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Abstract

This document contains proofs and further technical results for the article “Testing for changes
in Kendall’s tau”. It consists of one section, labeled Appendix D. The results are labeled D.1,
D.2, .... Results from the main document are referred to as in the main document. The labels
contain references to the respective section, e.g., Corollary 3.1 can be found in Section 3, Lemma

A.2 in Appendix A of the main document.
D. PROOFS OF LEMMAS
We first prove Lemmas A.1 and A.2 from Appendix A.

Proof of Lemma A.1. Part (i) is straightforward.

Part (ii): There are positive constants C, Cy such that
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< GE[Xo— fi(Zg,... . Zy)l; - (1)

The first inequality is due to the boundedness of Xy. The second inequality can be shown by

applying Jensen’s inequality for the conditional expectation E(-|.Z#. k ) to the convex function
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| - |1. Further, for any € > 0 we have
E|X0—fk(Z_k,...,Zk)|1 < CgP(|X0—fk(Z_k,...,Zk)’1>E)—|—€ < ng)(s)ak+5

Combining this with (1) we arrive at aﬁ p < C2C3®(e)ay, + Cae. By first choosing e sufficiently
small and then k sufficiently large we can make the left-hand side arbitrarily small, and hence
(X n)nez is L,-NED, p > 1, on (Z,)nez. In particular, if condition (13) holds, we get aik <
CgC3<I>(3k)ak + Cgsk = O(Sk) Part (iii).’ Let fk(Z,k, .. .,Zk) = E(Xo’g‘\’_gk) By means of

the Holder and the Markov inequalities we have for every € > 0:
o p
P(Xo—fr(Z gy, Z1)|, >¢) < " LePE| Xy — E(Xo|.7F,) ,

Choosing ®(¢) = ¢?~'e™P and a = ai,k we have ap — 0 as kK — oo, and (X ,,)nez is hence

P-NED on (Z,)nez. O
Proof of Lemma A.2. By the definition of g, we have that, for any x, ' € R?,
|g1(x) — g1(2")| = | Eg(z, X0) — Eg(a’, Xo)| < / 9(z,y) — g(2',y)| dF (y)

and consequently, for independent copies X,Y of X,

2
E< sup Igl(m)—gl(XH)

le—X|<e

2 2
< E( sup /Ig(w,y) —g(X,y)dF(y)> <FE </ sup  |g(z,y) —g(X,y)!dF(y)>

|o—X|<e le—X|<e
2 2
SE( sup \g(w,Y)—g(X,Y)\> SE( sup |g(.’l},y)—g(X,Y)‘) < Le.
le—X|<e j@—X|<e,ly—Y|<e

Recall that the conditional expectation minimizes the Lo-distance, so
2
E{g1(X0) - B(91(X0)|75) | < E{g1(X0) = 91(Xoa)}*

where X, = fu(Z_k,...,Z)). Now we will make use of the P-near epoch dependence and

the Holder inequality and obtain

E(91(X0) — 91(Xop))”

= E(91(X0) = 91(X04)” L{ixo—Xoxl>sit + B (91(X0) = 91(X06)) 11 x0- X0 4| <51)

)

< (2 Hg%(Xo)Hy +2 Hg%(XD,k)H%é) (P(|1 X0 — Xo| > s1))z
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_5
+E(91(X0) = 01(X0))* 11 x0-x0 4 1<) < C(5,° )7 + Ls; < C's



and finally

Jor(x0) ~ Bl (x0)125)|, < (B (01(X0) ~ an(X0,0?) " < €512

which completes the proof. O

The following lemmas D.1 to D.6 are required for the proof of Theorem 2.5 (Invariance principle

for the sequential U-process).

Lemma D.1. Let (Z,)nez be a stationary and absolutely reqular stochastic process with mixing
coefficients (Bx)rew- Then there exist processes (Z!))nez and (Z!),ez, independent of each
other and both with the same distribution as (Z)nez such that P{(Z})n>k = (Zn)n>k} = 1— Bk
and P{(Z})n<o = (Zn)n<o} = 1 = B

This can be proved in a similar way to Lemma 2.5 of Borovkova, Burton, and Dehling (2001).

