],

HΛ
1,g : there exists g ∈ G such that Λi = g(i/n, ·, ·) and such that∫ s

0
g(z, x, y) dz 6= s

∫ 1

0
g(z, x, y) dz for some (s, x, y) ∈ [0, 1]× E.

The former setting with a fixed number of break-points corresponds to a func-
tion g that is piecewise constant in s, but in the general case, continuous functions
are explicitly allowed. The latter, for instance, may occur in models with time
varying copula parameters (see, e.g., Hafner and Manner, 2012 or Patton, 2006).

In general, CUSUM-type procedures as those considered in Section 3.2 are not
constructed for detecting smooth changes in the first place. Here, it would per-
haps be more advisable to consider a setup based on locally stationary processes.
Nevertheless, the test statistics converge to infinity in probability under smooth
alternatives.

Proposition 3.11. Suppose that Assumptions 3.1 and 3.2 hold.

(i) If Hλ
1,g is true, then

sup
s∈[0,1]

∣∣∣∣ 1√
kn

Gn(s, 1, 1)−Agλ(s)

∣∣∣∣ = oP (1),

where Agλ(s) =
∫ s

0 g(z, 1, 1)dz − s
∫ 1

0 g(z, 1, 1)dz. Moreover, Sn converges to
infinity in probability.

(ii) If HΛ
1,g is true, then

sup
s∈[0,1],(x,y)∈Tm

∣∣∣∣ 1√
kn

Gn(s, x, y)−AgΛ(s, x, y)

∣∣∣∣ = oP (1),

for any m ∈ N, where AgΛ(s, x, y) =
∫ s

0 g(z, x, y)dz − s
∫ 1

0 g(z, x, y)dz. More-
over, Tn converges to infinity in probability.

As a simple consequence, we obtain consistency of TDC-Test 1 under the setting
of Proposition 3.11(i).

3.4. Testing for a break at a specific time point In certain applications,
one might have a reasonable guess for a potential break-point in the tail dependence
of a time series. Important econometric examples can be seen in Black Monday on
19th of October 1987, the introduction of the Euro on 1st of January 1999 or the
bankruptcy of Lehman Brothers Inc. on 15th of September 2008. In that case, it
might be beneficial to test for constancy against a break at that specific time point
rather than testing against the existence of some unspecified break-point. The
results in the previous sections easily allow to obtain simple tests in this setting.

Under the situation of Section 3.1, let s̄ ∈ (0, 1) be some fixed time point
of interest. Suppose we know that the tail dependence is constant in the two
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subsamples before bns̄c and after bns̄c + 1, which, in practice, can be verified by
the tests in the preceding sections. Then, to test for Hλ

0 against

Hλ
1 (s̄) : there exists λ(1) 6= λ(2) such that

λi = λ(1) for i = 1, . . . , bns̄c and λi = λ(2) for i = bns̄c+ 1, . . . , n,

we propose to use the test statistic

Sn(s̄) :=
(
s̄λ̂n

)−1
Gn(s̄, 1, 1)2. (11)

It easily follows from Proposition 3.3 that, under the null hypothesis, Sn(s̄) weakly
converges to a chi-squared distribution with one degree of freedom. Under the alter-
native, it follows from Proposition 3.8 that Sn(s̄) converges to infinity, in probability.
Hence, rejecting Hλ

0 if Sn(s̄) exceeds a corresponding quantile of the chi-squared
distribution, yields a consistent test for Hλ

0 against Hλ
1 (s̄), which asymptotically

holds its significance level. Similar results can be obtained for the bootstrap analog
and for the test for constancy of the entire tail copula, the details are omitted for
the sake of brevity.

3.5. Choice of the parameter k As usual in extreme-value theory, the choice
of kn plays a crucial role for statistical applications. The asymptotic properties of
the tests proposed in this paper hold as long as the assumptions on the sequence kn
from Assumption 3.2 (and of course other assumptions) hold. This, of course,
allows for a large number of possible choices of kn. However, the results of the
testing procedures may depend crucially on the specific choice of kn.

The common approach in extreme-value theory to cope with this problem is
to consider the outcome of statistical procedures, for instance of an estimator, for
several different values of k. The set of all these outcomes should give a clearer
picture of the underlying data-generating process. This, for instance, is the basic
motivation for the Hill plot used in univariate extreme-value theory for estimating
the extreme-value index, see, e.g., Embrechts et al. (1997). Additionally, in certain
univariate settings some refined data-adaptive choices to estimate an optimal k
have been developed, see for instance Drees and Kaufmann (1998) or Danielsson
et al. (2001).

In the specific context of estimating tail dependence, Frahm et al. (2005) use
plots of the function k 7→ TDC(k) to define a plateau-finding algorithm that pro-
vides a single data-adaptive choice of k. In most of the application in this paper, we
closely follow their approach for which reason we briefly summarize this algorithm
in the following.

The aim of the algorithm is to search for a value k∗ such that the TDC, as a
function of k, is as constant as possible in a suitable neighborhood of k∗. This is
achieved by accomplishing the following steps: first, the function k 7→ TDC(k) is
smoothed by a box kernel depending on a bandwidth b; we denote the smoothed
plot by k 7→ λ̃b(k), k = 1, . . . , n− 2b. In our simulation study, we use b = b0.005nc.
In a second step, we consider a rolling window of vectors or plateaus (having length
` = b

√
n− 2bc) with their entries consisting of successive values of the smoothed

TDC-plot, formally defined as P (k) = (λ̃b(k), λ̃b(k+1), . . . , λ̃b(k+`−1)) ∈ R`, where
k = 1, . . . , n− 2b− `+ 1. We calculate the sum of the absolute deviations between
all entries and the first entry in each vector, i.e., MAD(k) =

∑`
j=1 |(P (k))1 −
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(P (k))j |. The algorithm searches for the first vector such that MAD(k) is smaller
than two times the sample standard deviation of all values of the smoothed TDC-
plot λ̃b(1), . . . , λ̃b(n− 2b). Finally, k∗ is defined as the index which corresponds to
the middle entry (the floor function if the length is even) of this vector. For further
details, we refer to Frahm et al. (2005).

3.6. Higher dimensions Although we have focused on the case of two dimen-
sions so far, it is basically straightforward (although notationally more involved) to
deal with d-dimensional random vectors for a fixed number d. Consider a sequence
of marginally i.i.d. random vectors (Xi1, . . . , Xid)i∈{1,...,n} with continuous marginal
c.d.f.s F1, . . . , Fd and d-dimensional copulas Ci. We suppose that the corresponding
lower tail copulas

Λi(x1, . . . , xd) := lim
t→∞

tCi(x1/t, . . . , xd/t).

exist for all x = (x1, . . . , xd) ∈ Ed = [0,∞]d \ {(∞, . . . ,∞)}. Note that Λi is in one-
to-one correspondence to the familiar d-dimensional stable tail dependence function
of (Xi1, . . . , Xid), see, e.g., Einmahl et al. (2012) for its definition. Define pseudo-
observations (Ûi1, . . . , Ûid) from the copula Ci by Ûij = n

n+1Fnj(Xij), j = 1, . . . , d,
where Fnj denote the marginal empirical c.d.f.s. The d-dimensional sequential
empirical tail copula process is defined, for any (s, x1, . . . , xd) ∈ [0, 1]× Ed, by

Gn(s, x1, . . . , xd) =
√
k
{

Λ̂◦n(s, x1, . . . , xd)− sΛ̂◦n(1, x1, . . . , xd)
}
,

where Λ̂◦n(s, x1, . . . , xd) = 1
k

∑bnsc
i=1 1(Ûi1 ≤ kx1/n, . . . , Ûid ≤ kxd/n).A test statistic

only focussing on the d-dimensional TDC can be defined analog to the 2-dimensional
case,

Sn :=
{

Λ̂◦n(1, 1, . . . , 1)
}−1

∫ 1

0
{Gn(s, 1, . . . , 1)}2 ds,

while test statistics focussing on the entire tail copula look slightly more compli-
cated. For instance, one might use

Tn :=

∫
[0,1]×∆

{Gn (s, t)}2 d(s, t),

where ∆ := {t ∈ (t1, . . . , td) ∈ E | at least 2 of the tj are 6= ∞,
∑d

j=1,tj 6=∞ tj =

1}. Note that the restriction of a tail copula to ∆ uniquely determines the whole
tail copula by homogeneity. Bootstrap statistics can be defined analogously. For
the asymptotic results, one has to modify the metric defined in the beginning of
Section 3.2 such that

Tm :=

d−1⋃
j=0

(
d
j

)⋃
`=1

Um,j,`,

where, for each m ∈ N and j = 0, . . . , d − 1, the Um,j,` are the
(
d
j

)
different d-fold

cartesian products that contain j times {∞} and d− j times [0,m].

3.7. Testing for a break under non-stationarity of the marginals
Throughout the previous sections, we made the assumption that the marginal laws
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of (Xi, Yi) are constant over time. A less stringent assumption would be to allow for
breaks in the marginal laws. In the present section, we outline how the proposed
methods can be adapted to that setting.

For the sake of brevity, we restrict ourselves to the case of one known break in
each marginal. Let (Xi, Yi) be an independent sequence of random variables with
copula Ci and continuous marginal c.d.f.s F (i) and G(i), respectively. Suppose that
there exist tF , tG ∈ (0, 1) such that F (1) = · · · = F (bntF c) 6= F (bntF c+1) = · · · = F (n)

and G(1) = · · · = G(bntGc) 6= G(bntGc+1) = · · · = G(n). Define pseudo-observations
(Ûi, V̂i) of Ci through

Ûi =

{
F1:bntF c(Xi), i ≤ bntF c,
FbntF c+1:n(Xi), i > bntF c,

V̂i =

{
G1:bntGc(Yi), i ≤ bntGc,
GbntGc+1:n(Yi), i > bntGc,

(12)

where F(k+1):`(x) := (`− k + 1)−1
∑`

j=k+1 1(Xj ≤ x), and similarly for the second
coordinate. Define Gn exactly as in (7). For the derivation of asymptotic properties,
we need an additional smoothness assumption on Λ.

Assumption 3.12. The first order partial derivative Λ̇x = ∂
∂xΛ exists and is con-

tinuous on {(x, y) ∈ E : 0 < x < ∞}. The first order partial derivative Λ̇y = ∂
∂yΛ

exists and is continuous on {(x, y) ∈ E : 0 < y <∞}.

Proposition 3.13. Suppose that Assumptions 3.1, 3.2 and 3.12 are satisfied.
Then, under HΛ

0 , we have Gn  GΛ,tF ,tG in (B∞([0, 1]× E), d), where

GΛ,tF ,tG(s, x, y) = GΛ(s, x, y)− Λ̇x(x, y)
s ∧ tF − stF
tF (1− tF )

GΛ(tF , x,∞)

− Λ̇y(x, y)
s ∧ tG − stG
tG(1− tG)

GΛ(tG,∞, y).

