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Summary
The paper proposes a test for constant correlations allowing for breaks at unknown times

in the marginal means and variances. Theoretically and in an application to US and German
stock returns, we �nd that not accounting for changes in the marginal moments has severe
consequences. This is because incorrect standardization of the series transfers to the sample
correlations onto which the tests are built. Correcting for variance breaks at unknown time
will have an asymptotic e�ect. To discuss adjustments, we tackle the issue more generally by
considering partial-sums based inference on moment properties of unobserved processes which
is conducted on the basis of estimated counterparts obtained in a preliminary step. The paper
gives a characterization of the conditions under which the e�ect of �ltering does not vanish
asymptotically. The analysis extends to models with breaks in parameters at estimated time.

Key words: Bootstrap; Estimation Error; Partial Sums; Structural Break; Two-Step Procedure
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1. INTRODUCTION

Testing for time-varying moments and dependencies is of considerable interest in statistics and
econometrics, in particular �nancial econometrics. This is motivated, among others, by the fact
that correlations of asset returns increase in times of crises, just like their volatility.
(Co)Variance stability tests have e.g. been proposed by Aue et al. (2009). More recently,

Borowski et al. (2014) and Dette et al. (2015) consider a setting, where a time-varying signal
function is added to a stochastic error term and residuals are used to test for constancy of
the variance of the error term. Dette et al. (2015) also consider testing for auto-correlation
constancy in the case of time-varying variances which, among others, improves aspects of previous
work of Wied, Krämer, and Dehling (2012), who test for cross-correlation constancy under the
assumption of �almost� constant, yet unknown, variances. Such tools turned out to be useful, e.g.,
for forecasting risk measures like value at risk and expected shortfall, see Berens et al. (2015).
The drawback of such constant correlation tests is that (up to slight changes) the marginal

variances are assumed to be constant under the null hypothesis of constant correlation. Yet
changes in the marginal variances of the series of interest may easily create the impression of

1The authors would like to thank Jörg Breitung, as well as two anonymous referees and the editor (Dennis
Kristensen) for suggestions signi�cantly improving the paper.
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a change in the correlation. Were the true time-varying variances known, one could simply use
existing tests. However, if the marginal variances have to be estimated, the limit distribution
derived under the assumption of constant means and variances may be a�ected.
More generally, estimated quantities are routinely used for inferring on the properties of a

latent data generating process. For example, in the linear regression model, researchers might
investigate the third and fourth moments of residuals in order to test the normality of error
terms; see Jarque and Bera (1980). Another classical example are tests for no structural breaks:
Brown et al. (1975) use recursive residuals for testing the constancy of parameters in the linear
model, while Ploberger and Krämer (1992) do the same with OLS residuals.1

The paper develops procedures to test the null hypothesis of no changes in moments (say
the pairwise correlation) of series that have possibly been �ltered by means of GMM parameter
estimators Hansen (1982). For instance, unless the variance of the series is known, one would have
to at least standardize the series using estimated means and standard deviations, such that some
�ltering is virtually always conducted in practice. Importantly, we also allow the parameters of
the �lter to change at unknown times. The obvious example is a break in the marginal variances
of the examined series; such breaks are easily mistaken for breaks in the correlation such that
they have to be accounted for.
This extends the literature on structural breaks in the GMM framework. We go for instance

beyond the setup of Andrews (1993), who considers the problem of testing constancy of a subset
of model parameters by proposing sup-LM, sup-LM and sup-Wald tests, but requires nuisance
parameters to be constant. Regarding CUSUM-type tests, Wied (2013) proposes for instance a
test for constant parameters in a spatial autoregressive model for stock returns based on GMM-
estimators (see also Lee et al., 2003 for CUSUM-type tests based on ML-estimators) and Zeileis
(2005) provides a uni�ed approach for structural change testing with score functions. Yet, like
Andrews (1993), all these papers assume stationarity under the null hypothesis. Departing from
stationarity under the null, Gagliardinia et al. (2005) propose robust GMM-based tests for pa-
rameter breaks, but focus on local deviations from stationarity having outliers in mind. Similarly,
Wied et al. (2012)-test assume �almost� constant variances and show that the asymptotic dis-
tribution of their bivariate correlation test statistic remains the same if the variances change
slightly (with the change vanishing asymptotically) and the ratio between the two variances re-
mains constant. Such robustness to local departures from constancy of (nuisance) parameters is
given more generally for GMM based inference, see Li and Müller (2009). But, in this paper, we
consider unrestricted global changes, i.e. cases, where e.g. the variance permanently jumps from
one value to another (arbitrary) one at unknown time. Such phenomena are not uncommon in
�nancial data; see e.g. Rapach and Strauss (2008).
Concretely, we provide a generic discussion on the relation between the limiting distribution

of test statistics based on partial sums of �ltered series and of the test statistics based on the
unobservable counterparts.2 Using the �ltered instead of the true series may have an e�ecton the
statistics under scrutiny, but this need not be the case in general. For instance, in the case of the
OLS CUSUM test, the limit distribution is the supremum of the absolute value of a Brownian
bridge, while it would base on the Brownian motion if one used the unobservable disturbances
(Ploberger and Krämer, 1992). On the other hand, the distribution of the Jarque-Bera test for
normality is claimed to remain unchanged in such situations, see Jarque and Bera (1980, p. 257)

1Such stability tests for slope parameters can be conducted in more general frameworks, one well-known example
being the work of Andrews (1993); see also Andrews and Ploberger (1994) and Hansen (2000).
2Note that our analysis is somewhat related to two other branches in the literature. The �rst one is the topic of
generated regressors, see Mammen et al. (2012), where the e�ect of estimating regressors on subsequent estimation
problems is analyzed. The second one is the topic of two-stage parameter estimation, see Newey and McFadden
(1994), where the e�ect of the �rst on the second estimation step is analyzed.
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(although, as a byproduct of our analysis, we show the claim to be unsubstantiated), while Chen
and Fan (2006), Chan et al. (2009) and Bücher et al. (2015) show asymptotic distributions of
estimators in copula models to be una�ected by taking residuals from marginal models.
Our main results concern statistics based on partial sums of some transformation of the �ltered

series of interest. This covers the main case of interest, namely correlations, but allows the
application of the main results to other situations of interest in applied work, say testing higher-
order moments of latent variables. This extends the discussion of general speci�cation tests
provided by Newey (1985) and Tauchen (1985), who focus on sample sums rather than partial
sums. The limiting behavior of normalized partial sums is essential for analyzing the parameter
stability tests mentioned above. Clearly, the e�ect of using �ltered series depends on both the
�lter which maps the unobservable terms of interest into observations and on the statistic of
interest. The unknown parameters are estimated with a full-sample estimator or with a recursive
estimator, and two types of �lters are considered here, one which is continuous in unknown
parameters and one which exhibits discontinuities, allowing us e.g. to deal with abrupt changes.3

