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A. PROOFS

Before providing the main proofs, we state and prove an auxiliary result.

Lemma A.1. It holds under Assumptions 2.1 and 3.1 that

θ̂i

(
λ̂
)
− θ̂i (λ0) = op

(
n−1/2

)
, i = 1, 2,

as n→∞, provided that θ1,0 6= θ2,0.

Proof of Lemma A.1

Let us �rst discuss the behavior of

θ̂1

(
λ̂
)
− θ̂1 (λ0) =

 λ̂n∑
j=1

B′j,nWn

λ̂n∑
j=1

Bj,n

−1
λ̂n∑
j=1

B′j,nWn

λ̂n∑
j=1

Aj,n +Rλ̂n,n

−

λ0n∑
j=1

B′j,nWn

λ0n∑
j=1

Bj,n

−1
λ0n∑
j=1

B′j,nWn

λ0n∑
j=1

Aj,n −Rλ0n,n

= P−1
n

(
λ̂
)
Qn

(
λ̂
)
− P−1

n (λ0)Qn (λ0) +Rλ̂n,n −Rλ0n,n,

where Pn (λ) =
∑λn
j=1B

′
j,nWn

∑λn
j=1Bj,n and Qn (λ) =

∑λn
j=1B

′
j,nWn

∑λn
j=1Aj,n, such that

P−1
n (λ0) = Op

(
n−2

)
and Qn (λ0) = Op

(
n3/2

)
given the behavior of the individual components from Assumption 2.1 and 3.1. Since both λ0

and λ̂ (w.p. 1) are interior points of [0, 1], we also have from Assumption 3.1 that∣∣∣Rλ̂n,n −Rλ0n,n

∣∣∣ = op

(
n−

1/2
)
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for either λ̂ ≤ λ0 or λ̂ > λ0. Furthermore,∥∥∥P−1
n

(
λ̂
)
Qn

(
λ̂
)
− P−1

n (λ0)Qn (λ0)
∥∥∥

≤
∥∥∥P−1

n

(
λ̂
)
− P−1

n (λ0)
∥∥∥∥∥∥Qn (λ̂)∥∥∥+

∥∥P−1
n (λ0)

∥∥∥∥∥Qn (λ̂)−Qn (λ0)
∥∥∥ .

To assess
∥∥∥Qn (λ̂)−Qn (λ0)

∥∥∥, write
∥∥∥Qn (λ̂)−Qn (λ0)

∥∥∥ ≤
∥∥∥∥∥∥
λ̂n∑
j=1

Bj,n

∥∥∥∥∥∥ ‖Wn‖

∥∥∥∥∥∥
λ0n∑
j=λ̂n

Aj,n

∥∥∥∥∥∥+

∥∥∥∥∥∥
λ0n∑
j=λ̂n

Bj,n

∥∥∥∥∥∥ ‖Wn‖

∥∥∥∥∥∥
λ0n∑
j=1

Aj,n

∥∥∥∥∥∥
where we make the convention that

∑λ0n

j=λ̂n
= −

∑λ̂n
j=λ0n

if λ̂ > λ, such that∥∥∥∥∥∥
λ0n∑
j=λ̂n

Aj,n

∥∥∥∥∥∥ ≤ n
∣∣∣λ0 − λ̂

∣∣∣ sup
1≤j≤n

‖Aj,n‖ = Op

(
n1/(2+α)

)
.

(The uniform L2+α boundedness of Aj,n has been used to derive the magnitude of the maximum.)
We the have analogously that ∥∥∥∥∥∥

λ0n∑
j=λ̂n

Bj,n

∥∥∥∥∥∥ = Op

(
n1/(1+α)

)
,

such that ∥∥∥∥∥∥
λ̂n∑
j=1

Bj,n

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
λ0n∑
j=1

Bj,n

∥∥∥∥∥∥+

∥∥∥∥∥∥
λ0n∑
j=λ̂n

Bj,n

∥∥∥∥∥∥ = Op

(
n1/(1+α)

)
= Op (n)

and, summing up, that∥∥∥Qn (λ̂)−Qn (λ0)
∥∥∥ = Op

(
max

{
n1+1/(2+α), n1/2+1/(1+α)

})
= op

(
n3/2

)
.