The limiting distribution is different from the one under constant margins in
Proposition 3.3. As a consequence, for approximating critical values of an appro-
priate test statistic, one needs to modify the methods described in the previous
sections. In the following, we restrict ourselves to the case of testing for a constant
coefficient of tail dependence. Let Λ̂x,n(1, 1) and Λ̂y,n(1, 1) denote estimators for
the partial derivatives of Λ at (1, 1) which are consistent under the null hypothesis,
for instance

Λ̂x,n(1, 1) :=
k1/2

2

{
Λ̂n(1 + k−1/2, 1)− Λ̂n(1− k−1/2, 1)

}
,

and similar for the partial derivative with respect to y (Bücher and Dette, 2013).
Furthermore, let Sn be defined as in (8) with pseudo-observations as in (12). Ob-
serving that s 7→ λ−1/2GΛ(s, 1, 1) is a standard Brownian bridge, Proposition 3.13
suggests the following test procedure.

TDCMB-Test. Reject Hλ
0 if the test statistic Sn is larger than the (1−α)-quantile

of
∫ 1

0 {B̂tF ,tG(s)}2 ds, where

B̂tF ,tG(s) := B(s)− Λ̂x,n(1, 1)
s ∧ tF − stF
tF (1− tF )

B(tF )− Λ̂y,n(1, 1)
s ∧ tG − stG
tG(1− tG)

B(tG),

with marginal break points tF and tG, and a standard Brownian bridge B.
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Analogs of the tests in Section 3.4 for the detection of breaks at a given time
point s̄ are straightforward.

In practice, the marginal break points tF and tG are rarely known. However,
they can usually be estimated at rate n−1 which suggests that the previous results
remain valid provided tF and tG are replaced by suitable estimators t̂F and t̂G (see,
e.g., Dümbgen, 1991) both within the definition of the pseudo-observations in (12)
and the approximation of the limit distribution stated in Proposition 3.13. For
instance, in a model with a structural break in the (unconditional) mean for the
first marginal, one might use

t̂F =
1

n
argmax
j=1,...,n

∣∣∣∣∣ 1√
n

(
j∑
i=1

Xi −
j

n

n∑
i=1

Xi

)∣∣∣∣∣ , (13)

(see, e.g., Bai, 1997; Aue and Horváth, 2013). The simulation results in Section 4
show that, indeed, the approximation of the nominal size is quite good.

4. Evidence in finite samples

This section investigates the finite sample properties of the proposed testing pro-
cedures by means of a simulation study. We observe that the tests are slightly
conservative and that they have reasonable power properties. As a main conclu-
sion, we obtain that the tests based on i.i.d. observations and on time series residuals
show the same asymptotic behavior.

4.1. Setup As outlined in Jäschke (2014) (see also McNeil et al., 2005, Sec-
tion 7.5), many commonly applied symmetric tail copulas exhibit a quite similar
behavior. When comparing, for instance, the Gumbel model (Gumbel, 1961), the
Galambos model (Galambos, 1975) or the Hüsler-Reiss model (Hüsler and Reiss,
1989), the plots of t 7→ Λ(1 − t, t), which uniquely determine the tail copula by
homogeneity, are nearly indistinguishable. We therefore stick to two cases of one
common symmetric and one common asymmetric tail copula model as follows.

(Λ1) The negative logistic or Galambos model (Galambos, 1975), defined by

Λ(1− t, t) =
{

(1− t)−θ + t−θ
}−1/θ

, t ∈ [0, 1],

where we chose the parameter θ ∈ [1,∞) such that λ = Λ(1, 1) = 2−1/θ varies
in the set {0.25, 0.50, 0.75}.

(Λ2) The asymmetric negative logistic model (Joe, 1990), defined by

Λ(1− t, t) =
{

(ψ1(1− t))−θ + (ψ2t)
−θ
}−1/θ

, t ∈ [0, 1],

with two fixed parameters ψ1 = 2/3, ψ2 = 1 and parameter θ ∈ [1,∞) such

that λ = Λ(1, 1) = 2
(
(ψ1/2)−θ + (ψ2/2)−θ

)−1/θ
varies in the set {0.2, 0.4, 0.6}.

Note that (Λ1) is a special case of (Λ2) with ψ1 = ψ2 = 1. Tail copulas being
directional derivatives of copulas in the origin, there are of course many copulas
that result in the same tail copula. In our simulation study, we basically stick to
simulating from one of following two copula families.
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(C1) The Clayton copula, defined by

C(u, v) =
(
u−θ + v−θ − 1

)−1/θ
, u, v ∈ [0, 1],

possesses the negative logistic tail copula as specified in (Λ1). The Clayton
copula is widely used for modeling negative tail dependent data.

(C2) The survival copula of the extreme-value copula, defined by

C(u, v) = exp

{
log(uv)A

(
log(v)

log(uv)

)}
u, v ∈ [0, 1], (14)

where A(t) = 1 − Λ(1 − t, t) with Λ as in (Λ2), see Segers (2012), possesses
the asymmetric negative logistic tail copula specified in (Λ2).

In order to show that our methods have better power properties than tests for
constancy of the whole copula, provided the change only takes place in the tail, we
consider a third model.

(C3) Instead of giving a closed form expression for the copula, we state the simu-
lation algorithm for generating a pair (U, V ) from that copula.

(a) First, generate (Ũ , Ṽ ) ∼ C, with C being one of the aforementioned
copulas (C1) or (C2).

(b) Then, if (Ũ , Ṽ ) ∈ [a, 1]2, set (X,Y ) = (Ũ , Ṽ ). If (Ũ , Ṽ ) ∈ [0, 1]2 \ [a, 1]2,
toss a coin with success probability p. In case of success, define (X,Y ) =
(aŪ , aV̄ ) with (Ū , V̄ ) ∼ C, independent of (Ũ , Ṽ ), otherwise set (X,Y ) =
(Ũ , Ṽ ).

Note that, for p = 0, (X,Y ) is distributed according to the initial copula C.
Some tedious calculations show that

H(x, y) = P(X ≤ x, Y ≤ y)

=

{
µpC(xmin, ymin) + (1− p)C(x, y), (x, y) ∈ [0, 1]2 \ [a, 1]2,

µp+ C(x, y)− p{C(x, a) + C(a, y)− C(a, a)}, (x, y) ∈ [a, 1]2,

where xmin := min(x/a, 1), ymin := min(y/a, 1) and µ := C(a, 1) + C(1, a) −
C(a, a) denotes the C-measure of [0, 1]2 \ [a, 1]2.

(c) Finally, define (U, V ) by U = H(X, 1) and V = H(1, Y ).

(Estimated) densities of the resulting copulas are depicted in Figure 5 in the
supplementary material for the Clayton copula with θ = 0.5 (or equivalently
λ = 0.25), for a = 0.1 and for p ∈ {0, 0.3}. One can clearly see that the two
densities are very close to each other on [a, 1]2, while they differ significantly
in the tail.

Our simulation results will show that the distribution of the test statistic based
on estimated marginally almost i.i.d. residuals is the same as the one of the test
statistic based on the unobservable, marginally i.i.d. innovations. Regarding the
marginal time series behavior, we consider three different cases. We begin with a
consideration of i.i.d. marginals. Subsequently, the simulation results in this case
will serve as a benchmark for the application of the tests to marginally almost
i.i.d. residuals of AR and GARCH time series models. Note that, under the null
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hypothesis, the latter two models satisfy the assumptions that Remillard (2010)
imposed in the context of related residual-based tests for constancy of the entire
copula.

(T1) Serial independence. Here, we simply generate independent random vec-
tors (Ui, Vi), i = 1, . . . , n, of one of the aforementioned copulas (C1), (C2) or
(C3). Note that, without loss of generality, the marginal distribution can be
chosen as standard uniform in this case, since all estimators in this paper are
rank-based and hence invariant with respect to monotone transformations.

(T2) AR(1) residuals. This setting considers the (under H0 stationary) solution
(Qi, Ri) of the first order autoregressive process{

Qi = β1Qi−1 +Xi,

Ri = β2Ri−1 + Yi,
i ∈ Z, (15)

where (Xi, Yi), i ∈ Z, are serially independent bivariate random vectors (inno-
vations) whose copula is either from model (C1) or (C2). Here, the (station-
ary) marginals Xi, i ∈ Z, are standard normally distributed and Yi, i ∈ Z, are
t3-distributed, respectively. The coefficients (β1, β2) of the lagged variables
vary in the set {1/3, 1/2, 2/3}. We simulate a time series of length n of this
model as follows:

(a) choose some reasonably large negative number M , e.g., M = −100;

(b) generate a serially independent sequence (Ui, Vi) ∼ Ci, i = M, . . . , n of
one of the aforementioned copulas C and apply the inverse of the marginal
c.d.f.s F and G to the copula sample, vis. (Xi, Yi) = (F−1(Ui), G

−1(Vi));

(c) calculate recursively the values (Qi, Ri) according to (15) for all i = M +
1, . . . , n, starting with (QM , RM ) = (XM , YM ); the last n observations
form the final sample.

Since we do not observe the innovations (Xi, Yi), i = 1, . . . , n, we estimate β1

and β2 by the Yule-Walker estimators and obtain an marginally almost i.i.d.
sample (see Section 3.1) by considering the time series (X̂i, Ŷi) of correspond-
ing estimated residuals defined as

X̂i = Qi − β̂1Qi−1, Ŷi = Ri − β̂2Ri−1, i = 1, . . . , n.

(T3) GARCH(1,1) residuals. The final setting analyses a two-dimensional time
series model which is based on the frequently applied univariate GARCH(1,1)
model. More precisely, for i ∈ Z, we consider the (under H0 stationary)
solution (Qi, Ri) of{

Qi = σi,1Xi, σ2
i,1 = ω1 + α1Q

2
i−1 + β1σ

2
i−1,1,

Ri = σi,2Yi, σ2
i,2 = ω2 + α2R

2
i−1 + β2σ

2
i−1,2,

(16)

where (Xi, Yi), i ∈ Z, are serially independent bivariate random vectors (inno-
vations) whose copula is again either from model (C1) or (C2). This time, the
(stationary) marginals Xi, i ∈ Z, are standard normally distributed and Yi,
i ∈ Z, are normalized t3-distributed (i.e.,

√
3Yi, i ∈ Z, are t3-distributed),

respectively. Following the empirical application of modeling volatility of
S&P 500 and DAX daily log-returns in Jondeau et al. (2007) we set the
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coefficients ω1 = 0.012, ω2 = 0.037, α1 = 0.072, α2 = 0.115, β1 = 0.919
and β2 = 0.868. The long run average variances in this model are given by
σM,j =

√
ωj/(1− αj − βj) which also serve as initial values for simulating a

sample from (16). The simulation algorithm reads as follows:

(a) generate an independent sample (Xi, Yi), i = M, . . . , n, as described in
steps (a) and (b) of the previous AR(1) setting;

(b) recursively calculate the values (Qi, Ri) according to (16) for all i =
M + 1, . . . , n, starting with (QM , RM ) = (σM,1XM , σM,2YM ); again, the
last n observations form the final sample.

A marginally almost i.i.d. sample (X̂i, Ŷi), i = 1, . . . , n, to which we apply
the tests is obtained by estimating the standardized residuals

X̂i := σ−1
i,1 (ω̂1, α̂1, β̂1)Qi, Ŷi := σ−1

i,2 (ω̂2, α̂2, β̂2)Ri, i = 1, . . . , n,

where the estimates ω̂j , α̂j and β̂j , j = 1, 2, are calculated by applying stan-
dard constraint non-linear optimization routines.