Lemma D.2. Let (X,)nez be P-NED of an absolutely reqular sequence (Zp)nez and g be a
kernel, such that Assumptions 2.4 and 2.3 hold. Then there is a constant C > 0, such that for
i,k,l €N, e >0:

3

-
l92(X i, Xithra) — 92(Xip, Xigryaun)lly < C(Veta/ @255 (e) + ),
where X1 = fil(Zi,..., Zi1)-

Proof of Lemma D.2. First note that we can rewrite any X; such that

Xi = foo ((Zi-i-n)nEZ) .

By Lemma D.1 there exist independent copies (Z)ncz and (Z))nez of (Z,)nez satisfying
PUZ ) nziviek = (Zn)nzivirr} = 1 = B and P{(Z}))n<itt = (Zn)n<ivi} = 1 — B We define
X; = fOO((Z;z-H)nEZ) and X;', = fOO((Z;;-i-i)nEZ)- Analogously, X;',l = fl(Z;—la .- '7Z;'+l) and

t1=h(Z,_,...,Z},;). Now we can conclude that

192(X s, Xirrar) — 92(Xit, Xigrrort)lly < ||92(Xis Xivrran) — 92( X7, Xl

+ [ g2( XY, X o) — 92 (X0 X ||y + 192X T Xignrorn) — 92(X iy Xivwgad)|],

We will treat the three summands on the right-hand side separately. For the first summand,



we use the Holder inequality to obtain

|92(X s, Xisrrar) — 92( X7, Xippya)|l,
" /
= |{g2(Xi, Xitprar) — g2( X7, Xtk 20 Y020 ot (2w ik o8 (Z)meiiiA(Zn)nzin) I
<[ (92(X i, Xigrpar) — 92(X§'7X§+1c+2z)”¥

5
x (PUZL)wsivisk # (Za)nsivisk o8 (Z1)ncivt # (Zn)n<ipt}) 70 < 2M% @050/ 210)

with Assumption 2.3 and Lemma D.1. With the same arguments, the third summand is also
bounded by Cﬁz/ 249 For the second summand, we make use of the variation condition and

the P-NED property

ng(X;‘,a X;+k+2l) - 92(X§/,l> X;+k+2l,l)H2
< H{g2(X;/7 XIHkJFQl) B g2(X;/’l’ X§+k+2l’l)}1{|X§/*X/il,z|§6’ Xy o= X hyor | <€} H2

+ H{(92(X§/, Xiphrar) = 92(X§’,l7 X/z‘+k+2z,l)}1{yxguxgjl|>e or | X X' on|>e} HQ

i+k+20

5 S
< VLe+2M* 2P (| X iyt — flZ s - Zhspys)| > €) 7 < O(Vet+afT @74 (e).
The proof is complete. ]

Lemma D.3. Under Assumptions 2.2, 2.8 and 2.4, we have for ny < no < n:

< C(ng —ny)n*/4.

H Z (92(Xi, X ;) — g2( X1, X j1)) )

1<i<y
n1<j<no

Proof of Lemma D.3. We set | = [n'/*| and e =176, If k < 0, we set 5 = 1. With Lemma D.2

and some straightforward calculus, we obtain

n 5 i
Z (92(Xi, X ) = 92(Xip, Xj2))|| < Clna—m1) ) (Ve+a/ @23 (e) + 7))
1<i<j k=1
n1<j<ng 2
n 5 5
< C<n2 . nl) Z (I_nl/4J -3 + al2+5 (I)QL_H;(LTLI/ZLJ —6) + ﬂ]j—:inl/ﬂ) < C(TLQ _ n1>n1/4.
k=1

O]

As we approximate the random variables X; by X,;; = fi(Z;_,...,Z;y), we introduce the

Hoeffding decomposition of the kernel g with respect to these approximating random variables.

Let (Zn)nez be an independent copy of the sequence (Z,,),cz and Xi,l = fl(Zi,l, ces Zig).



We define

U =Eg(Xo4,X00), g1u(z) =Eg(x,Xoy) — Ui, gou(,y) = g(x,y) — g1u(x) — g14(y) — Ul
Lemma D.4. Under Assumptions 2.2, 2.3 and 2.4, we have for ny < no < n:

< C(ng —ny)n*/4.