The analysis of the case with breaks at unknown time appears to be new in the literature.
The remainder of the paper is structured as follows. We give the formal setting in Section 2.
In Section 3, the paper �rstly provides the asymptotic arguments for the smooth case together

with a discussion of the conditions under which the use of the �ltered instead of the true series
does (does not) have an asymptotic e�ect, secondly addresses the case of structural changes and
shows that plugging in an estimated break time is asymptotically equivalent to employing the
true break time, and, thirdly, touches on the issue of asymptotic and bootstrap corrections. Here,
it turns out that the �ltering e�ect does not emerge in the scenario of Borowski et al. (2014)
(which is based on the variance constancy test in Wied, Arnold, Bissantz, and Ziggel, 2012) if the
signal function is piecewise constant and the break point fractions can be consistently estimated;
Borowski et al. (2014) provided simulation evidence for this conjecture, but did not give a formal
proof. That estimating the time of breaks does not a�ect the limiting behavior parallels the
�ndings of Qu and Perron (2007) in Gaussian Quasi-ML estimation of regression models.
Section 4 introduces the new correlation constancy test, and gives Monte Carlo illustrations

for the proposed test. We then provide an application to the correlation of US and German stock
markets. In this regard, we improve the literature in several ways. While Dette et al. (2015) focus
on auto-correlations, we propose a residual-based test for constant cross-correlations in the case
of time-varying variances; our paper complements the applicability of the variance constancy
test in Dette et al. (2015), who only consider a smooth signal function and do not deal with the
question if there might be situations in which the limit distribution remains the same. Finally, we
improve the work of Wied et al. (2012) by relaxing the assumption of constant variances and �nd
e.g. that the breaks in marginal variances signi�cantly changes the dating of correlation breaks.
The proofs and additional material have been gathered in an online supplement. To be precise,

Section A contains the proofs, Section B and C analytical derivations about the residual e�ects in
particular models (B about covariance and correlation testing, Section C about the Jarque-Bera
test) and Section D details about bootstrap approximations (which we refer to later on).

2. THE SETUP

Suppose one is interested in inference about the moment properties of some data generating
process [DGP] on the basis of a sample Zt ∈ RK , t = 1, . . . , n, for which the partial sums

1√
n

∑[sn]
t=1 g (Zt) are relevant. The leading case will be g(z) = z1z2 for pairwise covariances

or, when Zt,1 and Zt,2 are standardized, correlations; some of the results are of more general

3Such discontinuities, and especially uncertainty about their timing, make an analysis based on tools such as
the theory of contiguous distribution families developed in Le Cam (1960) less tractable.
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applicability (e.g. the popular test for normality of Jarque and Bera, 1980 is recovered for g(z) =(
z3, z4

)
) so we consider the extra notation to be worth the e�ort.

We however assume that one only observes n values, say Xt, t = 1, . . . , n, of some (nonlinear)
�lter of the variables of interest Zt; quite often, Zt are disturbances in a (regression) model or
Zt are standardized versions of Xt, and Zt and Xt have the same dimension. In time series,
one may well have a linear �nite-order �lter where Zt are the innovations of a moving average
process say, Xt =

∑q
j=0BjZt−j . To nest all these possible scenarios, we take

Xt = f (Zt,Zt−1, . . . , t/n;θ) .

Let the length M of the parameter vector θ be �nite.
In practice, the true values θ0 of the parameters are not known so the �lter f cannot be

inverted to give the necessary Zt. Rather, one is forced to resort to estimates thereof, resulting
in �ltered series Ẑt based on some estimators θ̂ of the unknown parameters. One may equivalently
regard Ẑt as model residuals and we use the terms residuals and �ltered series interchangeably.
We assume the estimators θ̂ to belong to the family of generalized method-of-moments [GMM]
estimators Hansen (1982), which includes e.g. M estimators as a particular case.
This formulation is fairly general. E.g., the dependence of f on the index t allows one to model

trends, say Xt = t/nθ +Zt. Additivity is not critical, but the smoothness properties of f are.
Regarding smoothness, we shall consider two situations. In the �rst, f is smooth in the param-

eters θ. In the second, we model discontinuities explicitly in form of change points (structural
breaks). In a simple case, say for the mean, we may encounter E (Xt) = µ1, 1 ≤ t < N and
E (Xt) = µ2, N ≤ t < n, so, considering N = [λn] for some λ ∈ (0, 1), one may work with the
model Xt = Zt + µ1I (t/n < λ) + µ2I (t/n ≥ λ) with E (Zt) = 0 and I the indicator function.4

Here, f (z, t/n, (µ, λ)) = z + µ1I (t/n < λ) + µ2I (t/n ≥ λ) is discontinuous in the parameter λ,
but smooth in µ1 and µ2. This will be captured more generally via the model

Xt = f (Zt,Zt−1, . . . , t/n;θ1) I (t/n < λ) + f (Zt,Zt−1, . . . , t/n;θ2) I (t/n ≥ λ) ,

where θ1 and θ2 are taken to be estimated for each subsample using the same method as in the
smooth case. The leading case for this scenario is the model

Xt = µ1,0

(
1−Dt,λ

)
+µ2,0Dt,λ+

 √
σ2
1,1

(
1−Dt,λ

)
+ σ2

1,2Dt,λ 0

0
√
σ2
2,1

(
1−Dt,λ

)
+ σ2

2,2Dt,λ

Zt, (2.1)
where Dt,λ = I (t/n ≥ λ) and we are interested in the constancy of the correlation of the two
components of Zt. Importantly, we will allow the break location λ to be unknown.
In the most general case one may allow for a �nite number of such discontinuity points.

Although this is a particular case of a time-dependent �lter, we treat it separately due to its
practical relevance and because of the discontinuity in λ. We deal with this situation in more
detail in Section 3.2 and focus for now on the case without breaks.
We shall assume the (causal) �lter generatingXt to be invertible in the sense that there exists

a (causal) �lter h such that the series Zt is uniquely given by

Zt = h (Xt,Xt−1, . . . , t/n;θ) ,

i.e. h (Xt,Xt−1, . . . , t/n;θ) = Zt ∀t i� θ = θ0 with θ0 the true parameter value. The corre-
sponding representation for breaks, when needed, is assumed to hold uniquely as well,

Zt = h (Xt,Xt−1, . . . , t/n;θ1) I (t/n < λ) + h (Xt,Xt−1, . . . , t/n;θ2) I (t/n ≥ λ) . (2.2)

4Although one may add an extra n in the notation to acknowledge the triangular array structure of such DGPs,
we omit this to ease notation.
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For time-series models, except for �nite-order (nonlinear) autoregressions, the initial condi-
tions matter, since the relevant past of Xt is not available in �nite samples. One then often
resorts to truncated versions of the involved �lters, Zt = h (Xt, . . . ,X1, t/n;θ), and require e.g.

sups∈[0,1] n
−1/2

∥∥∥∑[sn]
t=1 h (Xt, . . . ,X1, t/n;θ)− h (Xt,Xt−1, . . . , t/n;θ)

∥∥∥ p→ 0, ensuring asymp-

totic equivalence of the truncated and the unfeasible �lters; we won't elaborate on the topic.
Given a sample {Xt}, t = 1, . . . , n, and an estimator for the unknown true parameter values θ0,

we may thus estimate the variables of interest Zt. We consider two possible estimation scenarios,
�rst a full-sample approach delivering the estimator θ̂, and, second, an adaptive, or recursive,
approach (i.e. based on the sample 1, . . . , t) delivering the sequence of estimators θ̂t. Note that

θ̂ = θ̂n, but also that time variation in θ is only allowed if modelling it explicitly (like the break
case). Recursive estimation is involved e.g. in the case of inference on correlations Wied et al.
(2012), but has a much longer history; see Kianifard and Swallow (1996) for an earlier review.
The GMM-type estimator of θ with N ≥M moment restrictions are represented as

θ̂t − θ0 =

 t∑
j=1

B′j,nWn

t∑
j=1

Bj,n

−1
t∑

j=1

B′j,nWn

t∑
j=1

Aj,n +Rt,n

with suitable limiting behavior of these generic components Bj,n (N ×M), Aj,n (N × 1) and
Rt,n (M × 1); see Assumption 2.1 below. For simplicity, the N ×N GMM weighting matrix Wn

is not computed recursively. The components Aj,n, Bj,n and Rt,n depend explicitly on Xt, and
implicitly (via the DGP) on θ0. In the case of estimating the expectation with the arithmetic
mean, one has Bj,n = Wn = 1, Aj,n would be the observations and Rt,n = 0.