4.2. Results and discussion The target values of our finite sample study
are the simulated rejection probabilities (s.r.p.s) of the Cramér-von Mises tests
described in Sections 3.2 and 3.7 under the null hypothesis and under various alter-
natives. We calculate the s.r.p.s for three levels of significance α ∈ {1%, 5%, 10%},
for two different sample sizes n = 1,000 and n = 3,000 and for all of the previously
described models. Due to close similarity of some of the results, we report them
only partially (for instance, we only list the results for α = 5%). The results are
based on N = 5,000 repetitions, unless stated otherwise.

In Table 1, we present the results for TDC-Test 1 under 7 × 3 different null
hypotheses. The s.r.p.s are stated in columns 3 (n = 1,000) and 6 (n = 3,000),
respectively. The parameter k is determined by the plateau algorithm described
in Section 3.5. The properties of this algorithm are summarized in columns 4 and
5 (n = 1,000) and 7 and 8 (n = 3,000), where we state the mean and the sample
standard deviation of the estimate k∗. We observe an accurate approximation of
the nominal level in all cases, with a tendency of a slight underestimation of the
significance level in most of the cases. As already mentioned in Ssection 3, the
additional initial estimation step of applying univariate filtering to the time series
does not significantly influence the finite sample properties. The slight conservative
behavior of the test can be explained by the constancy of the copula in most of our

settings: defining Ĉ◦n(s, u, v) = 1
n

∑bnsc
i=1 1(Ûi ≤ u, V̂i ≤ v) the test statistic Sn from

Equation (8) can be rewritten as

Sn =
{
Ĉ◦n(1, k/n, k/n)

}−1
∫ 1

0

[√
n
{
Ĉ◦n(s, k/n, k/n)− sĈ◦n(1, k/n, k/n)

}]2
ds.

If k was chosen such that u = k/n > 0 is constant in n and if, additionally to
the tail copula, the copula remained constant over time, it would follow from
Corollary 3.3 (a) in Bücher and Volgushev (2013) that Sn weakly converges to
{1−C(u, u)}

∫ 1
0 B

2(s) ds, where B denotes a standard Brownian bridge. Since the

critical values of TDC-Test 1 are the quantiles of
∫ 1

0 B
2(s) ds, we can easily see

that the test rejects too rarely, provided that C(u, u) > 0. Note that this argument
remains valid if the copula is constant over time only in a neighborhood of (u, u).
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n = 1,000 n = 3,000

tail copula Λ(1, 1) s.r.p. avg(k∗) std(k∗) s.r.p. avg(k∗) std(k∗)

serial independence

0.25 0.046 52 23 0.044 97 49

(Λ1) 0.50 0.044 71 29 0.047 134 59

0.75 0.039 127 46 0.038 237 97

0.20 0.047 44 20 0.045 80 40

(Λ2) 0.40 0.042 61 26 0.047 113 52

0.60 0.046 84 34 0.045 153 67

0.20 0.053 47 21 0.056 86 44

(Λ1), (Λ2) 0.40 0.044 62 26 0.048 114 52

0.60 0.047 87 33 0.048 159 69

AR(1) residuals

0.25 0.046 52 23 0.047 97 49

(Λ1) 0.50 0.049 72 29 0.049 134 60

0.75 0.036 126 46 0.041 235 95

0.20 0.042 44 20 0.049 81 40

(Λ2) 0.40 0.046 61 25 0.045 112 42

0.60 0.043 83 34 0.045 154 67

GARCH(1,1) residuals

0.25 0.047 52 23 0.047 96 48

(Λ1) 0.50 0.045 72 29 0.048 134 59

0.75 0.038 127 45 0.041 235 94

0.20 0.043 44 20 0.046 81 42

(Λ2) 0.40 0.045 61 25 0.043 113 52

0.60 0.044 85 33 0.047 154 68

Table 1: Simulated rejection probabilities of TDC-Test 1 under various null hypotheses
HΛ

0 . In the AR(1) scenario the marginals Xi, i = 1, . . . , n, are standard normally distributed
and Yi, i = 1, . . . , n, are t3-distributed, respectively. The parameters are set to β1 = 1/3
and β2 = 2/3. In the GARCH(1,1) setting,

√
3Yi, i = 1, . . . , n, are t3-distributed.

A more enlightening view on this issue can be gained from the results in the third
block of Table 1. Here, we first simulate the first half of the dataset from model
(C1) whereas the second half is simulated from model (C2). The parameters are
chosen in such a way that both models exhibit the same tail dependence coefficient.
Hence, we are still simulating under the null hypothesis but this time the hybrid
(copula) model is not constant (over time) at any point on the diagonal of the
interior of the unit square. Within the serially independent setting we observe that
this is the only case where the s.r.p.s (slightly) exceed some levels of significance.

In Table 2, we present simulation results for TDC-Test 1 under 8 × 3 different
alternatives. We consider only the case of one break-point, which is either located
at s̄ = 0.25 or at s̄ = 0.5, and of three different upward jumps. Note that, for
symmetry reasons, the results are essentially the same for corresponding downward
jumps at 1 − s̄. The second column of the table indicates the coefficient of tail
dependence before and after the break-point. As one might have expected, higher
jumps in the TDC are detected more frequently. Also, breaks at s̄ = 0.5 are more
likely to be detected than breaks at s̄ = 0.25. Similar as for the null hypotheses
presented in Table 1, the discrepancy between the corresponding results for the
serially independent case and for the time series residuals appears to be negligible.
Overall, one can conclude that TDC-Test 1 shows reasonable power properties.
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n = 1,000 n = 3,000

tail copula Λ(1, 1) s.r.p. avg(k∗) std(k∗) s.r.p. avg(k∗) std(k∗)

serial independence, s̄ = 0.5

0.25 to 0.50 0.165 61 26 0.309 113 53

(Λ1) 0.25 to 0.75 0.563 76 30 0.845 140 64

0.50 to 0.75 0.211 93 35 0.389 171 71

0.20 to 0.40 0.175 52 22 0.306 94 45

(Λ2) 0.20 to 0.60 0.485 60 25 0.752 111 52

0.40 to 0.60 0.139 71 29 0.258 130 59

serial independence, s̄ = 0.25

0.25 to 0.50 0.091 66 27 0.173 122 52

(Λ1) 0.25 to 0.75 0.340 95 36 0.650 174 74

0.50 to 0.75 0.129 107 40 0.225 197 82

0.20 to 0.40 0.092 56 24 0.161 104 49

(Λ2) 0.20 to 0.60 0.262 71 29 0.498 129 60

0.40 to 0.60 0.079 77 31 0.148 144 63

AR(1) residuals, s̄ = 0.5

0.25 to 0.50 0.164 61 26 0.300 114 53

(Λ1) 0.25 to 0.75 0.567 76 30 0.849 138 62

0.50 to 0.75 0.205 92 35 0.390 169 72

0.20 to 0.40 0.170 52 22 0.295 96 48

(Λ2) 0.20 to 0.60 0.489 61 25 0.766 111 53

0.40 to 0.60 0.148 71 29 0.268 131 59

GARCH(1,1) residuals, s̄ = 0.5

0.25 to 0.50 0.159 61 25 0.316 113 52

(Λ1) 0.25 to 0.75 0.575 76 30 0.849 141 63

0.50 to 0.75 0.213 91 35 0.387 169 70

0.20 to 0.40 0.174 52 23 0.317 95 45

(Λ2) 0.20 to 0.60 0.487 60 25 0.747 111 53

0.40 to 0.60 0.147 71 29 0.262 132 61

Table 2: Simulated rejection probabilities of TDC-Test 1 under various alternatives Hλ
1 .

The marginal time series models are the same as in Table 1 except that β1 = 1/2 = β2.

Table 3 briefly presents simulation results for TDC-Test 2 and the TC-Test. For
the sake of brevity, we only report the s.r.p.s for the Clayton tail copula model and
the serially independent case, since the results for the other cases do not convey any
additional insights. The s.r.p.s are based on N = 1,000 simulation runs, while the
sample size is again either n = 1,000 or n = 3,000 with B = 500 bootstrap replica-

tions (B = 300 for the TC-Test) and multipliers ξ
(b)
i that are uniformly distributed

on the set {−1, 1}. In comparison to its competitor TDC-Test 1, we observe that
with TDC-Test 2, there seems to be slight evidence that the rejection probabilities
are higher both under the null hypothesis as well as under the alternative. Regard-
ing the null hypothesis, a comparable observation can be made for the TC-Test,
but the power under the alternative is even lower than that of TDC-Test 1.

The next results of this section, presented in Table 4, concern a setting where
the tail dependence coefficient stays constant over time whereas the tail copula
may change at points (x, y) 6= (1, 1) (cf. third block of Table 1). From theory, one
would expect that the TC-Test should be able to detect those breaks, whereas the
TDC-Tests should hold the nominal size. We only consider breaks at s̄ = 0.5 and
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n = 1,000 n = 3,000

scenario Λ(1, 1) s.r.p. avg(k∗) std(k∗) s.r.p. avg(k∗) std(k∗)

TDC-Test 2

0.25 0.046 52 23 0.049 97 51

HΛ
0 0.50 0.052 73 28 0.052 135 62

0.75 0.052 129 47 0.044 239 96

0.25 to 0.50 0.179 61 26 0.320 113 52

Hλ
1 , s̄ = 0.5 0.25 to 0.75 0.579 77 31 0.855 138 61

0.50 to 0.75 0.256 93 34 0.425 171 72

TC-Test

0.25 0.045 51 23 0.051 95 48

HΛ
0 0.50 0.044 70 29 0.039 135 58

0.75 0.046 127 46 0.060 239 95

0.25 to 0.50 0.152 61 25 0.312 116 52

Hλ
1 , s̄ = 0.5 0.25 to 0.75 0.530 76 30 0.813 141 64

0.50 to 0.75 0.169 91 35 0.302 169 72

Table 3: Simulated rejection probabilities of TDC-Test 2 and the TC-Test within the serial
independence setting.

model (Λ2) (i.e., we simulate from (C2)) which will allow to construct tail copulas
that are equal in (1, 1), but sufficiently different in other points. More precisely, for
a given λ ∈ {0.2, 0.4, 0.6}, we choose ψ1 = λ, ψ2 = 1 and θ = 100 for s ≤ s̄ and we
set ψ1 = 1, ψ2 = λ and θ = 100 for s > s̄. For λ = 0.4, the corresponding graphs of
t 7→ Λ(2− 2t, 2t) are shown in Figure 6 in the supplementary material. Note that,
for fixed ψ1, ψ2, we have

Λ∞(1− t, t) := lim
θ→∞

Λ(1− t, t) = {ψ1(1− t)} ∧ (ψ2t).

The corresponding limit copula defined in (14) is the well-known Marshall–Olkin
copula, whose TDC is given by min(ψ1, ψ2), see Segers (2012). With our choice of
θ = 100 in (Λ2), the difference between the TDC and min(ψ1, ψ2) = λ is less than
the machine accuracy 10−16.

The results in Table 4 confirm the expectations: the TC-Test (again based on
N = 1,000 simulation runs and B = 300 bootstrap replications) has considerable
power while TDC-Test 1 basically keeps the nominal size. As a conclusion, the
developed testing procedures allow for empirically distinguishing between constant
tail dependence coefficient and constant tail copula.