Furthermore, this implies that∥∥∥Qn (λ̂)∥∥∥ ≤ ‖Qn (λ0)‖+
∥∥∥Qn (λ̂)−Qn (λ0)

∥∥∥ = Op

(
n3/2

)
.

Now, Lütkepohl (1996, Section 8.4.1, Eq. (11c)) implies that

∥∥∥n2P−1
n

(
λ̂
)
− n2P−1

n (λ0)
∥∥∥ ≤ ∥∥n2P−1

n (λ0)
∥∥ ∥∥n2P−1

n (λ0)
∥∥∥∥∥ 1

n2Pn

(
λ̂
)
− 1

n2Pn (λ0)
∥∥∥

1−
∥∥n2P−1

n (λ0)
∥∥∥∥∥ 1

n2Pn

(
λ̂
)
− 1

n2Pn (λ0)
∥∥∥

if
∥∥n2P−1

n (λ0)
∥∥∥∥∥ 1

n2Pn

(
λ̂
)
− 1

n2Pn (λ0)
∥∥∥ < 1 and

∥∥∥n2Pn (λ0)
(

1
n2Pn

(
λ̂
)
− 1

n2Pn (λ0)
)∥∥∥ < 1,

where∥∥∥Pn (λ̂)− Pn (λ0)
∥∥∥ ≤ 2

∥∥∥∥∥∥
λ̂n∑
j=1

Bj,n

∥∥∥∥∥∥ ‖Wn‖

∥∥∥∥∥∥
λ0n∑
j=λ̂n

Bj,n

∥∥∥∥∥∥ = Op

(
n1+1/(1+α)

)
= op

(
n2
)
.
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Consequently,
(

1
n2Pn

(
λ̂
)
− 1

n2Pn (λ0)
)

p→ 0, so that the two conditions are ful�lled with prob-

ability approaching one and we have that∥∥∥P−1
n

(
λ̂
)
− P−1

n (λ0)
∥∥∥ = op

(
n−2

)
.

Summing up, ∥∥∥P−1
n

(
λ̂
)
Qn

(
λ̂
)
− P−1

n (λ0)Qn (λ0)
∥∥∥ = op

(
n−1/2

)
and

θ̂1

(
λ̂
)
− θ̂1 (λ0) = op

(
n−1/2

)
.

The result for θ̂2

(
λ̂
)
− θ̂2 (λ0) is derived analogously and we omit the details.

Proof of Proposition 3.1

Use the mean value theorem to expand the vector function 1√
n

∑[sn]
t=1 g

(
Ẑt

)
elementwise about

θ0 to obtain with Z∗t = h (Xt, . . . ;θ
∗)

1√
n

[sn]∑
t=1

gl

(
Ẑt

)
=

1√
n

[sn]∑
t=1

gl (Zt) +
1√
n

[sn]∑
t=1

∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

(
θ̂ − θ0

)

+
1√
n

[sn]∑
t=1

(
∂gl
∂z

∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ∗

− ∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

)(
θ̂ − θ0

)
where θ∗ is a convex combination of θ0 and θ̂. Since θ̂ − θ0 = Op

(
n−1/2

)
, θ∗ belongs to a

√
n-

neighbourhood of θ0 and thus to Φn; we pick θ
∗
t = θ∗ 1 ≤ t ≤ n, and Assumption 2.1 ensures

uniform negligibility of the third term on the r.h.s. for l = 1, . . . , L,∥∥∥∥∥∥ 1√
n

[sn]∑
t=1

(
∂gl
∂z

∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ∗

− ∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

)(
θ̂ − θ0

)∥∥∥∥∥∥
≤
∥∥∥√n(θ̂ − θ0

)∥∥∥ sup
θ∗,t

∥∥∥∥∥ ∂gl∂z

∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ∗

− ∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

∥∥∥∥∥
p→ 0.

The �rst result follows with Assumption 2.1 and the continuous mapping theorem (CMT).