H > (920(Xig, Xj0) — 92(Xig, X50))
2

1<i<y
n1<j<nsg

Proof of Lemma D.J. Let (Zn)nez be an independent copy of the sequence (Z,,),cz and X, =
fool(Zni1)iez)- Then ga(w, y) = g(x,y)—Eg(@, X ;)—Eg(Xi,y)+Eg(Xi, X ;) and g2 (@, y) =
g(x,y) — Eg(:z:,Xj,l) - Eg(j(@l,y) + Eg(Xi,l,Xj’l). for every 4, 7,1 € IN. So we can conclude
that

92,0 ( X0, X 50) — 92( Xy, X )], < Hg(Xi7l7Xj,l) _Q(Xi,lan)H2

+ H!J(Xi,l, Xj1) — 9(Xi, Xj,z)HQ + Hg(ffua Xj1) — 9(Xi, Xj)H2
5 5 6
< C(Weta ™25 (e) + B,7°),
where the bound in the last line can be proved along the lines of Lemma D.2. The assertion of

Lemma D.4 then follows analogously to Lemma D.3. O

Lemma D.5. Under Assumptions 2.2, 2.3 and 2.4, we have for ngy < mno <n
2

E Z 92X, X)) | <Cng—ni)nl®

1<i<j
n1<j<na

Proof of Lemma D.5. By Lemma 1 of Yoshihara (1976) we obtain

5/(2+6
‘E{QZZ(Xi(l),l’Xi(2),l)92,l(Xi(3),l7Xi(4),l)} < opllGro

m—I

with m = max{i(g) —i(1)s b(a) — i(3)}, where (1) < i) < i3y < i(4) are the ordered indices
i1,19,13,14. To simplify the notation, we define (5,,_; = 1 for m — [ < 0. Note that, for given m,
we have less than n choices for i(;) and less than na —ny choices for i(4), which has to be either

ig or ig. If m = i) —i(y), there are m possibilities for i(3), and if m = i(4) — i), there are m



possibilities for i(y). We conclude that

E( Z gQ,l(Xih ) Z Z 065/(2+6) < C no _nl Zmﬁé/(}i—é

1<i<y 1<i1<g1 1<i<g
n1<j<na n1<j<na ni1<j<ng

< C(ng —ni)n (Zm+12 Z m—l)ﬁfr{(21+6))SC(ng—nl)nlz.

m=Il+1

The proof is complete. ]
Lemma D.6. Under Assumptions 2.2, 2.8 and 2.4, we have

(i) Hmax g?(Xinj)H <23k and
1<i<j<n 2

(1) 3 1<icj<n 92(Xi, X;) =0 (n% logz(n)) almost surely.

Proof of Lemma D.6 (i): We will use Lemma D.3 and Lemma D.5 with | = [}, = LQikj and split

the expectation into three parts:

max | ga(Xe, X)|| < |max| D0 (920X X)) — 92(Xia X)) |
nS2 i< 2 ns2tdici<n 2
+ || max E (QQ,Z(Xi,lan,l)_QQ(Xz’,l;Xj,l))’
n§2k 1<i<i 2
<i<j<n
+||max| S gg,l(Xivl,XjJ)‘H — I, + I + Iy,
n<2k 1<i<i 9
<i<j<n

Now by Lemma D.3

2k
SIS (@oXi X)) - (Xt X)) |

j=1 1<i<j

2

< 021k,
2

> (920X i, X ) — g2(Xig, X50))

1<e<y

<Z

Similarly, we get by Lemma D.4 that I < C2%. To deal with Iy, we define the random
variables Y ; = EKK]- 92,(X1, X ;) and rewrite I}, as H max,, <o | Z?zl Y]l]H2 As we have
B2, Y )2 < C(ny — n1)n®? by Lemma D.5, we can use Theorem 1 of Méricz (1976) to
obtain E(max,<or > Yj,)? < C2°F/2k2 | which completes the proof of part (1).