Next, we investigate a scenario (for sample size n = 1,000) where the simulated
copula is constant at the center of the distribution throughout the sample period
but exhibiting a significant structural break in the tail. For that purpose, we
consider one break at s̄ = 0.5, and we simulate from the Clayton copula with
λ = 0.25 before the break, and from the copula described in (C3), with a = 0.1,
p ∈ {0, 0.25, 0.5, 0.75, 1} and the Clayton copula with λ = 0.25, after the break.
The results for TDC-Test 1 can be found in the right part of Table 5. As expected,
the significant break in the tail is well detected by our methods.

Since our methods focus on the tail dependence, they should have, at least in
this particular setting, more power than related tests for constancy of the whole
copula. This is confirmed by the results in the left part of Table 5, which show
the s.r.p.s for an L2-type version of the tests for constancy of the copula proposed
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n = 1,000 n = 3,000

scenario Λ(1, 1) s.r.p. avg(k∗) std(k∗) s.r.p. avg(k∗) std(k∗)

TDC-Test 1

0.20 0.048 45 21 0.053 95 46

Hλ
0 ∩HΛ

1 0.40 0.049 63 26 0.048 120 53

0.60 0.053 89 35 0.050 168 72

TC-Test

0.20 0.183 45 20 0.566 92 44

Hλ
0 ∩HΛ

1 0.40 0.219 60 25 0.666 122 54

0.60 0.160 91 34 0.509 169 72

Table 4: Simulated rejection probabilities of TDC-Test 1 and the TC-Test in the serial
independence setting: The parameters are chosen such that the TDC remains constant over
time while the tail copula does not.

Copula-
Test

TDC-
Test 1

scenario p s.r.p. s.r.p. avg(k∗) std(k∗)

HΛ
0 0.00 0.046 0.040 52 23

Hλ
1 , s̄ = 0.5

0.25 0.060 0.128 67 32

0.50 0.070 0.340 84 43

0.75 0.126 0.481 102 57

1.00 0.230 0.542 121 73

Table 5: Simulated rejection probabilities of a test for constancy of the entire copula and
TDC-Test 1 in the serial independence setting (n = 1,000) in which there is a structural
break in the tail but not in the center of the distribution.

in Remillard (2010); Bücher and Ruppert (2013). More precisely, recalling that

Ĉ◦n(s, u, v) = 1
n

∑bnsc
i=1 1(Ûi ≤ u, V̂i ≤ v), the results are based on the test statistic

Rn := n

∫
[0,1]3

{
Ĉ◦n(s, u, v)− sĈ◦n(1, u, v)

}2
d(s, u, v),

along with the bootstrap approximation Rn,ξ(b) :=
∫

[0,1]3 Gn,ξ(b)(s, u, v)2 d(s, u, v)

with Gn,ξ(b) as defined in (10) based on the choice k = n. In practice, we approx-
imate the integral through a sum over a finite grid. We use N = 500 repetitions
and B = 300 bootstrap replications with multipliers that are uniformly distributed
on the set {−1, 1}. It is clearly visible that, as expected, the power of the copula
constancy test is lower than that of TDC-Test 1.

Finally, we investigate the detection of breaks in the tail dependence coefficient
under the potential presence of breaks in the marginal laws. We restrict ourselves
to a comparison of the TDCMB-Test to TDC-Test 1 in a serially independent case.
Table 6 shows the s.r.p.s for the TDCMB-Test with level of significance α = 5%,
based on samples from copula (C1) with or without a break in the TDC at s̄ = 0.5
and with marginal laws being either uniform on [0, 1] for the entire sample or being
uniform on [0, 1] before tF = 0.25 and tG = 0.5 and uniform on [5, 6] after tF and
tG, respectively. The marginal breaks are estimated by (13). Critical values are
obtained by simulating 500 times from the respective limiting distribution, where
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n = 1,000 n = 3,000

scenario Λ(1, 1) s.r.p. avg(k∗) std(k∗) s.r.p. avg(k∗) std(k∗)

TDCMB-Test, constant mean

0.25 0.061 52 24 0.063 98 49

HΛ
0 0.50 0.070 71 29 0.073 133 58

0.75 0.072 120 44 0.075 231 95

0.25 to 0.50 0.262 61 26 0.500 113 53

Hλ
1 , s̄ = 0.5 0.25 to 0.75 0.807 73 30 0.963 138 62

0.50 to 0.75 0.420 98 34 0.693 168 72

TDCMB-Test, mean change

0.25 0.061 53 23 0.065 99 50

HΛ
0 0.50 0.062 71 28 0.066 132 58

0.75 0.053 120 43 0.054 231 94

0.25 to 0.50 0.288 61 26 0.512 112 53

Hλ
1 , s̄ = 0.5 0.25 to 0.75 0.847 73 31 0.968 136 61

0.50 to 0.75 0.449 90 35 0.703 167 70

Table 6: Simulated rejection probabilities for the TDCMB-Test in a serially independent
setting with and without a mean change in the margins.

the Brownian bridge is simulated based on a grid of length 1/500. When comparing
the simulations results in the case of a constant mean to the ones from TDC-Test 1
(see the first block of Table 1 and Table 2, respectively), the TDCMB-Test has
better power properties. On the other hand, it seems to be quite liberal compared
to the slightly conservative TDC-Test 1. Moreover, the computational costs are
substantially increased compared to TDC-Test 1: first, marginal breaks have to
be estimated, and second, as the limiting distribution is not pivotal, additional
estimation of the partial derivatives of Λ and simulations of a Brownian bridge are
necessary. Finally, note that applying TDC-Test 1 to observations underlying a
mean change in the marginal laws seems to be useless as under both HΛ

0 and Hλ
1

all s.r.p.s are very close to 1.

5. Empirical applications

5.1. Energy sector In this section, we reinvestigate the bivariate dataset
from Jäschke (2014) consisting of n = 1,001 daily closing quotes of WTI Cushing
Crude Oil Spot and the Bloomberg European Dated Brent from October 2, 2006, to
October 1, 2010, collected from Bloomberg’s Financial Information Services. The
analysis of the extremal dependence between the log-returns of the two time series
in Jäschke (2014) is based on the implicit assumption that the tail dependence
structure, more precisely their lower tail copula, remains constant over time. We
are going to verify this assumption by applying the tests developed in the previous
sections.

As pointed out in Jäschke (2014), the assumption of a serially independent
sample is unrealistic. To account for autocorrelation and volatility clustering, it is
shown that an ARMA(0,0)-EGARCH(2,3)-model including an explanatory variable
(U.S. crude oil inventory) and the skewed generalized error distribution adequately
describes the data generating process for the log-returns of the WTI time series.
Regarding the daily Brent spot log-returns, an ARMA(1,1)-EGARCH(2,3)-model
including U.S. crude oil inventory as an explanatory variable and the skewed gen-
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eralized error distribution provides an adequate fit. In particular, there is no clear
evidence against the assumption of marginal stationarity in both time series.

We calculate standardized residuals on the basis of the preceding time series
models. A first view on the lower tail dependence between these residuals can be
gained from the diagnostic plot in Figure 1. For various values of k such that k/n
lies in the set {0.05, 0.06, . . . , 0.15}, we depict the points in time where the pseudo-
observations in both coordinates fall simultaneously below the value k/n. Note that
these are exactly the joint extremal events inside the indicators in the definition of
the empirical tail dependence coefficient. As the points are quite equally spaced in
time, the picture suggests that the tail dependence remains rather constant.

100 300 500 700 900
0.05

0.1

0.15

Figure 1: (WTI and Brent time series) Points in time where pseudo-observations in
both coordinates fall simultaneously below the value k/n, for k/n ∈ {0.05, 0.06, . . . , 0.15}.
The yellow row corresponds to the plateau ratio k∗/n = 104/1001 ≈ 10%.

More formally, we proceed by checking the hypothesis Hλ
0 of constancy of the tail

dependence coefficients by an application of TDC-Test 1. First, in order to obtain a
reasonable choice for the parameter k, we use the plateau algorithm from Section 3.5
with bandwidth b = b0.005nc = 5. This yields a value of k∗ = 104 (which is also
depicted in yellow in Figure 1) and a plateau of length m = 31. Following Frahm
et al. (2005), the average of the 31 empirical lower tail dependence coefficients on
this plateau, given by λ̂ = 0.732, provides a good estimate for λ. Figure 7 in the
supplementary material shows the corresponding standardized sequential empirical
tail copula process ns 7→ λ̂−1/2Gn(s, 1, 1) for k∗ = 104. The graph seems to be
indistinguishable from a simulated path of a one-dimensional standard Brownian
bridge which indicates that the null hypothesis cannot be rejected. In Figure 2
we depict both the value of the Cramér-von Mises type test statistic Sn defined in
(8) (yellow) as well as the corresponding p-values (blue) as a function of k. The
dashed vertical line shows the outcomes for the plateau optimal k∗ = 104, in which
case we obtain Sn = 0.285 with a resulting p-value of 0.15. Consequently, the null
hypothesis Hλ

0 cannot be rejected at a 5% level of significance. Moreover, Figure 2
shows that this conclusion is robust with respect to different choices of k. Results
for TDC-Test 2 are very similar and are not depicted for the sake of brevity.

Finally, the assumption of a constant lower tail copula is verified by testing
for the hypothesis HΛ

0 . We apply the TC-Test from Section 3.2 with B = 2,000
bootstrap replications using the plateau optimal k∗ = 104. We obtain Tn = 0.069
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with a resulting p-value of 0.29. Again, the null hypothesis cannot be rejected at
a 5% level of significance. Similar as for the tests for Hλ

0 , this conclusion is robust
with respect to different choices of k.

50 100 15012575

0.1

0.3

0.5

Figure 2: (WTI and Brent time series) Test statistics Sn (yellow) and corresponding
p-values (blue) for different k. The horizontal line indicates the 5% level of significance, the
vertical one the plateau k∗ = 104.

5.2. Financial markets As an empirical application from the finance sector,
we consider the Dow Jones Industrial Average and the Nasdaq Composite time
series around Black Monday on 19th of October 1987. This dataset covers n = 1,768
log-returns from daily closing quotes between January 4, 1984, and December 31,
1990, collected from Datastream. Related studies in Wied et al. (2014) and Dehling
et al. (2013) try to examine whether Black Monday constitutes a break in the
dependence structure between the two time series. The outcomes of their studies
do not provide a clear picture, as the answer depends on the applied test statistic.
While the test for a constant Pearson correlation rejects the null hypothesis of
constant correlation, the more robust (rank-based) tests for constant Spearman’s
rho and Kendall’s tau yield no evidence for breaks. In these papers, the contrasting
result is explained by the fact that the (unfiltered) time series contain several heavy
outliers around Black Monday which seriously affect the Pearson-, but not the rank-
based tests for Spearman’s rho and Kendall’s tau.