The residuals are given as Ẑt = h
(
Xt, . . . ,X1, t/n; θ̂

)
or Z̃t = h

(
Xt, . . . ,X1, t/n; θ̂t

)
, and

inference on E (g (Zt)) is based on the partial sums of the transformed residuals,

1√
n

[sn]∑
t=1

g
(
Ẑt

)
or

1√
n

[sn]∑
t=1

g
(
Z̃t

)
, s ∈ [0, 1] .

We now give high-level assumptions that allow for a general discussion of the �ltration e�ect.

Assumption 2.1. With �⇒� denoting weak convergence in a space of cadlag functions on [0, 1]
endowed with a suitable metric, it holds that:

1
√
n

(
1
n

∑[sn]
t=1 (g (Zt)− E (g (Zt)))

1
n

∑[sn]
t=1 At,n

)
⇒ Ψ (s), where Ψ (s) is an L+N -dimensional Gaus-

sian process with Ψ (0) = 0 a.s. and Cov (Ψ (1)) = Ξ;

2 1
n

∑[sn]
t=1 Bt,n ⇒ Π (s) where Π (s) is a deterministic N ×M matrix of Lipschitz functions,

of rank M at all s ∈ (0, 1], Π (0) = 0; furthermore,
√
n sups∈[ε,1]

∣∣R[sn],n

∣∣ p→ 0, ε ∈ (0, 1),

and Wn
p→W with W a positive de�nite matrix;

3 1
n

∑[sn]
t=1

∂g
∂z

∣∣∣
z=Zt

∂h
∂θ

∣∣
θ=θ0

⇒ τ (s) where τ (s) is a deterministic matrix of di�erentiable

functions (the gradient is a line vector and the Jacobian is built in a conformable manner);

4 ∃ 0 < ε < 1/2 s.t., for a neighbourhood Φn =
{
θ∗ : ‖θ∗ − θ0‖ < Cn−1/2+ε, C > 0

}
of θ0,

sup
θ∗
t∈Φn;t=1,...,n

∥∥∥∥∥ ∂g∂z
∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ∗

t

− ∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

∥∥∥∥∥ p→ 0

where Z∗t = h (Xt,Xt−1, . . . , t/n;θ∗t ).
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The assumption �rst speci�es the joint behavior of the relevant sample moments and the sample
moment conditions for estimation. Under weak stationarity, the process Ψ (s) is a Brownian
motion (regularity conditions given). A more general Gaussian process is allowed for; e.g. slowly
varying variances can be encompassed and Ψ has independent Gaussian, but not stationary,
increments. This may be the case under so-called local stationarity of the DGP; see e.g. Hansen
(2000) and, more recently, Zhou (2013), for speci�c parameter stability tests.
The �rst two conditions together also allow us to describe the asymptotic behavior of the

estimators of θ. Note that the recursive estimators θ̂t do not have proper asymptotics for t =
O (1). Still, for any 0 < ε < 1, we have as a consequence of Assumption 2.1 the weak convergence

√
n
(
θ̂[sn] − θ0

)
⇒ (Π′(s)W Π(s))

−1
Π′(s)W Ψ(L+1):N (s) for s ∈ [ε, 1] ,

for any 0 < ε < 1. The convergence does not extend to [0, 1] in general.5 To deal with this situation

one typically adds a step showing that θ̂t for t ∈ {1, . . . , [εn]} do not have an asymptotic e�ect
on the statistic of interest as ε → 0. See e.g. Wied et al. (2012). This may require additional
assumptions on the behavior of Rt,n for �small� t. Since they would depend on the particular
statistic to be analyzed, we do not attempt to give a set of conditions here and recommend a
case-by-case discussion. Obviously, this is not relevant when using full-sample estimation.
Condition 3 introduces the essential quantity involved in the �ltration e�ect. It is known

(following e.g. Tauchen, 1985) that the residual e�ect vanishes in the limit of the full-sample
sums if τ de�ned in Assumption 2.1 is zero. But there are other interesting special cases for τ
where the residual e�ect vanishes; see Section 3.1 for the details.
Condition 4 imposes a form of uniform smoothness of the relevant model components. Essen-

tially, the approximation error due to linearization of the estimation noise Ẑt−Zt is assumed to
be controlled for in a neighbourhood of θ0 that is �small enough� to avoid imposing unrealistic
assumptions but still �large enough� to contain the estimators θ̂ (θ̂t) with probability approach-
ing unity. This could e.g. be achieved by bounding the elements of the Hessians of g and h,
but the properties of Zt also play a role, so imposing moment properties on Zt may relax the
requirements on g or h. This too has to be discussed on a case-by-case basis.
As a general remark, it comes natural to assume some form of short memory, say strong

mixing properties, for Zt and require that the assumed model f be restricted in such a way that
the resulting random elements (Zt, Xt, At,n and Bt,n ) be strong mixing themselves, which can
then be used to establish the required weak convergence results. See e.g. Davidson (1994, Chapter
29) for sets of suitable technical conditions. Moreover, bootstrap implementations (see Section
D in the supplement) may require additional smoothness conditions themselves. Note however
that e.g. unit root or cointegrated DGPs are largely excluded since, in such nonstandard cases,
θ̂[sn] − θ0 would typically be non-Gaussian in the limit, and the convergence rate would not be√
n; while accounting for this is not di�cult in principle, the notational e�ort is not trivial and

we do not further consider this topic here.
To construct test statistics based on the partial sums of g(Ẑt) (or g(Zt)), knowledge on Ξ is

needed in general. Since this is typically not the case in practice, (consistent) estimation thereof
is required. HAC estimators Newey and West (1987); Andrews (1991) are often used to estimate
Ξ based on Ẑt and sample moment conditions At,n, although they are not the only choice (see
e.g. Phillips et al., 2006). Note that HAC estimators are often consistent even under locally
stationary; see e.g. Cavaliere (2004) for the case of time-varying variances. The focus of the
paper being on the residual e�ect, we assume directly that a consistent estimator exists.

5Recursive trend adjustment is an exception; see Born and Demetrescu (2015).
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Assumption 2.2. There exists an estimator Ξ̂ such that Ξ̂
p→ Ξ.