Part (ii): It suffices to prove that

max #(Xi,X;)=0 (2%’%2)

<9k
. 1<i<j<n



almost surely. By means of the Chebychev inequality, we have for any ¢ > 0

(o]
ZP
k=1

5k/41.2
max > p(Xi X)) > e2PH

n

=% 1<i<j<n
2
S| N 20k/2)2 1
<D gl (max D X X)) | <O) Smmm=0) 5 <~
k=1 =% 1<i<j<n k=1 k=1
and the almost sure convergence follows by the Borel-Cantelli lemma. O

Towards the proof of Theorem 2.7, we further state and prove Lemmas D.7 to D.9.

Lemma D.7. Under Assumptions 2.2, 2.3 and 2.4, we have for any constants (¢;)ieN

n 2 2
E<;g1(Xi)ci> <Cn <i:rr11ax ]cz|> ,

ooyl

Proof of Lemma D.7. By Assumption 2.4 and Lemma A.2, the process (g1(X,))nez is Lo-NED
with approximation constants a;2 = O(I73). We have the following bound for the autocovari-

ance:

|Eg1(X:)g1(Xivk)]
< ‘E{E(gl(Xi)’yffll)E(gl(XiJrk)|<§Ziiilszl)}‘+‘E{gl(Xi) (gl(Xi-i-k) - E(gl(Xz‘+k)|ﬁfif_+ll))}‘

+|E (B (Xl 75D (01(X0) = B (X)1#E))|
2

<10 HE(gl(XHk)\ffofll)H

L .
i o+ 21191(X0) [l Hgl(XiJrk) — E(g1(Xitk) ﬁfiffll)‘

2446 6 ‘2

5
< C<al,2 + ﬁ12+5 )7
where we used the inequality by Davydov (1970) and set | = L%j Recall that ﬁlj is defined as

the o-algebra generated by Z;, ..., Z;. Now it follows from the stationarity of the process that

n

n 2
E <291(X7;)Cz‘> < Z |Eg1(X3)g1(X ;)] |eil ¢
=1

1,j=1

2 n 2 n
< (s lal) 3 1B (X0m(X0)] < € (max fe) 03 [Eon(Xolan (X)

ij=1 k=0

2 L
§C<,Hllax ]cz\> n

i=1,....,n

|3
[

5 2
(a4 527) < On e e )

i=1,....,n

=0

and the Lemma is proved. O



Lemma D.8. Under the Assumptions 2.2, 2.3 and 2.4 for any constants (cij)i jew

n

5/2
B Z gz(Xﬁ’XJQ)gQ(stvXj4)Cj1j3 < C@ 'er?laxn}kij‘n / .
J1,J2,33,J4=1 JELL,

Proof of Lemma D.8. Recall that we abbreviate fi(Z;_;,..., Z;4;) by X ;. We use the triangle

inequality to obtain

n
’E Z gQ(Xj17Xj2)92(Xj3’ Xj4)cj1j3
J1,92,J3,34=1
n
< ‘E Yo 92X Xy 1)920(X o 1y X i)
J1,92,J3,J4=1
n
+’E > (92Xt X ja) = 92(X gy s X o)) (920X gy 1, X 1) — 92(X g 1 X jut)) s
J1,J2,J3,34=1
n
+‘E Z (gQ(leyl?XjQJ) _92(Xj1an2)) (QQ(st,l’Xj4,l) _92(Xj3vXj4))Cj1j3
J1,J2,J3,34=1
n
+’E > 92X X joa) (920(X a1 X jut) = 92(X a1 X ju0) €
J1,J2,93,34=1
n
+’E Z (QQ,I(le,hij,l) _gQ(Xj1,l7XjQ,l))92,Z(Xj3717Xj4,l)cj1j3
J1,J2,J3,J4=1
n
+‘E > 92X 0 X)) (92(X oty X jua) — 92(X g3 X31)) €
J1,32,J3,34=1
n
+‘E Yo (X X ) — 02X X 5)) 92.0(X gy 0 X 1)
J1,J2,J3,J4=1
n
+’E Z (QZ,Z(Xjﬂﬁij,l) _QQ(le,hijl)) (QQ(XJ3,17X]'4J) _QQ(Xj3’Xj4)> Cj1j3
J1,J2,J3,34=1
n
+‘E Do (@ Xn X)) — 02X, X)) (920X g 0 X jt) = 92(X g 1 X ju0)) S
J1,J2,J3,34=1

= I, + I, + W, + IV, + V,, + VI, + VI,, + VI, + IX,,.