For our analysis, we begin by an investigation of the univariate time series.
Applying the model selection and verification criteria from Jäschke (2014), we find
that an ARMA(0,0)-GARCH(1,1)-model with t-distribution for the Dow Jones log-
returns and an ARMA(1,0)-GARCH(1,1)-model with skewed t-distribution for the
Nasdaq equivalent provide the best fits among a number of common stationary
time series models. Details on the parameter estimation are given in Table 7 in
the supplementary material. Note that more suitable models might be found by
considering piecewise stationary models and by subsequently applying the tests
from Section 3.7 where necessary. For our illustrative purposes, we restrict ourselves
to the former models and to the tests from Sections 3.2 and 3.4 in the following.

Along the lines of Dehling et al. (2013) we first seek to answer the question
whether Black Monday constitutes a break in the tail dependence between the two
time series. A positive answer would indicate that the market conditions have
substantially changed after this date. For the ease of a clear exposition, we restrict
ourselves to an investigation of the lower tail dependence coefficient. A first visual
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description of the joint tail behavior similar to the one in Figure 1 can be found in
Figure 3 which, however, does not provide a clear picture: even though there seems
to be a tendency of stronger tail dependence for later dates in the time series, it
is unclear whether this is due to a break on Black Monday (second dashed vertical
line).

400 800 1200 1600
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Figure 3: (Dow Jones and Nasdaq time series) Points in time where pseudo-
observations in both coordinates fall simultaneously below the value k/n, for k/n ∈
{0.05, 0.06, . . . , 0.15}. The yellow row corresponds to the plateau ratio k∗/n ≈ 11%. The
first yellow vertical line reflects the argmax-estimator bnŝλc = 817, the second equivalent
indicates Black Monday bns̄BMc = 959.

In the following, we examine this formally by applying the tests from Section 3,
in particular the test from Section 3.4 for a specific break-point. First, a careful
inspection of the plot k 7→ TDC(k) and the statistics defining the plateau algo-
rithm (which are not depicted for the sake of brevity) suggests that k∗ = 191 is a
reasonable choice for the parameter k, with a corresponding length of the plateau
of m = 41. The average of the empirical lower tail dependence coefficients over the
corresponding values k ∈ {171, . . . , 211} is given by λ̂ = 0.620.

Now, we apply the test from Section 3.4 for a specific break-point at bns̄BMc =
959, the date of Black Monday. The results are depicted in Figure 8 in the supple-
mentary material, where we plot the p-values of the test against the parameter k.
For k∗ = 191, the resulting p-value of 0.082 does not allow for a clear rejection of
the null hypothesis. In contrast to this, slightly lower values of k yield a rejection
at the 5% level of significance, whence, as a summary, there seems to be some light,
but disputable evidence against H0. However, the rejection of the null hypothesis
might be due to different reasons than a break precisely on Black Monday. To
conclude upon the latter, one would have to accept the hypothesis of constancy
of the lower tail dependence coefficient in the subsamples before and after Black
Monday. Therefore, we perform the corresponding TDC-Test 1 in the subsamples,
whose results are depicted in Figures 9 and 10 in the supplementary material in
a similar manner as before; in particular, they are based on new (plateau-based)
choices of k for the reduced samples. We can accept constancy after Black Monday,
but have to reject it for the subsample before Black Monday. A summary of the
results can also be found in the first two columns of Table 8 in the supplement.

In principal, one could now proceed by a refined analysis of the subsample before
Black Monday in order to identify potential additional break-points. Motivated by

27



the diagnostic plot in Figure 3, we prefer an application of TDC-Test 1 to the whole
sample since this might reveal that a model with at most one break-point is also
appropriate. In other words, we dismiss the initial guess of a break precisely on
Black Monday and rather split the sample at an estimated break-point, hoping that
the latter yields a simpler model with at most one break-point.

We do not depict the results of the corresponding test, since it clearly rejects
the null hypothesis Hλ

0 at the 1% level of significance for almost all choices of k. A
short summary can be found in the last column of Table 8 in the supplementary
material. More enlightening conclusions can be drawn from the plot of the the
function ns 7→ |λ̂−1/2Gn(s, 1, 1)| in Figure 4, for k∗ = 191. The dashed vertical
lines denote Black Monday bns̄BMc = 959 (second line) and the value bnŝλc = 817
where the graph attains its maximum. The latter corresponds to the 27th of March
1987 and appears to be the argmax for most choices of k in a neighborhood of
k∗ = 191. We split the sample at this estimated break-point and conduct a refined
analysis in the respective subsamples. The procedure is similar to what we have
done before, whence we restrict ourselves to a brief summary of the results: in
both subsamples, we cannot reject the null hypothesis for all reasonable choices
of k, including the values obtained from the plateau algorithm, with p-values lying
between 0.2 and 0.5. Similar to the values in Table 8 we find λ̂ = 0.430 for the first
subsample (k∗ = 43) and λ̂ = 0.656 for the second one (k∗ = 57), respectively.

400 800 1200 1600
0

0.5

1

1.5

Figure 4: (Dow Jones and Nasdaq time series) Absolute standardized sequential

empirical tail copula process |λ̂−1/2Gn(s, 1, 1)| for k∗ = 191 with respect to ns, s ∈ [0, 1].
The first yellow vertical line indicates the argmax estimator bnŝλc = 817, the second one
shows Black Monday bns̄BMc = 959.

We conclude this application with a short summary of the main findings:

(i) The test for a break on Black Monday does not yield entirely unambiguous
results; in particular, we have to reject the null hypothesis of constant tail
dependence in the subsample before Black Monday resulting in an overall
model with more than one break-point.

(ii) Testing against the existence of some unspecified break-point in the full sample
clearly rejects the null, with an estimated break-point at bnŝλc = 817. Since
we cannot reject the null hypothesis in the corresponding subsamples, an
overall model with only one break-point can be accepted.
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6. Conclusion and Outlook

We developed new tests for detecting structural breaks in the tail dependence
of multivariate time series, derived their theoretical properties, investigated their
finite-sample performance and applied them to energy and financial market data.

Our work hints at interesting directions for further research. First of all, we
did not give a formal proof for the conjecture derived from the simulation study,
that the test statistics based on estimated residuals show the same asymptotic
behavior as the ones based on i.i.d. samples. To the best of our knowledge, this
problem is also unsolved for the estimation techniques described in Section 2: un-
der what conditions does (or does not) the additional estimation step of forming
marginally almost i.i.d. residuals influence the asymptotic behavior of the nonpara-
metric estimators for the tail dependence? Second, extensions to the case of serially
dependent datasets (e.g., to mixing sequences) would allow to check for constant
tail dependence of the raw data which might also be of interest for practitioners.
In particular with a view on the necessary (block) bootstrap procedure this could
be a quite challenging task.

Finally, a deeper investigation of the results in Section 3.7 would be a worthwhile
topic of future research: under what conditions can one replace the (unknown)
marginal break points in Proposition 3.13 by their empirical counterparts? How
can one treat the case of an unknown number of breaks in the marginals, and how
can one adapt the bootstrap methodology to these settings?
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Caillault, C. and D. Guégan (2005): “Empirical estimation of tail dependence
using copulas: application to Asian markets,” Quantitative Finance, 5(5), 489–
501.

Chan, N.-H., J. Chen, X. Chen, Y. Fan, and L. Peng (2009): “Statistical
inference for multivariate residual copula of GARCH models,” Statistica Sinica,
19(1), 53–70.

Chen, X. and Y. Fan (2006): “Estimation and model selection of semiparamet-
ric copula-based multivariate dynamic models under copula misspecification,”
Journal of Econometrics, 135(1-2), 125–154.

Danielsson, J., L. de Haan, L. Peng, and C. G. de Vries (2001): “Using a
bootstrap method to choose the sample fraction in tail index estimation,” Journal
of Multivariate Analysis, 76(2), 226–248.

de Haan, L. and A. Ferreira (2006): Extreme value theory, Springer Series in
Operations Research and Financial Engineering, New York: Springer.

Dehling, H., D. Vogel, M. Wendler, and D. Wied (2013): “An efficient and
robust test for change-points in correlation,” arXiv: abs/1203.4871v2.

Drees, H. and X. Huang (1998): “Best attainable rates of convergence for esti-
mates of the stable tail dependence functions,” Journal of Multivariate Analysis,
64(1), 25–47.

Drees, H. and E. Kaufmann (1998): “Selecting the optimal sample fraction
in univariate extreme value estimation,” Stochastic Processes and their Applica-
tions, 75(2), 149–172.
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worski, F. Durante, and W. K. Härdle, Springer Berlin Heidelberg, Lecture Notes
in Statistics, 61–89.

30



Frahm, G., M. Junker, and R. Schmidt (2005): “Estimating the tail-
dependence coefficient: Properties and pitfalls,” Insurance: Mathematics and
Economics, 37(1), 80–100.

Galambos, J. (1975): “Order statistics of samples from multivariate distribu-
tions,” Journal of the American Statistical Association, 70(351a), 674–680.

Galeano, P. and D. Wied (2014): “Multiple break detection in the correlation
structure of random variables,” Computational Statistics and Data Analysis, 76,
262–282.

Genest, C., K. Ghoudi, and L.-P. Rivest (1995): “A semiparametric esti-
mation procedure of dependence parameters in multivariate families of distribu-
tions,” Biometrika, 82(3), 543–552.

Genest, C., B. Rémillard, and D. Beaudoin (2009): “Goodness-of-fit tests for
copulas: A review and a power study,” Insurance: Mathematics and Economics,
44(2), 199–213.

Genest, C. and J. Segers (2009): “Rank-based inference for bivariate extreme-
value copulas,” The Annals of Statistics, 37(5B), 2990–3022.

Gudendorf, G. and J. Segers (2010): “Extreme-value copulas,” in Copula
Theory and Its Applications, ed. by P. Jaworski, F. Durante, W. K. Härdle, and
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A. Online-Supplement: “Nonparametric tests for
constant tail dependence with an application to

energy and finance”

This supplement is organized as follows: in Section A.1, we give the proofs of all
results in the main text. An auxiliary result is proven in Section A.2. Two tables
concerning the empirical application in Section 5.2 are presented in Section A.3.
Finally, Section A.4 completes this appendix with a couple of figures concerning
Sections 4 and 5.

A.1. Proof of the results in the main text For all proofs, by asymptotic
equicontinuity, we may redefine Ûi = Fn(Xi) and V̂i = Gn(Yi). Now, for any
s ∈ [0, 1] and (x, y) ∈ E, let

Λ̃◦n(s, x, y) =
1

k

bnsc∑
i=1

1(Ui ≤ kx/n, Vi ≤ ky/n). (17)

Under HΛ
0 , this is a sequential (oracle) estimator for Λ◦(s, x, y) = sΛ(x, y). The

asymptotic behavior of Λ̃◦n can be derived under the following general condition,
which allows for rather general changes of the tail copula Λi (see also Section 3.3).

Assumption A.1. There exists some function g : [0, 1]×E→ R such that Λi(·, ·) =
g(i/n, ·, ·) and such that, for any m ∈ N,

sup
(s,x,y)∈Sm

∣∣∣∣∣∣ 1n
bnsc∑
i=1

g(i/n, x, y)−G(s, x, y)

∣∣∣∣∣∣ = o(1), n→∞, (18)

where G(s, x, y) =
∫ s

0 g(z, x, y) dz.