Let us now examine the case of the recursive estimation scheme. Since gl

(
Z̃t

)
is a function of

θ̂t, we have n convex combinations θ∗t (t = 1, . . . , n) of θ0 and θ̂t in the mean-value expansion
about θ0, leading to

1√
n

[sn]∑
t=1

gl

(
Z̃t

)
=

1√
n

[sn]∑
t=1

gl (Zt) +
1√
n

[sn]∑
t=1

∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

(
θ̂t − θ0

)

+
1√
n

[sn]∑
t=1

(
∂gl
∂z

∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ∗

t

− ∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

)(
θ̂t − θ0

)
.
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Since sups∈[ε,1]

∥∥∥θ̂[sn] − θ0

∥∥∥ = Op
(
n−1/2

)
when Ψ is bounded in probability, the third term on

the r.h.s. is immediately seen to vanish like before, such that

1√
n

[sn]∑
t=1

g
(
Z̃t

)
=

1√
n

[sn]∑
t=1

g (Zt) +
1√
n

[sn]∑
t=1

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

(
θ̂t − θ0

)
+ op (1)

where the op term is uniform on [ε, 1], and the result is completed with Assumption 2.1 and the
CMT.

Proof of Proposition 3.2

The desired asymptotic equivalence follows for the case of full-sample estimation from the con-
dition

sup
s∈[0,1]

∣∣∣∣∣∣ 1√
n

[sn]∑
t=1

(
g
(
Ẑt

(
λ̂
))
− g

(
Ẑt (λ0)

))∣∣∣∣∣∣ = op (1) .

Examining Ẑt

(
λ̂
)
, we have (writing explicitly only the dependence on Xt to simplify notation)

g
(
Ẑt

(
λ̂
))

= g
(
h
(
Xt, θ̂1

(
λ̂
)))(

1−Dt,λ̂

)
+ g

(
h
(
Xt, θ̂2

(
λ̂
)))

Dt,λ̂

and analogously

g
(
Ẑt (λ0)

)
= g

(
h
(
Xt, θ̂1 (λ0)

))
(1−Dt,λ0

) + g
(
h
(
Xt, θ̂2 (λ0)

))
Dt,λ0

such that

g
(
Ẑt

(
λ̂
))
− g

(
Ẑt (λ0)

)
= g

(
h
(
Xt, θ̂1

(
λ̂
)))(

1−Dt,λ̂

)
− g

(
h
(
Xt, θ̂1 (λ0)

))
(1−Dt,λ0

)

+g
(
h
(
Xt, θ̂2

(
λ̂
)))

Dt,λ̂ − g
(
h
(
Xt, θ̂2 (λ0)

))
Dt,λ0

= Mt +Nt.

Then,

Mt =
(
g
(
h
(
Xt, θ̂1

(
λ̂
)))

− g
(
h
(
Xt, θ̂1 (λ0)

)))(
1−Dt,λ̂

)
+ g

(
h
(
Xt, θ̂1 (λ0)

))(
Dt,λ0 −Dt,λ̂

)
= M1t +M2t.

Now, Dt,λ̂ is either zero or unity, so we may focus on g
(
h
(
Xt, θ̂1

(
λ̂
)))
−g

(
h
(
Xt, θ̂1 (λ0)

))
in discussing cumulated sums ofM1t, for which we resort to the mean value theorem elementwise
and obtain like in the proof of Proposition 3.1 that, for each l, and t ≤ λ0n,

gl

(
h
(
Xt, θ̂1

(
λ̂
)))

= gl (Zt) +
∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ1,0

(
θ̂1

(
λ̂
)
− θ1,0

)
+

(
∂gl
∂z

∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ∗

t

− ∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ1,0

)(
θ̂1

(
λ̂
)
− θ1,0

)
c© Royal Economic Society 2018
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and

gl

(
h
(
Xt, θ̂1 (λ0)

))
= gl (Zt) +

∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ1,0

(
θ̂1 (λ0)− θ1,0

)
+

(
∂gl
∂z

∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ0∗

t

− ∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ1,0

)(
θ̂1 (λ0)− θ1,0

)
for suitable θ∗t (θ0∗

t ) between θ1,0 and θ̂1

(
λ̂
)
(between θ1,0 and θ̂1 (λ0)), such that, for all

1 ≤ t ≤ λ0n,

g
(
h
(
Xt, θ̂1

(
λ̂
)))
−g
(
h
(
Xt, θ̂1 (λ0)

))
=

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ1,0

(
θ̂1

(
λ̂
)
− θ̂1 (λ0)

)
+op

(
1√
n

)
where the op

(
1√
n

)
term is uniform in t following Assumption 3.1. For t > λ0n, we expand

gl

(
h
(
Xt, θ̂1

(
λ̂
)))

and gl

(
h
(
Xt, θ̂1 (λ0)