We will establish the bound only for some of the summands in order to keep this proof short.
The bound for I,, can be shown in the same way as Lemma D.5. For I, Il,,, VIl,, and IX,,
we use the Holder inequality and can then proceed similar to the proof of Lemma D.3 and D.4.

For example by Lemmas D.2 and D.4, we have

n

VI, < > 1920(X s Xjot) = 92X 510 X o )l 192 (X g s X ) = 92(X g, X ) 51
J1,32,J3,34=1



n 5 5

<C max |cj] Z (Ve+a @ %()+5|2+5. )(Ve+a/ P %(6)—#,8'2%‘)

i je{l,.. Jj2=J1l ja—Js|
e

<C max |C¢j|n5/2
17_76{17771}

with [ = |n"/*] and € = [=%. For the summand 1V,,, the Hélder inequality is used in a slightly
different way

n n
v, < Z E{ Z 92,l(Xj1,la ij,l) (927Z(Xj37l’ Xj4,l) - 92(Xj37l’Xj47l)) lejs}‘
J3,Ja=1 Ji,j2=1
n n
< DD 920Xy X iy g || 19200 g0 X ) = 92(X g0, X )|
jaja=1" j1,j2=1 2
<C 2"2 n®/*  max \c |(\f—|—ai %()+B$.)<C max |cy;| n®/?
R igellny Ga=gsl) =¥ et my P
Ja,ja=1
A similar treatment of the summands V,,, VI,, and VII,, completes the proof. ]

Lemma D.9. Under Assumptions 2.2, 2.3, 2.4 and 2.6, we have, for n — oo,

n—|r|

> - > (1 XD)g (X i) — 51X )51 (X iypry)) 617 /bn)| — 0.
r=—n =1

E

Proof of Lemma D.9. We first expand the difference of g; and its estimator g; as

0@~ drl@) = > ar(X)) —fZngX 2292X“X>.
=1

3,j=1

With the help of this, we split the expectation into six parts and apply the triangle inequality:

Bl 0t S (01X 91 (X)) = 31(X0)31 (X)) w(171/ba)

< B2 A (91(X0) = 0(X0)) 91 (X (7] /)
FE| S A (90X ) = 01X 10) (X )] /)
< B| S A A (X )01 (X iy (I /o)
+B| S A LS 0K X500 (X g )] /)
B[ S Y s 92X X )1 (K171 /00)
B S, S LS 91(X5)gu (X )s(Ir/6a)
B[S A A 0o (X 0, X )1 (X )a(Ir/5n)

+B| Y0, A S 1 92X X )i (X)A(Ir/b0)




=L, +0,+ 0,4+ 1V, +V, + VI,.

For the first summand I,,, we use the Holder inequality and Lemma D.7 with constants ¢; =

ZZ:1 k(|i — i2|/bn) = O(by) and obtain

Z] 1 91(X )‘ :

%Zyzlgl(Xi)zm 1 kA2 (|7 —ial/bn)

1
191

i1 91(X4) 25,1 ki — 72| /bn)

1 1
‘<Offb—>0

as n — oo due to the assumptions on b,,. For I, we use Lemma D.8 to obtain

L= E|L S0 LS a(Xo X )01 (X )i(fi — ] /b)

< BT XY ey (S X X (i~ /) }

< [E{% i 91( Xy )2}] v

1 = " . . . . 1/2
[E{ng Yo (X X )9 (X, X >Zn(m—m/bmujg—m/bn)}}
J1,J2,J3,J4a=1 i1=1
5/2
<o/ 3b”—>0,
n

since ¢jyj, = 25—y K171 — 1] /bn)k(1j3 — 1] /bn) = O(bn) = o(v/n) and {3 3271 91(X3,)*}? <
E{91(X0)?}? < oo due to Assumption 2.3. For the third summand II,,, we use again the Holder
inequality and Lemma D.7 to get

w= B0 A B Y 02X X i) (X i (17] /)

n—|r| n
. 1 1
H 92(X 1, X j,) ‘ H Z 91(Xippr)) Z k(li —ir]/bn)|| < CW%“ — 0.
Ji,j2=1 i1=1 2
The convergence of the remaining parts IV,,, V,, and VI,, can be shown in the same way. O
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