Note that, under HΛ
0 , Assumption A.1 is trivially met with g(z, x, y) = Λ(x, y),

G(s, x, y) = Λ◦(s, x, y) = sΛ(x, y) and with the expression on the left-hand side
of (18) being of order O(1/n). Now, consider the following sequential empirical
process Bn defined as

Bn(s, x, y) =
√
k
{

Λ̃◦n(s, x, y)−G(s, x, y)
}
,

and its corresponding centered version

B′n(s, x, y) =
1√
k

bnsc∑
i=1

1(Ui ≤ kx/n, Vi ≤ ky/n)− Ci(kx/n, ky/n).

The proof of the following central lemma is given in Appendix A.2.

Lemma A.2. Suppose that Assumptions 3.1, 3.2 (a), 3.2 (c) and A.1 hold. Then

B′n  B′g in (B∞([0, 1]× E), d),

where B′g denotes a tight, centered Gaussian process with covariance given by

Cov{B′g(s1, x1, y1),B′g(s2, x2, y2)} = G(s1 ∧ s2, x1 ∧ x2, y1 ∧ y2).
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If, additionally, Assumption 3.2 (b) is met and if the convergence in (18) in As-

sumption 3.1 is of order o(k
−1/2
n ), then d(B′n,Bn) = o(1).

Note that, under HΛ
0 , the distribution of B′g is equal to the distribution of BΛ

as defined in Proposition 3.3.

Proof of Proposition 3.3. Since the rank of Xi among X1, . . . , Xn is the same as the
rank of Ui among U1, . . . , Un (similar for the second coordinate) we may assume
without loss of generality that (Xi, Yi) is distributed according to Ci, i.e., F (x) =
G(x) = x for all x ∈ [0, 1]. Some thoughts reveal that

|Λ̂◦n(s, x, y)− Λ̄◦n(s, x, y)| ≤ 2/k,

uniformly in (s, x, y) ∈ Sm, where

Λ̄◦n(s, x, y) :=
1

k

bnsc∑
i=1

1
{
Xi ≤ F−n (kx/n), Yi ≤ G−n (ky/n)

}
and where F−n and G−n denote the generalized inverse functions of Fn and Gn,
respectively. Note that Λ̄◦n can be expressed in terms of Λ̃◦n as

Λ̄◦n(s, x, y) = Λ̃◦n

{
s,
n

k
F−n

(
kx

n

)
,
n

k
G−n

(
ky

n

)}
.

Now, we have n/kFn(kx/n) = Λ̃◦n(1, x,∞) and n/kGn(kx/n) = Λ̃◦n(1,∞, y),
whence, by Hadamard-differentiability of the inverse mapping as stated in Bücher
and Dette (2013),

sup
x∈[0,M ]

∣∣∣∣nkF−n
(
kx

n

)
− x
∣∣∣∣ = oP (1), sup

y∈[0,M ]

∣∣∣∣nkG−n
(
ky

n

)
− y
∣∣∣∣ = oP (1) (19)

for any M > 0 (this result can also be obtained by deducing weak convergence of
x 7→ Bn(1, x,∞) as an element of the càdlàg space D([0,M ]) with the Skorohod
topology (from Lemma A.2), invoking a Skorohod construction and applying Ver-
vaat’s Lemma, see Vervaat (1972) or Lemma A.0.2 in de Haan and Ferreira (2006)).
Therefore, by asymptotic equicontinuity of Bn from Lemma A.2, uniformly on Sm,

Gn(s, x, y) =
√
k
{

Λ̄◦n(s, x, y)− sΛ̄◦n(1, x, y)
}

+O(k−1/2)

= Bn
{
s,
n

k
F−n

(
kx

n

)
,
n

k
G−n

(
ky

n

)}
− sBn

{
1,
n

k
F−n

(
kx

n

)
,
n

k
G−n

(
ky

n

)}
+O(k−1/2)

= Bn(s, x, y)− sBn(1, x, y) + oP (1), (20)

which converges weakly to GΛ(s, x, y) = BΛ(s, x, y)− sBΛ(1, x, y) on (Sm, ‖ · ‖Sm),
for any m ∈ N. The proposition is proven.

Remark A.3. A crucial argument in the preceding proof is the decomposition
(20) of Gn into a sum involving Bn from Lemma A.2. A similar decomposition is
possible with Bn replaced by B′n from Lemma A.2, and weak convergence of the
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latter holds without imposing Assumption 3.2 (b). Therefore, a relaxation of the
assumptions for Proposition 3.3 seems to be possible. Indeed, a sufficient condition
that makes occurring bias terms in an alternative version of (20) negligible and
allows to dispense with Assumption 3.2 (b) is given by

sup
(s,x,y)∈Sm

√
k

n

∣∣∣∣∣∣
bnsc∑
i=1

n

k
Ci(kx/n, ky/n)− s

n∑
i=1

n

k
Ci(kx/n, ky/n)

∣∣∣∣∣∣ = o(1),

as n→∞. In case Ci ≡ C is constant over time, this condition reduces to
√
k/n =

o(1), which is satisfied anyway since k = o(n).

Proof of Corollary 3.4. It follows from Proposition 3.3 that

s 7→
{

Λ̂◦n(1, 1, 1)
}−1/2

Gn(s, 1, 1)

converges to a standard Brownian bridge. Therefore, both assertions are simple
consequences of the continuous mapping theorem.

Proof of Proposition 3.6. Let us first fix a b ∈ {1, . . . , B} and show that Gn,ξ(b)

weakly converges to GΛ(b) . For the sake of a clear notation, we omit the index b for
the proof of this result. In light of the continuous mapping theorem, it is sufficient
to prove that Bn,ξ weakly converges to BΛ. As in the proof of Proposition 3.3, we
may assume that the marginal distributions are standard uniform. Let us suppose
that we have proven B̃n,ξ  BΛ, where

B̃n,ξ(s, x, y) :=
1√
k

bnsc∑
i=1

ξi

{
1 (Ui ≤ kx/n, Vi ≤ ky/n)− C̃n(kx/n, ky/n)

}
and where C̃n(u, v) := n−1

∑n
i=1 1(Ui ≤ u, Vi ≤ v). Then, by a similar reasoning

as in the proof of Proposition 3.3,

Bn,ξ(s, x, y) = B̃n,ξ
{
s,
n

k
F−n

(
kx

n

)
,
n

k
G−n

(
ky

n

)}
+O

(
k−1/2 n

max
i=1
|ξi|
)
. (21)

By (19) and asymptotic equicontinuity of B̃n,ξ, the first expression on the right-
hand side weakly converges to BΛ in `∞(Sm), for any fixed Sm. In light of the
fact that ξ1 has finite moments of any order we have P(|ξ1| > x) = O(x−q) for any
q ∈ N. Therefore, the estimation

P(k−1/2 n
max
i=1
|ξi| > ε) ≤ nP(|ξ1| > ε

√
k/2) = nO(k−q/2)

shows that theO-term in (21) converges to 0 in probability, by choosing q sufficiently
large. This proves that Gn,ξ(b) weakly converges to GΛ(b) .

It remains to be shown that B̃n,ξ  BΛ in `∞(Sm), for any fixed Sm. We have

B̃n,ξ(s, x, y) = An1(s, x, y) +An2(s, x, y) +An3(s, x, y),
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where

An1 :=
1√
k

bnsc∑
i=1

ξi {1(Ui ≤ kx/n, Vi ≤ ky/n)− Ci(kx/n, ky/n)} ,

An2 :=
1√
k

bnsc∑
i=1

ξi {Ci(kx/n, ky/n)− Λ(kx/n, ky/n)} ,

An3 :=
1√
k

bnsc∑
i=1

ξi

{
Λ(kx/n, ky/n)− C̃n(kx/n, ky/n)

}
.

The fact that C̃n(kx/n, ky/n)− Λ(kx/n, ky/n) =
√
k/n× Bn(s, x, y) = OP (

√
k/n)

from Lemma A.2 together with Donsker’s invarance principle implies that the last
term An3 is of order OP (1/

√
n) = oP (1), uniformly on each Sm. Furthermore,

Ci(kx/n, ky/n)−Λ(kx/n, ky/n) = k/n×O(S(n/k)) by Assumption 3.1, uniformly
in i and uniformly on Tm, whence

sup
(s,x,y)∈Sm

|An2(s, x, y)| ≤ 1

n

n∑
i=1

|ξi| ×
√
kO(S(n/k)).

The right-hand side is oP (1) by Assumption 3.2 (b). Hence, it remains to consider
the leading term An1. Its conditional weak convergence follows from Theorem 11.19
in Kosorok (2008) and the proof of Lemma A.2 below. Further note that conditional
weak convergence as considered by the last named author implies unconditional
weak convergence.

Now, let us give the proof of the proposition. On each Sm, the sequence
(Gn,Gn,ξ(1) , . . . ,Gn,ξ(B)) is jointly asymptotically tight by Lemma 1.4.3 in Van der
Vaart and Wellner (1996). Hence, it remains to consider weak convergence of the
finite-dimensional distributions. It suffices to consider the finite-dimensional dis-
tributions of (Bn,Bn,ξ(1) , . . . ,Bn,ξ(B)). By a similar argumentation as above in the
case of a fixed b ∈ {1, . . . , B}, we may replace each coordinate Bn,ξ(b) by

1√
k

bnsc∑
i=1

ξ(b)i {1(Ui ≤ kx/n, Vi ≤ ky/n)− Ci(kx/n, ky/n)} .

Then, the coordinates are uncorrelated and row-wise independent, whence the
finite-dimensional distributions weakly converge to those of (BΛ,B(1)

Λ , . . . ,B(B)

Λ ) by
the central limit theorem for row-wise independent triangular arrays.

Proof of Corollary 3.7. For TDC-Test 1, this is a direct consequence of Corol-
lary 3.4 (i). The proofs of TDC-Test 2 and TC-Test being essentially the same, we
restrict ourselves to the proof of TDC-Test 2. For monotonicity reasons it suffices
to consider α ∈ R \Q.

Let K denote the c.d.f. of S and define

Kn,B(x) = B−1
B∑
b=1

1(Sn,ξ(b) ≤ x), KB(x) = B−1
B∑
b=1

1(S(b) ≤ x),

where S(1), . . . ,S(B) denote independent copies of S. Then we can write P(Sn ≥
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q̂Sn,1−α) = P{Kn,B(Sn) ≥ 1 − α}. Let us first show that, for any B ∈ N fixed, we
have

lim
n→∞

P{Kn,B(Sn) ≥ 1− α} = P{KB(S) ≥ 1− α}. (22)

For that purpose, let ε > 0 be given. Define a map Ψ : RB+1 → R by Ψ(t0, . . . , tB) =
B−1

∑B
b=1 1(tb ≤ t0) and note that Ψ is continuous at any point (t0, . . . , tB) with

pairwise different coordinates (i.e., ti 6= tj for i 6= j). Then, observing that
(Sn,Sn,ξ(1) , . . . ,Sn,ξ(B))  (S,S(1), . . . ,S(B)) with the limit having pairwise dif-
ferent coordinates, almost surely, the continuous mapping theorem implies that
Kn,B(Sn)  KB(S), for n → ∞. The Portmanteau-Theorem implies that there
exists some n0 = n0(ε,B) such that

|P{Kn,B(Sn) ≥ 1− α} − P{KB(S) ≥ 1− α}| < ε

(note that P(KB(S) = 1− α) = 0 since α ∈ R \Q), which proves (22).
It remains to be shown that

lim
B→∞

P{KB(S) ≥ 1− α} = α. (23)

By the Glivenko-Cantelli Theorem, we may choose B0 = B0(ε) ∈ N such that

P
{

sup
x∈R
|KB(x)−K(x)| > ε

}
≤ ε.

for all B ≥ B0. For all such B,

P{KB(S) ≥ 1− α} ≤ P{K(S) ≥ 1− α− ε) + ε = α+ 2ε,

and similarly,

P{KB(S) ≥ 1− α} ≥ P{K(S) ≥ 1− α+ ε) = α− ε,

which implies that

|P{KB(S) ≥ 1− α} − α| ≤ 2ε.