Assumption 2.1 implies weak convergence of the centered partial sums of g and of the moment
conditions Aj,n. It will be convenient to standardize the limit processes such that, with Ξ =(

Ω Λ′

Λ Σ

)
, we may write

1√
n

[sn]∑
t=1

(g (Zt)− E (g (Zt)))⇒ Ω1/2Γ (s)

where Γ (s) = Ω−1/2Ψ1:L (s) is a Gaussian process with Γ (1) ∼ N (0, IL), and

√
n
(
θ̂[sn] − θ0

)
⇒ (Π′(s)W Π(s))

−1
Π′(s)W Σ1/2Θ (s)

on [ε, 1], where Θ (s) = Σ−1/2Ψ(L+1):(L+N) (s) is a Gaussian process with Θ (1) ∼ N (0, IN ).
If one can base the tests directly on Zt, then only Γ (s) and Ω will be relevant for inference.

Otherwise, Σ, Λ, Π, Θ and τ would play a role. We discuss this role in the following section.

3. MAIN RESULTS

While the residual e�ect is well understood for full-sample sums and smoothness conditions (see,
among many others, Bai and Ng, 2005, Theorem 1, for a formulation for higher-order moments
of Zt in linear regressions), not much work has been done on the behavior of normalized partial
sums based on �ltered series with breaks at unknown time. To keep the paper self-contained we
shall begin with a presentation of the smooth �lter case and introduce breaks at unknown times
afterwards. The relative advantages and disadvantages of various methods of accounting for the
�ltering e�ect are then brie�y addressed in Section D in the supplement.

3.1. Residual-based partial sums

Proposition 3.1. Under Assumption 2.1, it holds as n→∞ that, on [0, 1],

1√
n

[sn]∑
t=1

(
g
(
Ẑt

)
− E (g (Zt))

)
⇒ Ω1/2Γ (s) + τ (s) (Π′(1)W Π(1))

−1
Π′(1)W Σ1/2Θ (1)

and, on [ε, 1] for any 0 < ε < 1,

1√
n

[sn]∑
t=1

(
g
(
Z̃t

)
− E (g (Zt))

)
⇒ Ω1/2Γ (s)+

(ˆ s

0

Θ′ (r)
(

Σ1/2
)′
W ′Π(r) (Π′(r)W Π(r))

−1
dτ ′ (r)

)′
.

Remark 3.1. Although Γ and Θ are in general distinct, they are allowed to have common com-
ponents; in fact, it is not excluded that they are identical in particular situations. The latter
happens e.g. in the simple case of demeaning where θ̂ = X̄ so Ẑt = Xt − X̄, where Γ ≡ Θ and
the proposition reduces, in the full-sample estimation scenario, to the known Brownian bridge.

Remark 3.2. The proposition requires the inverse �lter h to be di�erentiable in θ. This does
not exclude structural breaks in the parameters, as long as the break time is known. We examine
this situation more closely in Section 3.2, where we also prove that an unknown break time λ can
be dealt with as well, in spite of entering the model in a discontinuous setup, provided that the
estimate is precise enough; see Proposition 3.2 for details.

c© Royal Economic Society 2018
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The obvious implication of the proposition is that the �ltering e�ect appears for partial sums
whenever τ is not zero. Tests based on partial sums would not be a�ected if τ (s) = 0 for all
s ∈ [0, 1],6 but there are additional situations where speci�c tests are not a�ected even if τ 6= 0.
We �rst test simple hypotheses on the expectation of g (Zt). The null is of the form E (g (Zt)) =

µ(0), and the Wald-type test statistic against alternatives of the form E (g (Zt)) 6= µ(0) is

T = n
(
ḡ − µ(0)

)′
Ω−1

(
ḡ − µ(0)

)
where ḡ is the sample average of g (Zt). The scale matrix Ω is typically estimated, Ω̂; this would
be the corresponding block of Ξ̂, so a consistent estimator is available under Assumption 2.2.
The naive feasible versions of the test statistic are

T̂ = n
(

¯̂g − µ(0)
)′

Ω̂−1
(

¯̂g − µ(0)
)

and T̃ = n
(

¯̃g − µ(0)
)′

Ω̂−1
(

¯̃g − µ(0)
)

where ¯̂g is the sample average of g
(
Ẑt

)
and ¯̃g the sample average of g

(
Z̃t

)
.

It follows from Proposition 3.1 and Assumption 2.2 that, under the null E (g (Zt)) = µ0

T̂ d→ Γ̂
′
(1) Γ̂ (1) and T̃ d→ Γ̃

′
(1) Γ̃ (1)

where

Γ̂ (s) = Γ (s) + Ω−1/2τ (s) (Π′(1)W Π(1))
−1

Π′(1)W Σ1/2Θ (1)

Γ̃ (s) = Γ (s) + Ω−1/2

(ˆ s

0

Θ′ (r)
(

Σ1/2
)′
W ′Π(r) (Π′(r)W Π(r))

−1
dτ ′ (r)

)′
.

Without residuals, T d→ Γ (1)
′
Γ (1) under the null, following as such a χ2

L limiting null distri-
bution (cf. Assumption 2.1), so the naive feasible versions are not pivotal in general, except for
the obvious τ = 0 for all s ∈ [0, 1]; the other exception is when τ (1) = 0, at least for full-sample
estimation, as pointed out by the following Corollary, which we include for completeness.

Corollary 3.1. Under Assumptions 2.1 � 2.2, T , T̂ and T̃ are asymptotically equivalent under
the null if τ (s) = 0 for all s ∈ [0, 1]. Furthermore, the same holds for T and T̂ if τ (1) = 0.

It is not straightforward (but also not inconceivable) to imagine a situation where τ (1) = 0
but τ is not zero. Still, τ (s) = 0 for all s ∈ [0, 1] is the more plausible mechanism of making
the residual e�ect negligible in this case. We discuss the test for constant correlation in Section
4 and provide additional examples in the supplement.
Moving on to testing hypotheses of constancy, E (g (Z1)) = . . . = E (g (Zn)) the classical

multivariate CUSUM statistic is given by

Qn = max
1≤j≤n

j√
n

√
(Sj − Sn)

′
Ω−1 (Sj − Sn) with Sj =

1

j

j∑
t=1

g (Zt) ,

while the naive feasible versions are

Q̂n = max
1≤j≤n

j√
n

√(
Ŝj − Ŝn

)′
Ω̂−1

(
Ŝj − Ŝn

)
with Ŝj =

1

j

j∑
t=1

g
(
Ẑt

)
(3.3)

6Newey and McFadden (1994) derive a similar condition under which the �rst-stage estimation has no e�ect on
the limiting distribution of the second-stage estimators.
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and

Q̃n = max
1≤j≤n

j√
n

√(
S̃j − S̃n

)′
Ω̂−1

(
S̃j − S̃n

)
with S̃j =

1

j

j∑
t=1

g
(
Z̃t

)
.

As a consequence of Proposition 3.1 and Assumption 2.2, we have

Q̂n ⇒ sup
s∈[0,1]

√(
Γ̂ (s)− sΓ̂ (1)

)′ (
Γ̂ (s)− sΓ̂ (1)

)
, Q̃n ⇒ sup

s∈[0,1]

√(
Γ̃ (s)− sΓ̃ (1)

)′ (
Γ̃ (s)− sΓ̃ (1)

)
(assuming for the sake of the exposition that Γ̃ (s) is de�ned for s ∈ [0, 1], keeping in mind that
the second result in Proposition 3.1 only holds for [ε, 1]).
Working with the unobserved Zt, the following well-known (pivotal) distribution

Qn ⇒ sup
s∈[0,1]

√
(Γ (s)− sΓ (1))

′
(Γ (s)− sΓ (1))

would have been obtained, so we ask, when is the distribution not a�ected by the �ltering e�ect.
Again, Q̂n and Q̃n are asymptotically equivalent with Qn when τ (s) = 0; but, in addition, there
is another interesting case where equivalence of CUSUM statistics is given, at least for Q̂n:

Corollary 3.2. Under Assumptions 2.1 � 2.2, the statistics Qn, Q̂n and Q̃n are asymptotically
equivalent if τ (s) = 0 for all s ∈ [0, 1]. Moreover, the statistics Qn and Q̂n are asymptotically
equivalent if τ (s) = sτ for some constant L×M matrix τ .

The condition under which the corollary holds is likely to be ful�lled in strictly stationary data
generating processes, and unlikely to be ful�lled in data generating processes with structural
breaks; see Section B in the supplement for the concrete case of testing constancy of correla-
tions under breaks in the marginal variances. Essentially, it requires �rst-order stationarity of
∂g
∂z

∣∣∣
z=Zt

∂h
∂θ

∣∣
θ=θ0

, but note that this actually is compatible with breaks when τ = 0.

Finally, note that one may resort to a Cramér-von Mises type functional instead of the sup
functional; this does not a�ect the validity of Corollary 3.2.

3.2. The residual e�ect under structural changes

In this subsection, we refer to the leading example of Section 2, equation (2.1), in which we are
interested in testing for constant correlations under potentially nonconstant means and variances.
Let Dt,λ = I (t/n ≥ λ) for some generic nontrivial break time λ ∈ (0, 1) and write the model

with breaks as outlined in Section 2,

hλ (ϑ) = h (θ1) (1−Dt,λ) + h (θ2)Dt,λ,

where θ =
(
θ′1,θ

′
2

)′
. Moreover, θ0 =

(
θ′1,0,θ

′
2,0

)′
denotes the true parameter vector and λ0 the

true change point location.

We only model one break to avoid notational overhead, but note that this section easily
extends to several breaks. In this model having formally 2M parameters, observations for t < λn
are noninformative about θ2 (and the other way round), so we make the convention

θ̂t,1 − θ1,0 =

min(t,λn)∑
j=1

B′j,nWn

min(t,λn)∑
j=1

Bj,n

−1
min(t,λn)∑
j=1

B′j,nWn

min(t,λn)∑
j=1

Aj,n +Rmin(t,λn),n

c© Royal Economic Society 2018



10 Matei Demetrescu† and Dominik Wied‡

and, for t ≥ λn,

θ̂t,2 − θ2,0 =

 t∑
j=λn+1

B′j,nWn

t∑
j=λn+1

Bj,n

−1
t∑

j=λn+1

B′j,nWn

t∑
j=λn+1

Aj,n +Rt,n,

where the quantities Aj,n, Bj,n andWn are taken to obey Assumption 2.1 for the two subsamples,
1 ≤ t < λ0n and λ0n < t ≤ n. Since, in this formulation, the parameter vector is θ, one obtains a
speci�c structure of the quantities which appear in the limit distribution displayed in Proposition
3.1. For example, Ψλ, the analog of Ψ for the break case, is given by

Ψλ (s) =

 Γ (s)
Θ (s) I (s < λ) + Θ (λ) I (s ≥ λ)

(Θ (s)−Θ (λ)) I (s ≥ λ)

 =

(
Γ (s)

Θλ (s)

)
,

while

Πλ (s) =

(
Π (s) I (s < λ) + Π (λ) I (s ≥ λ) 0

0 (Π (s)−Π (λ)) I (s ≥ λ)

)
and the GMM weighting matrix Wnλ has a block-diagonal structure,

Wn,λ =

(
Wn 0
0 Wn

)
→p

(
W 0
0 W

)
=: Wλ

Moreover,

τλ (s) =
(
τ θ1 (s) I (s < λ) + τ θ1 (λ) I (s ≥ λ)

(
τ θ2 (s)− τ θ2 (λ)

)
I (s ≥ λ)

)
,

where τλ (s) is a L× (2M) matrix for all s, and obvious notation τ θi (s), i = 1, 2.
The true break date λ0 is either known or not. When it comes to unknown break times, we

may not treat an estimated λ the same way as an estimated θ due to the discontinuity of the
indicator function. It turns out, however, that plugging in an estimated λ, should its convergence
rate be high enough (see e.g. Bai, 1997) is asymptotically equivalent to plugging in the true λ.
To establish this equivalence, we shall however need an additional assumption, since, in the

cases where one has no knowledge on the true break date, one ends up using data from one
regime to estimate the parameters of the other. E.g., the moment conditions Aj,n need not have
zero expectation anymore in the wrong regime, and h (Xt,Xt−1, . . . , t/n;θ) 6= Zt if Xt comes
from the wrong regime, but we require minimal regularity conditions that would help control for
this technical problem if the estimated break time is close enough to the true one.

Assumption 3.1. It holds that

1 Aj,n is uniformly (in j, n) L2+α-bounded and Bj,n is uniformly (in j, n) L1+α-bounded for
some α > 0;

2 For some 0 < ε < min {λ0, 1− λ0},
√
n sups∈[ε,λ0]∪[λ0+ε,1]

∣∣R[sn],n

∣∣ p→ 0, and
√
n sups∈[λ0,λ0+ε]

∣∣R[sn],n −R[λ0n],n

∣∣ p→ 0

3 For θ̄ ∈ {θi, i = 1, 2}, maxt=1,...,n

∥∥g (h (Xt,Xt−1, . . . , t/n; θ̄
))∥∥ = op (

√
n) and

maxt=1,...,n

∥∥∥∥ ∂gl∂z

∣∣∣
z=h(Xt,Xt−1,...,t/n;θ̄)

∂h
∂θ

∣∣
θ=θ̄

∥∥∥∥ = op (n)

4 For Φ̄n =
{
θ∗ :

∥∥θ∗ − θ̄∥∥ < Cn−1/2+ε, 0 < ε < 1/2, C > 0
}
, θ̄ ∈ {θi, i = 1, 2},

sup
θ∗
t∈Φ̄n;t=1,...,n

∥∥∥∥∥ ∂g∂z
∣∣∣∣
z=h(Xt,Xt−1,...,t/n;θ∗

t )

∂h

∂θ

∣∣∣∣
θ=θ∗

t

− ∂g

∂z

∣∣∣∣
z=h(Xt,Xt−1,...,t/n;θ̄)

∂h

∂θ

∣∣∣∣
θ=θ̄

∥∥∥∥∥ p→ 0.
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Testing for constant correlation of �ltered series under structural change 11

We also introduce extra notation: θ̂1 and θ̂2 depend on the assumed break time, so we make
this explicit by writing θ̂1 (λ) etc. for λ = λ0 or λ = λ̂. They lead to residuals

Ẑt (λ) := h
(
Xt,Xt−1, . . . , t/n; θ̂1

)
(1−Dt,λ) + h

(
Xt,Xt−1, . . . , t/n; θ̂2

)
Dt,λ

and similarly for Z̃t (λ).