This proves (23) and hence the Corollary.

Proof of Proposition 3.8. The result is a special case of Proposition 3.11 which is
proven below.

Proof of Corollary 3.9. For TDC-Test 1, this is a direct consequence of Propo-
sition 3.8 (i). The proofs for TDC-Test 2 and TC-Test being essentially the same,
we only consider the TC-Test.

Let us first show that Tn,ξ is stochastically bounded. This follows if we prove
that sup(s,x,y)∈Sm |Bn,ξ(s, x, y)| = OP (1), for n → ∞. By a similar reasoning as in

(21) and the subsequent paragraph, it suffices to show the same for B̃n,ξ(s, x, y).
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Since

sup
(s,x,y)∈Sm

|B̃n,ξ(s, x, y)|

= max

{
sup

s≤s̄,(x,y)∈Tm
|B̃n,ξ(s, x, y)|, sup

s≥s̄,(x,y)∈Tm
|B̃n,ξ(s, x, y)|

}
, (24)

we can verify the claim for each of the suprema in the maximum separately.
Let us first treat the notationally simpler first supremum. We can decompose
B̃n,ξ(s, x, y) =

∑4
`=1An`(s, x, y), where

An1 :=
1√
k

bnsc∑
i=1

ξi {1(Ui ≤ kx/n, Vi ≤ ky/n)− Ci(kx/n, ky/n)} ,

An2 :=
1√
k

bnsc∑
i=1

ξi

{
Ci(kx/n, ky/n)− Λ(1)(kx/n, ky/n)

}
,

An3 :=
1√
k

bnsc∑
i=1

ξi(1− s̄)
{

Λ(1)(kx/n, ky/n)− Λ(2)(kx/n, ky/n)
}
,

An4 :=
1√
k

bnsc∑
i=1

ξi

{
s̄Λ(1)(kx/n, ky/n) + (1− s̄)Λ(2)(kx/n, ky/n)− C̃n(kx/n, ky/n)

}
.

Since s ≤ s̄, the first term An1 converges weakly by the same arguments as in
the proof of Proposition 3.6. Also as in that proof, An2 = oP (1). Negligibility of
An3 follows from Donsker’s invariance principle and the fact that Λ(kx/n, ky/n) ≤
(x ∧ y) × k/n for any tail copula Λ. Hence, it remains to consider An4. Again
exploiting Donsker’s invariance principle, it is certainly sufficient to show that
∆n := C̃n(kx/n, ky/n) − s̄Λ(1)(kx/n, ky/n) − (1 − s̄)Λ(2) = OP (

√
k/n). This,

however, follows from the fact that we can write

n√
k

∆n =
√
k

{
1

k

bns̄c∑
i=1

1(Ui ≤ kx/n, Vi ≤ ky/n)− s̄Λ(1)(x, y)

+
1

k

n∑
bns̄c+1

1(Ui ≤ kx/n, Vi ≤ ky/n)− (1− s̄)Λ(2)(x, y)

}
,

which is OP (1) by two suitable applications of Lemma A.2.
Regarding the second supremum on the left-hand side of (24), write

B̃n,ξ(s, x, y) = B̃n,ξ(s̄, x, y)

+ k−1/2

bnsc∑
i=bns̄c+1

ξi

{
1(Ui ≤ kx/n, Vi ≤ ky/n)− C̃n(kx/n, ky/n)

}
. (25)

The first term on the left-hand side has already been handled above, and the second
one can be treated by a similar decomposition.

Now, fix B ∈ N and let ε > 0 be given. Then, since Tn,ξ(b) = OP (1) for each
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b = 1, . . . , B, we may choose K = K(ε,B) > 0 such that

sup
n∈N

P
(

B
max
b=1
|Tn,ξ(b) | > K

)
≤ ε.

Therefore, q̂Tn,1−α > K with probability of at least ε, and since Tn →∞ in proba-
bility, we get that

lim inf
n→∞

P(Tn ≥ q̂Tn,1−α) ≥ lim inf
n→∞

{P(Tn ≥ K)− P(q̂Tn,1−α > K)} ≥ 1− ε.

As ε > 0 was arbitrary, the assertion is proven.

Proof of Proposition 3.11. As in the proof of Proposition 3.3 we may assume with-
out loss of generality that the marginals are standard uniform. We only prove (i),
the proof of (ii) is completely analogous. By the continuous mapping theorem, it
suffices to show that

sup
s∈[0,1]

∣∣∣∣∣∣1k
bnsc∑
i=1

1
(
Ûi ≤ k/n, V̂i ≤ k/n

)
−
∫ s

0
g(z, 1, 1)dz

∣∣∣∣∣∣ = oP (1).

As in the proof of Proposition 3.3, we may replace the indicators in the previous
expression by 1{Ui ≤ F−n (k/n), Vi ≤ G−n (k/n)}. Now, we decompose

1

k

bnsc∑
i=1

1
{
Ui ≤ F−n (k/n), Vi ≤ G−n (k/n)

}
−
∫ s

0
g(z, 1, 1)dz =

4∑
`=1

A`(s)

where

A1(s) := k−1/2B′n
{

(n/k)F−n (k/n), (n/k)G−n (k/n)
}
,

A2(s) :=
1

k

bnsc∑
i=1

Ci

{
F−n (k/n), G−n (k/n)

}
− Ci(k/n, k/n),

A3(s) :=
1

n

bnsc∑
i=1

(n/k)Ci(k/n, k/n)− g(i/n, 1, 1),

A4(s) :=
1

n

bnsc∑
i=1

g(i/n, 1, 1)−
∫ s

0
g(z, 1, 1)dz.

A1(s) converges to 0, uniformly in s ∈ [0, 1], by Lemma A.2. The second term is
uniformly oP (1) by Lipschitz continuity of Ci and (19). By Assumption 3.2, the
third term is of order O(S(n/k)) = o(1). A4(s) goes to 0, uniformly in s, by the
assumption in Hλ

1 .

Proof of Proposition 3.13. For i = 1, . . . , bntF c, the rank ofXi amongX1, . . . , XbntF c
is the same as the rank of Ui among U1, . . . , UbntF c, and similar for the second sub-
sample and for the second coordinate. Hence, we may assume without loss of
generality that (Xi, Yi) is distributed according to Ci, for all i = 1, . . . , n.

Moreover, by asymptotic equicontinuity, we may redefine F(k+1):`(x) := (` −
k)−1

∑`
j=k+1 1(Xj ≤ x), and similar for the second coordinate. In the following,
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we suppose that tF ≤ tG, the other case is treated similarly. We restrict ourselves
to show weak convergence on `∞([0, 1]× [ε,m]2) for 0 < ε < m <∞; the boundary
cases can be treated similarly, following arguments in Bücher and Dette (2013) for
x or y smaller than ε. Let n be large enough such that tF , tG ∈ (1/n, 1 − 1/n).
Define

Λ̄◦n(s, x, y; tF , tG) =
1

k

bn(s∧tF )c∑
i=1

1
{
Xi ≤ F−1:bntF c(kx/n), Yi ≤ G−1:bntGc(ky/n)

}

+
1

k

bn(s∧tG)c∑
i=bn(s∧tF )c+1

1
{
Xi ≤ F−bntF c+1:n(kx/n), Yi ≤ G−1:bntGc(ky/n)

}

+
1

k

bnsc∑
i=bn(s∧tG)c+1

1
{
Xi ≤ F−bntF c+1:n(kx/n), Yi ≤ G−bntGc+1:n(ky/n)

}
and note that

|Λ̂◦n(s, x, y)− Λ̄◦n(s, x, y; tF , tG)| = O(1/k),

uniformly in (s, x, y) ∈ [0, 1] × [ε,m]2. Therefore, it suffices to prove weak conver-
gence of √

k
{

Λ̄◦n(s, x, y; tF , tG)− sΛ̄◦n(1, x, y; tF , tG)
}
.

For (t1, t2) ∈ [0, 1]2 with t2 > t1 + 1/n define

αn(t1, t2, x) =
n

k
F−bnt1c+1:bnt2c

(
kx

n

)
, βn(t1, t2, y) =

n

k
G−bnt1c+1:bnt2c

(
ky

n

)
.

Recall the definition of Λ̃◦n in (17) and note that

Λ̄◦n(s, x, y; tF , tG) = Λ̃◦n {s ∧ tF , αn(0, tF , x), βn(0, tG, y)}
+ Λ̃◦n {s ∧ tG, αn(tF , 1, x), βn(0, tG, y)} − Λ̃◦n {s ∧ tF , αn(tF , 1, x), βn(0, tG, y)}
+ Λ̃◦n {s, αn(tF , 1, x), βn(tG, 1, y)} − Λ̃◦n {s ∧ tG, αn(tF , 1, x), βn(tG, 1, y)} .

In particular, we can write
√
k
{

Λ̄◦n(s, x, y; tF , tG)− sΛ̄◦n(1, x, y; tF , tG)
}

as

Bn {s ∧ tF , αn(0, tF , x), βn(0, tG, y)}
+ Bn {s ∧ tG, αn(tF , 1, x), βn(0, tG, y)} − Bn {s ∧ tF , αn(tF , 1, x), βn(0, tG, y)}
+ Bn {s, αn(tF , 1, x), βn(tG, 1, y)} − Bn {s ∧ tG, αn(tF , 1, x), βn(tG, 1, y)}

− s
[
Bn {1 ∧ tF , αn(0, tF , x), βn(0, tG, y)}

+ Bn {1 ∧ tG, αn(tF , 1, x), βn(0, tG, y)} − Bn {1 ∧ tF , αn(tF , 1, x), βn(0, tG, y)}

+ Bn {1, αn(tF , 1, x), βn(tG, 1, y)} − Bn {1 ∧ tG, αn(tF , 1, x), βn(tG, 1, y)}
]

+Rn (26)
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where the remainder Rn is given by

√
k

{
(s ∧ tF − stF )

[
Λ{αn(0, tF , x), βn(0, tG, y)} − Λ{αn(tF , 1, x), βn(0, tG, y)}

]
+(s ∧ tG − stG)

[
Λ{αn(tF , 1, x), βn(0, tG, y)} − Λ{αn(tF , 1, x), βn(tG, 1, y)}

]}
.