We examine the di�erence between the partial sums of g
(
Ẑt,λ0

)
and g

(
Ẑt,λ̂

)
in the following

Proposition 3.2. Let λ̂ = λ0 +Op
(
n−1

)
and 0 < λ ≤ λ̂ ≤ λ < 1 a.s. Then, under Assumptions

2.1 and 3.1, it holds as n→∞, on [0, 1],

1√
n

[sn]∑
t=1

(
g
(
Ẑt,λ̂

)
− E (g (Zt))

)
⇒ Ω1/2Γ (s)+τλ0 (s)

(
Π′λ0

(1)W Πλ0(1)
)−1

Π′λ0
(1)W Σ

1/2
λ0

Θλ0
(1)

A similar result holds for the case of recursive residuals.

Remark 3.3. If the true break date is known, i.e., λ̂ = λ0, it follows directly from Proposition
3.1 that Proposition 3.2 holds and we do not need Assumption 3.1. Thus, the e�ect of plugging
in an estimated break time is asymptotically negligible. Note that the assumptions on λ̂ are mild.
On the one hand, there must be a minimal convergence rate, which is usually ful�lled, see Dette
and Wied (2016). On the other hand, it must hold that 0 < λ ≤ λ̂ ≤ λ < 1. This can be ensured
for every break point estimator λ̃ by setting

λ̂ = λ̃I{λ ≤ λ̃ ≤ λ}+ λI{λ̃ < λ}+ λI{λ̃ > λ}.

Remark 3.4. Should there be no break and λ converges in distribution to a random variable,
which is not concentrated on one point (see Dette and Wied, 2016 for an example), the weak
limit in Proposition 3.2 changes. Since we explicitly model a break (and, in practice, one would
test for the presence of breaks anyway), we do not pursue this topic here.

4. TESTING FOR CONSTANT CORRELATION UNDER BREAKS IN THE MARGINAL
DISTRIBUTION

We now turn our attention to the main question of testing the constancy of correlations under
possible changes in the marginal distributions. After proposing the new test and arguing in
favor of a bootstrap implementation, as its limiting distribution depends on several nuisance
parameters, we illustrate the robustness properties of the new test in �nite-sample experiments.

4.1. A robusti�ed constant correlation test

Note that, although the marginal distributions may change in a number of ways, the ones rele-
vant for testing the correlation in a nonparametric fashion are changes in marginal means and
variances.
We therefore examine the e�ect piecewise standardization has on the relevant cross-product

moment. We shall not consider recursive parameter estimation as the presence of breaks in
the marginal means and variances complicates this approach without obvious advantages. The
calculations can be found in the supplement (Section B) for the case of one break in mean or
variance. They allow us to put forward a test for constant correlations that takes changes in the
marginal means and variances into account by using the setup presented in this paper.
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12 Matei Demetrescu† and Dominik Wied‡

The robusti�ed constant-correlation test is based on Q̂n from (3.3) with

g
(
Ẑt1, Ẑt2

)
= Ẑt1Ẑt2 and Ẑti =

Xti − µ̂1,i (1−Dt,λ)− µ̂2,iDt,λ√
σ̂2
i,1 (1−Dt,λ) + σ̂2

i,2Dt,λ

. (4.4)

The limiting distribution (and the corresponding asymptotic correction) results in a straightfor-
ward manner, given the results of the previous section.

Corollary 4.1. Under the Assumptions 2.1, 2.2 and 3.1, it holds as n→∞ that

Q̂n
d→ sup
s∈[0,1]

√(
Γ̂ (s)− sΓ̂ (1)

)′ (
Γ̂ (s)− sΓ̂ (1)

)
provided that λ̂ = λ0 +Op(n

−1), where

Γ̂ (s) = Γ (s) + Ω−1/2τλ0 (s)
(
Π′λ0

(1)W Πλ0(1)
)−1

Π′λ0
(1)W Σ

1/2
λ0

Θλ0 (1) .

Its form is however not particularly suitable for applied work, as it depends on nuisance
parameters (in particular the true change point λ0). While these may be estimated, tabulating
the resulting critical values is a complication that may be avoided by using resampling methods.
The following section describes the basic structure of the bootstrap algorithm employed in this
work.
Note however that, for each speci�c application of the generic theory derived in this paper, a

suitable bootstrap scheme needs to be established whenever the limiting null distribution is not
immediately analytically accessible. However, no generic schemes seem to exists. For instance,
preliminary simulations revealed that it is not possible to simply use a wild bootstrap (which
may have accounted for changes in the marginal variances) in our testing setup. A discussion of
these aspects is given in Section D in the supplement.

Remark 4.1. The extension to multiple breaks is straightforward: standardize the series in each
regime separately to obtain the corresponding Ẑt, and take the full number of regimes into account
when constructing the resampled series for bootstrapping. Note that the breaks in the means and
the variances may have di�erent timing, so by regime we understand here the time segments
where both mean and variance of either component of Xt are constant.

Remark 4.2. A variant of the robust test consists of �rst applying a test for constant variances
and, depending on the test's decision, either the robust test with estimated change-point or the
non-robust test. Such two-stage pretest-based procedures are popular in econometric practice.

4.2. Experimental evidence on the robusti�ed constant correlation test

4.2.1. Setup In this subsection, we analyze the �nite-sample behavior of the test for constant
correlation if the marginal moments are time-varying. We compare the performance of the robust
test and its two-stage (pre-test) version with that of the non-robust Wied et al. (2012) test and
that a (non-robust test) constructed in the framework of Andrews (1993); concretely, we use the
sup-Wald test as a representative his partial-sample GMM (PS-GMM) based tests. The sup-Wald
test of Andrews (1993) o�ers in principle an alternative way of testing for constant correlations.
The relevant moment conditions are

E (Xk) = µk, E
(
X2
k

)
= µ2

k + σ2
k, for k = 1, 2;

E (X1X2) = σ1σ2ρ+ µ1µ2

c© Royal Economic Society 2018
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Andrews' nuisance parameter vector δ stacks here µk and σ
2
k, and the sup-Wald statistic tests the

constancy of ρ (β in Andrews' notation). However, his approach is not directly applicable here,
because (as Andrews directly writes after equation (2.1) in his paper) the nuisance parameters
are assumed constant under both the null and the alternative. This is exactly the assumption
that we relax. Stacking means and variances in β alongside ρ leads to a test that will also
consistently reject if the means or variances change but correlations don't. However, we are
interested in tests which keep the size when the correlations are constant but means or variances
may change. Therefore, using the PS-GMM estimators by (falsely) maintaining the assumption
of constant nuisance parameters yields a non-robust one-step procedure; the sup-Wald statistic
is easily checked to be

sup
s∈Π

 1

[sn]

[sn]∑
i=1

ẑi1ẑi2 −
1

n− [sn]

n∑
i=[sn]+1

ẑi1ẑi2

2 1

[sn]

[sn]∑
i=1

ẑ2
i1ẑ

2
i2 +

1

n− [sn]

n∑
i=[sn]+1

ẑ2
i1ẑ

2
i2

−1

,

in which the residuals zi1 and zi2 are obtained from the original observations by demeaning
and dividing by its estimated standard deviations. The estimators for means and variances are
obtained from the full sample. The interval Π is a subset of [0, 1], we consider the case Π =
[0.1, 0.9], and we use the critical values tabulated in Andrews (1993).
The test of Wied et al. (2012) is given by

max
2≤j≤n

P (j) with P (j) =

∣∣∣∣D̂ j√
n

(ρ̂j − ρ̂n)

∣∣∣∣ ,
where ρ̂j are recursively estimated correlations and D̂ is a kernel-based estimator for the asymp-
totic variance of ρ̂n (for the exact implementation details see Wied et al., 2012).
The new robust test is based on (3.3) with (4.4). The two-stage version is obtained by �rst

employing the variance constancy test in Wied et al. (2012) (see equation (2) in that paper) on
the individual series.
Throughout, the sample size is 500 and we use 10000 Monte Carlo replications and test at 5%

nominal level.

4.2.2. Baseline bootstrap implementation To obtain critical values for the robust test, we resort
to a bootstrap procedure. The change point is either known, λ = λ0, or can be estimated super-
consistently, λ := λ̂. (Since only the convergence rate matters, we refrain from recommending a
particular choice.) The critical values of our new test are obtained by an i.i.d. bootstrap based
on drawing with replacement from the joint empirical distribution of the piecewise demeaned
Xt1 and Xt2. (For the application, we shall resort to a block bootstrap in this step to allow for
serial correlation.) We may then use as standardizing matrix Ω̂ the sample variance of Ẑt1Ẑt2.
This is based on the implicit assumption that the only breaks relevant are in the means and the
variances, which is reasonable for a wide variety of applications. After being drawn, the boot-
strap samples are transformed as follows: the univariate series are split into two parts based on
the estimated variance change points in the original sample and both parts are rescaled such
that they have the same empirical variance as the original series. Shifting to match the original
means is not required since the e�ect of demeaning vanishes in the limit and the bootstrap series
need not replicate that. Then apply the test on the B bootstrapped series, and use the relevant
empirical quantile of the bootstrap realizations of the statistic of interest as critical value. We
use 199 bootstrap repetitions to keep the computational e�ort to a minimum.
We employ the same bootstrap critical values for the second stage of the two-stage robust

variant.
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14 Matei Demetrescu† and Dominik Wied‡

4.2.3. Robustness with respect to non-constant variances First, we present evidence for the case
of constant means and possibly changing marginal variances. For analyzing the size properties,
we generate independent data from a bivariate normal distribution with mean zero and constant
correlation 0.4. The marginal variances are 1 in the �rst half of the sample and take the values
{0.1, 0.2, . . . , 1.9, 2} in the second part of the sample. We consider both the case of estimated and
of true variance change point locations. In the �rst case, we estimate the breakpoint by applying
the argmax estimator based on the variance constancy test in Wied et al. (2012). The new robust
test is based on (3.3) with (4.4), but without demeaning in the numerator as we generate the
series with zero mean and we focus on variances for this batch of simulations.
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● Robust test estimated CP
Robust test true CP
Non−robust test
Two−stage test
Sup Wald test

Figure 1. Empirical rejection probabilities of the non-robust and the robust tests in a setting
with constant cross-correlations and non-constant marginal variances

The plot of the empirical sizes is given in Figure 1. One sees that our robust test generally keeps
its size, in particular also if the variance change point locations are estimated. Practically, there
are no di�erences between the test with true and the test with estimated locations, although the
size is marginally lower in the latter case if the true variances do not change. The �gure also
shows that the two-stage procedure keeps the size. It is marginally more conservative in the cases
with slight variance decreases, though.
The size of the nonrobust Wied et al. (2012)-test is smaller than the nominal level in the

case of decreasing variances and larger in the case of increasing variances. The intuition to this
comes from the structure of the non-robust test in which successively estimated correlations
are compared. In the extreme case that the variances are zero in the second part, the recursive
correlations do not change any more after the middle. So, the supremum of the correlation
di�erences is attained only in the �rst half of the sample, which leads to a smaller test statistic.
On the other hand, if the variances are extremely large in the second half, there is an extreme,
sudden shift towards ±1 in the successively estimated correlations slightly after the middle.
The mechanism leading to this behavior is ultimately the sensitivity of the empirical correlation
coe�cient with respect to outliers. This peak leads to a high test statistic and thus to higher
rejection rates.
The sup-Wald test also reacts to increasing variances by over-rejecting, but more strongly

so than the Wied et al. (2012)-test. In contrast to the latter, the sup-Wald test is extremely
oversized for decreasing variances as well. This shows that the sup-Wald constant correlation
statistic picks any change in the marginal moments as a change in correlations.
Figure 2.a shows the empirical power of the tests considered in the previous setting in a setting
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Testing for constant correlation of �ltered series under structural change 15

under which the Wied et al. (2012) and the sup-Wald tests works, i.e., we generate i.i.d. data
from a zero-mean bivariate normal distribution with constant unity marginal variances. The cross-
correlation is 0.4 in the �rst half of the sample and takes the values {−0.4,−0.3, . . . , 0.7, 0.8}
in the second part of the sample. One sees that the power of the robust tests and that of the
Wied et al. (2012)-test is rather similar, although, not surprisingly, robustifying has a minor cost
in terms of power for changes to higher values of the correlation coe�cient. Again, there are
practically no consequences of plugging in an estimated break time. The two-step procedure is
as powerful as the Wied et al. (2012)-test. At the same time, we note that the sup-Wald test
exhibits disadvantages in terms of power compared to all other tests, so one may see little reason
to choose it over CUSUM-type constant-correlation tests in practice.
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Figure 2. Empirical rejection probabilities of the non-robust and the robust tests in a setting
with changing cross-correlations and constant (a) / changing (b) marginal variances (Note: the
correlation in the �rst sample part is 0.4, which then marks the null on the x-axes.

Figure 2.b shows the empirical power of the tests in a setting under which the non-robust
test does not work, i.e. we generate independent data from a bivariate normal distribution
with zero mean and constant marginal variances 1 in the �rst half and 2 in the second half
of the sample. The cross-correlation is 0.4 in the �rst half of the sample and takes the values
{−0.4,−0.3, . . . , 0.7, 0.8} in the second part of the sample. One sees that our new test has high
power in the case of a large jump. The non-robust test of Wied et al. (2012) has higher rejection
frequencies than the new test but, of course, it must be taken into account that it is quite over-
sized. As the test for constant variances always rejects in this setting, the power of the two-stage
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procedure is the same as that of the robust test. In the case of nonconstant variances, the power
curve of the sup-LM is shifted; under breaks in variances, a correlation of 0.2 in the second
sample part most likely mimics the null of no change in correlation.