The functional delta method applied to the inverse mapping (see the proof of
Lemma A.1 in Bücher and Dette, 2013) shows that

sup
x∈[0,M ]

∣∣∣√k{αn(0, tF , x)− x}+ t−1
F Bn(tF , x,∞)

∣∣∣ = oP (1),

sup
x∈[0,M ]

∣∣∣√k{αn(tF , 1, x)− x}+ (1− tF )−1{Bn(1, x,∞)− Bn(tF , x,∞)}
∣∣∣ = oP (1),

sup
y∈[0,M ]

∣∣∣√k{βn(0, tG, y)− y}+ t−1
G Bn(tG,∞, y)

∣∣∣ = oP (1),

sup
y∈[0,M ]

∣∣∣√k{βn(tG, 1, y)− y}+ (1− tG)−1{Bn(1,∞, y)− Bn(tG,∞, y)}
∣∣∣ = oP (1),

for any M ∈ N. In particular,

sup
x∈[0,M ]

|αn(0, tF , x)− x| = oP (1), sup
x∈[0,M ]

|αn(tF , 1, x)− x| = oP (1)

sup
y∈[0,M ]

|βn(0, tG, y)− y| = oP (1), sup
y∈[0,M ]

|βn(tG, 1, y)− y| = oP (1),

which implies, by asymptotic equicontinuity of Bn, that the first six lines of the
decomposition (26) are equal to Bn(s, x, y)− sBn(1, x, y), up to a term of uniform
order oP (1). Regarding Rn, a Taylor expansion of Λ based on Assumption 3.12
shows that

√
k
[
Λ{αn(0, tF , x), βn(0, tG, y)} − Λ{αn(tF , 1, x), βn(0, tG, y)}

]
= − Λ̇x(x, y)

tF (1− tF )

[
(1− tF )Bn(tF , x,∞)− tF {Bn(1, x,∞)− Bn(tF , x,∞)}

]
+ oP (1)

= − Λ̇x(x, y)

tF (1− tF )
{Bn(tF , x,∞)− tFBn(1, x,∞)}+ oP (1).

A similar calculation yields

√
k
[
Λ{αn(tF , 1, x), βn(0, tG, y)} − Λ{αn(tF , 1, x), βn(tG, 1, y)}

]
= − Λ̇y(x, y)

tG(1− tG)
{Bn(tG,∞, y)− tGBn(1,∞, y)}+ oP (1).

Assembling terms yields the assertion.

A.2. Proofs of additional results

Proof of Lemma A.2. First, consider the assertion regarding B′n. It suffices to fix
one set Sm and to show weak convergence in `∞(Sm). The latter can be accom-
plished by a suitable application of Theorem 11.16 in Kosorok (2008), see also
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Bücher and Dette (2013) for a similar proof for the i.i.d. and non-sequential case.
Write B′n(s, x, y) = B′n(s, x, y, ω) as

B′n(s, x, y, ω) =
n∑
i=1

fn,i(s, x, y, ω)− E[fn,i(s, x, y, ·)],

where fn,i(s, x, y, ω) = k−1/21(Ui(ω) ≤ kx/n, Vi(ω) ≤ ky/n)1(i ≤ bnsc). Moreover
define envelopes Fn,i for fn,i as

Fn,i(ω) = k−1/21(Ui(ω) ≤ km/n or Vi(ω) ≤ km/n)1(i ≤ bnsc).

By Theorem 11.16 in Kosorok (2008), the assertion in Lemma A.2 regarding B′n is
proven if we show that

(i) The fn,i are manageable with envelopes Fn,i.

(ii) The limit H((s1, x1, y1), (s1, x1, y1)) = limn→∞ E[B′n(s1, x1, y1)B′n(s2, x2, y2)]
exists for every (s1, x1, y1), (s2, x2, y2) ∈ Sm.

(iii) lim supn→∞
∑n

i=1 EF 2
n,i <∞.

(iv) limn→∞
∑n

i=1 EF 2
n,i1{Fn,i > ε} = 0 for all ε > 0.

(v) The limit limn→∞ ρn((s1, x1, y1), (s2, x2, y2)) = ρ((s1, x1, y1), (s2, x2, y2)) ex-
ists for all (s1, x1, y1), (s2, x2, y2) ∈ Sm, where

ρn((s1, x1, y1), (s2, x2, y2)) =

(
n∑
i=1

E
∣∣∣fn,i(s1, x1, y1, ·)− fn,i(s2, x2, y2, ·)

∣∣∣2)1/2

.

Furthermore, for all sequences (s1n, x1n, y1n)n∈N, (s2n, x2n, y2n)n∈N in Sm the
convergence ρn((s1n, x1n, y1n), (s2n, x2n, y2n)) → 0 holds, provided that we
have ρ((s1n, x1n, y1n), (s2n, x2n, y2n))→ 0.

(vi) {fn,1(s, x, y, ω), . . . , fn,n(s, x, y, ω) : (s, x, y) ∈ Sm} is almost measurable Suslin.

For the proof of (i) note that we can write fn,i, when indexed by the extended
domain [0, 1]× ([0,m]∪ {∞})2 instead of Sm, as a product of three non-decreasing
functions in s, x and y, respectively. Manageability with respect to the envelopes
Fn,i then follows from the discussion on Page 221 in Kosorok (2008) and two ap-
plications of Theorem 11.17 (iv) in that reference. Then, also the restriction to Sm
is manageable with envelopes Fn,i.

In the following, we omit the argument ω. For the proof of (ii), we have
E[B′n(s1, x1, y1)B′n(s2, x2, y2)] = An1 +An2 where

An1 :=
1

kn

bn(s1∧s2)c∑
i=1

Ci (k(x1 ∧ x2)/n, k(y1 ∧ y2)/n) ,

An2 :=
1

kn

bn(s1∧s2)c∑
i=1

Ci(kx1/n, ky1/n)Ci(kx2/n, ky2/n).

Exploiting that Ci(u, v) ≤ u ∧ v, the second summand An2 is uniformly bounded
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by km/n = o(1). For the first summand, we write

An1 =
1

n

bn(s1∧s2)c∑
i=1

Λi(x1 ∧ x2, y1 ∧ y2)

+
1

n

n(s1∧s2)∑
i=1

n

k
Ci(k(x1 ∧ x2)/n, k(y1 ∧ y2)/n)− Λi(x1 ∧ x2, y1 ∧ y2).

The second sum is of order O(S(n/k)) = o(1) by Assumption 3.1, and the first sum
converges to G(s1 ∧ s2, x1 ∧ x2, y1 ∧ y2) <∞.

For the proof of (iii) note that EF 2
n,i = 2m/n− Ci(km/n, km/n)/k. Therefore,

n∑
i=1

E
[
F 2
n,i

]
= 2m− 1

n

n∑
i=1

n

k
Ci(km/n, km/n).

As in the proof of (ii), the second sum converges to
∫ 1

0 g(z,m,m) dz.
For the proof of (iv), note that E[F 2

n,i1(Fn,i > ε)] ≤ P(Fn,i > ε), and the
right-hand side is equal to 0 for sufficiently large n.

For the proof of (v), note that

ρn((s1, x1, y1), (s2, x2, y2))2 =
1

n

bns1c∑
i=1

k

n
Ci(kx1/n, ky1/n)

− 2

n

bn(s1∧s2)c∑
i=1

k

n
Ci(k(x1 ∧ x2)/n, k(y1 ∧ y2)/n) +

1

n

bns2c∑
i=1

k

n
Ci(kx2/n, ky2/n).

Similar calculations as before show that this expression converges uniformly (on
Sm) to

ρ((s1, x1, y1), (s2, x2, y2))2 = G(s1, x1, y1)−2G(s1,∧s2, x1∧x2, y1∧y2)+G(s2, x2, y2).

Finally, the assertion in (vi) follows from separability of B′n and Lemma 11.15
in Kosorok (2008).

Now, consider the assertion regarding Bn. We have

|B′n(s, x, y)− Bn(s, x, y)| =
√
kn

∣∣∣∣∣∣ 1

kn

bnsc∑
i=1

Ci(knx/n, kny/n)−G(s, x, y)

∣∣∣∣∣∣
≤
√
kn
bnsc
n

n
max
i=1

∣∣∣∣ nknCi(knx/n, kny/n)− g(i/n, x, y)

∣∣∣∣
+
√
kn

∣∣∣∣∣∣ 1n
bnsc∑
i=1

g(i/n, x, y)−G(s, x, y)

∣∣∣∣∣∣ .
Since we assume that the convergence in Assumption 3.1 is of order o(k

−1/2
n ), we

immediately obtain negligibility of the second term on the right-hand side. By (9),
the first term on the right-hand side is of order O(

√
knS(n/kn)), uniformly on each

Sm. Hence, by Assumption 3.2 (b), this term converges to 0 as well.
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A.3. Additional tables This section contains two additional tables regarding
the empirical application in Section 5.2.

parameter Dow Jones log-returns Nasdaq log-returns

estimate std error estimate std error

mean equation

µ 0.0006 0.0002 0.0005 0.0002

θ1 0.2714 0.0234

variance equation

ω 0.0000 0.0000 0.0000 0.0000

α1 0.0349 0.0084 0.1407 0.0179

β1 0.9373 0.0080 0.7914 0.0182

distribution

ξ 0.8531 0.0294

ν 4.2016 0.4390 5.3001 0.4135

Table 7: Maximum likelihood estimates together with their corresponding standard errors
for the Dow Jones ARMA(0,0)-GARCH(1,1)-model with t-distribution and the Nasdaq
ARMA(1,0)-GARCH(1,1)-model including the skewed t-distribution. All estimates but the
additive constant ω are significant at the 1% level.

parameter before Black Monday after Black Monday full sample size

n 958 810 1,768

k∗ 48 169 191

m 30 28 41

λ̂ 0.449 0.678 0.620

Sn 0.546 0.211 1.064

p-value 0.028 0.244 0.003

Table 8: Summary of results for TDC-Test 1 applied to the subsample before Black
Monday, to the subsample after Black Monday and to the full sample.

A.4. Additional figures This section contains six additional figures concern-
ing Sections 4 and 5.
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Figure 5: Left panel: (estimated) copula density from the Clayton copula with λ = 0.25.
Middle: (estimated) copula density from the transformed Clayton copula described in (C3).
Right: difference between the two densities.

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

Figure 6: Negative asymmetric logistic model (Λ2) for ψ1 = 0.4, ψ2 = 1, θ = 100 (blue)
and ψ1 = 1, ψ2 = 0.4, θ = 100 (yellow) evaluated on the straight line (2− 2t, 2t), t ∈ [0, 1].
Both models exhibit the same tail dependence coefficient λ = 0.4.
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Figure 7: (WTI and Brent time series) Standardized sequential empirical tail copula

process λ̂−1/2Gn(s, 1, 1) for k∗ = 104 with respect to ns, s ∈ [0, 1].
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Figure 8: (Dow Jones and Nasdaq time series) Chi-squared test for a break at
bns̄BMc = 959: p-values for different k. The horizontal line indicates the 5% level of
significance, the vertical one the plateau k∗ = 191.
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Figure 9: (Dow Jones and Nasdaq time series) TDC-Test 1 for the subsample before
bns̄BMc = 959: p-values for different k. The horizontal line indicates the 5% level of
significance, the vertical one the plateau k∗ = 48.
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Figure 10: (Dow Jones and Nasdaq time series) TDC-Test 1 for the subsample after
bns̄BMc = 959 (including Black Monday): p-values for different k. The horizontal line
indicates the 5% level of significance, the vertical one the plateau k∗ = 169.
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