4.2.4. Robustness with respect to non-constant expectations This subsection repeats the anal-
ysis from the last subsection, but with a focus on non-constant expectations and not on non-
constant variances. This means that the residuals of our new robust test are obtained by �ltering
out change points in the �rst moment. Since this does not induce a residual e�ect (see Section
B in the supplement), we do not have to use a bootstrap approximation. Instead, the asymp-
totic distribution of our test statistic is sups∈[0,1] |B(s)|, where B(·) is a Brownian bridge. For a
signi�cance level of 0.05, the critical value is 1.358.
We now analyze the size in a setting in which the variances are constant, equal to 1, and the

means take the value 0 in the �rst half and {−1,−0.9, . . . , 0.9, 1} in the second half of the sample.
We do not include the two-stage procedure in the comparison since it follows closely the

behavior of the robust tests; we also exclude the sup-Wald test as it does not exhibit reliable
behavior in the changing-variances case and we see no gain if further considering it.
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Figure 3. Empirical rejection probabilities of the non-robust and the robust test in a setting with
constant cross-correlations and non-constant marginal expectations

The results are plotted in Figure 3. More so than in the breaking variance case (cf. Figure
1), estimating the change point makes no di�erence in the robust test's behavior: it is slightly
conservative in both cases. The Wied et al. (2012)-test is oversized if the expectations change.
Figure 4.a compares (in a way similar to Figure 2.a) the robust and nonrobust tests in a setting

with constant expectation zero. As in Figure 3, estimating change point locations does not make
any di�erence compared to using the true change point locations. The Wied et al. (2012)-test
performs however somewhat better for upward changes in the correlation (cf. Figure 2).
Finally, Figure 4.b (in a similar way as Figure 2.b) shows the empirical power of both tests in

a setting under which the Wied et al. (2012)-test does not work, i.e., the expectations are zero
in the �rst half and unity in the second half of the sample. The result is, at �rst sight, quite
interesting: While our new robust test has considerable power, which increases with the di�erence
of the correlation in the second half of the sample, the power curve of the Wied et al. (2012)-test
has a minimum at 0.1. This is reminiscent of the behavior of the sup-Wald test under nonconstant
variances. One must of course consider that the Wied et al. (2012)-test rejects almost every time
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Figure 4. Empirical rejection probabilities of the non-robust and the robust test in a setting with
changing cross-correlations and constant (a) / changing (b) marginal expectations

under the null for the unity jump in the mean, so it is actually not surprising that the non-robust
test, in addition to not controlling size, is also severely biased.
Summing up, out robust tests exhibit satisfactory size and power properties.

5. CORRELATION OF STOCK RETURNS

In this section, we provide an empirical illustration of our methods, whereas we focus on the cross-
correlation constancy case and revisit the analysis in Wied et al. (2012) using the robusti�ed test.
We thus reexamine the correlation of DAX and S&P 500 returns around the insolvency of Lehman
Brothers in September 2008, which is often considered as the climax of the global �nancial crisis
2007-2008. Concretely, we use data from the beginning of 2005 until the end of 2009, which yields
T = 1244 daily continuous returns, i.e., the �rst di�erence of the log-prices.
A picture of empirical correlations calculated in a rolling window of 50 days (Figure 5.a gives

some evidence for increasing correlations around the climax in the spirit of the �diversi�cation
meltdown�-hypothesis. This is supported by the test of Wied et al. (2012), plotted in Figure
5.b, and it is clearly seen that the maximum is larger than the 5% critical value of 1.358. The
(argmax) estimator for the break date is February 20th, 2008.
A potential problem arises due to the fact that this test does not accommodate an (asymp-

totically non-vanishing) shift in the marginal variances. Instead, the power of the test close to
0 in the case of a sudden decrease and close to 1 in the case of a sudden increase; see Figure 1.
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Figure 5. (a) Rolling correlations / (b) weighted di�erences of successively calculated correlations

Figures 6.a and 6.b show the empirical variances calculated in rolling windows of 50 days of the
two returns, respectively. There is evidence for a model with two variance regimes, where the
variance in the second regime is higher than in the �rst one. This is con�rmed by an application
of the variance constancy test from Wied, Arnold, Bissantz, and Ziggel (2012) in combination
with a binary segmentation algorithm applied in a similar way as in Galeano and Wied (2014).
Applied on the two time series, the test yields a variance change point at the 14th of January
2008 for the DAX series and at the 3rd of September 2008 for the S&P500 series. After this, the
data is split into the interval before the change point (including the point) and after in order to
test in both segments again. To account for multiple testing, the smallest of the two p-values is
compared with the signi�cance level 1−0.951/2. If smaller, a new change point is detected at the
argmax of the corresponding series, the time series is split at this point again. The procedure is
repeated with decreasing signi�cance levels until no further change points can be found or until
the distance between further change points is smaller than 0.05 · T . Finally, a re�nement step
is applied in order to improve the precision of the estimators. Here, the test is applied on each
interval, which contains exactly one change point, and only statistically signi�cant change points
are kept. After this re�nement step, no other change points except of the ones from the �rst
step remain. We consider them as �xed in the following and no further variance change point
estimations are performed, neither in the tests themselves nor in the bootstrap replications.7

7We neglect potential estimation errors regarding the number and location in the subsequent calculations.
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Figure 6. Rolling variances of (a) the DAX and (b) the S&P500 returns

We apply the test from (3.3) in combination with (4.4) which explicitly allows for a two-regime-
model in the variances. The mean of daily returns is taken to be negligible, so we do not demean
the series. Due to the complexity of the limit distribution, we rely on a bootstrap approximation
following Subsection 4.2.3, with one modi�cation: we resort to a block bootstrap (as in Wied,
2017), as the ACF of the product of the residuals Ẑt,1Ẑt,2 from (4.4) reveals autocorrelation (see
Figure 7) (once we eliminate variance breaks, stationarity of the series is plausible under the null
of no changing correlations and we see no need to account for further possible nonstationarities).
Consequently, we draw non-overlapping blocks of length T 1/3 and use B = 9999 bootstrap
replications.
Figure 8 shows a similar graph as Figure 5.b for (3.3). The hypothesis of constant cross-

correlation is rejected under these milder assumptions as well, but the date of the change point
(estimated by the arg max statistic) is located half an year earlier, at the 9th of July 2007.
Although small, the date can be tied to the 2007 liquidity crisis marking the beginning of the
global �nancial crisis; the timing of the correlation break by the nonrobust test in February 2008
can be seen as a confusion with the variance break in January 2008 of the DAX returns series.
Moreover, Figure 8 raises doubt at the one-break-assumption. In particular, there is some

evidence for at least one other change point after the 9th of July 2007. For clari�cation, we apply
a binary segmentation algorithm in a similar way as in Galeano and Wied (2014) as described
above. Before the iteration step, we get the additional dates 2nd of April 2009 in step 2 and 26th
of September 2008 in step 3. In the iteration step, all three change points remain statistically
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Figure 7. ACF of product Ẑt,1Ẑt,2 of piecewise standardized series
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Figure 8. Weighted di�erences of successively calculated correlations (without the assumption of
constant variances)

signi�cant, but the location of the point 2nd of April 2009 changes to the 2nd of December 2008.
In the iteration step, the p-value of all tests is smaller than 0.001.

Regime Correlation

Jan 4th 2005 - Jul 9th 2007 0.478
Jul 10th 2007 - Sep 25th 2008 0.505
Sep 26th 2008 - Dec 1st 2008 0.711
Dec 2nd 2008 - Dec 30th 2009 0.672

Table 1. Estimated regimes and corresponding empirical correlations

Table 1 gives an overview of the estimated regimes and corresponding correlations. We �nd
that the correlation severely increases at the end of September 2008, corresponding quite closely
to the Lehman bankruptcy, and drops somewhat in 2009 as the crisis appears to be under control.
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6. CONCLUDING REMARKS

The paper tackled inference about moments of series that have been �ltered using estimated �lter
parameters, with a direct application to testing pairwise correlations of series with unknown and
possibly non-constant variances. We discussed conditions under which the �ltering e�ect does not
appear, and addressed the issue of breaks at unknown time in the parameters of the �lter. For
future research, it would be of interest to analyze the case where the function whose expectation
is of interest is not smooth itself.
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