))
about the same θ1,0, but note that h (Xt,θ1,0) 6=

Zt for t in the second regime. We obtain however similarly

g
(
h
(
Xt, θ̂1

(
λ̂
)))
−g
(
h
(
Xt, θ̂1 (λ0)

))
=

∂g

∂z

∣∣∣∣
z=h(Xt,θ1,0)

∂h

∂θ

∣∣∣∣
θ=θ1,0

(
θ̂1

(
λ̂
)
− θ̂1 (λ0)

)
+op

(
1√
n

)
thanks to Assumption 3.1. Using now Lemma A.1, we obtain immediately

sup
s∈[0,1]

∣∣∣∣∣∣ 1√
n

[sn]∑
t=1

M1t

∣∣∣∣∣∣ = op (1) .

ForM2t we note that
∑∣∣∣Dt,λ̂ −Dt,λ0

∣∣∣ = Op (1) since λ̂−λ0 = Op
(
n−1

)
. Then, for each t < λ0n

and l, write again

gl

(
h
(
Xt, θ̂1 (λ0)

))
= gl (Zt) +

∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ1,0

(
θ̂1 (λ0)− θ1,0

)
+

(
∂gl
∂z

∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ∗

− ∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ1,0

)(
θ̂1 (λ0)− θ1,0

)
where supt=1,...,n |gl (Zt)| = op (

√
n) and supt=1,...,n

∥∥∥∥ ∂gl∂z ∣∣∣
z=Zt

∂h
∂θ

∣∣
θ=θ1,0

∥∥∥∥ = op (n) thanks to

Assumption 3.1, and the third summand on the r.h.s. can be dealt with using Assumption 3.1
such that

sup
t=1,...,λ0n

∥∥∥g (h(Xt, θ̂1 (λ0)
))∥∥∥ = op

(√
n
)
.

For each t ≥ λ0n and l, we have like before

gl

(
h
(
Xt, θ̂1 (λ0)

))
= gl (h (Xt,θ1,0)) +

∂gl
∂z

∣∣∣∣
z=h(Xt,θ1,0)

∂h

∂θ

∣∣∣∣
θ=θ1,0

(
θ̂1 (λ0)− θ1,0

)
+

(
∂gl
∂z

∣∣∣∣
z=h(Xt,θ∗)

∂h

∂θ

∣∣∣∣
θ=θ∗

− ∂gl
∂z

∣∣∣∣
z=h(Xt,θ1,0)

∂h

∂θ

∣∣∣∣
θ=θ1,0

)(
θ̂1 (λ0)− θ1,0

)
and Assumption 3.1 leads analogously to

max
λ0n≤t≤n

∥∥∥g (h(Xt, θ̂1 (λ0)
))∥∥∥ = op(

√
n)
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such that, summing up,

sup
s∈[0,1]

∣∣∣∣∣∣ 1√
n

[sn]∑
t=1

M2t

∣∣∣∣∣∣ ≤ sup
t=1,...,n

∥∥∥g (h(Xt, θ̂1 (λ0)
))∥∥∥ 1√

n

n∑
t=1

∣∣∣Dt,λ̂ −Dt,λ0

∣∣∣ = op (1) .

The partial sums of Nt are evaluated in the same manner and the �rst result follows.

Analogously, one can show for the case of recursive estimation that, on [ε, λ0]∪ [λ0 + ε, 1] for any
0 < ε < min{λ0, 1− λ0},

1
√
n

[sn]∑
t=1

(
g
(
Z̃t,λ̂

)
− E (g (Zt))

)
⇒ Ω1/2Γ (s)+

(ˆ s
0

Θ′λ0
(r)
(

Σ
1/2
λ0

)′
W ′Πλ0

(r)
(

Π′λ0
(r)W Πλ0

(r)
)−1

dτ ′λ0
(r)

)′
.

The result can be proved along the same lines as the result for full-sample estimation (but taking
into account the fact that, at the beginning of the sample and after the break, the recursive
estimator does not have proper asymptotics) and we omit the details.

B. FILTERING WITH BREAKS IN MARGINAL MEAN AND VARIANCE

Let us �rst consider testing the covariance of some bivariate Xt which has unknown mean but
only the covariance (matrix) is subject to inference.

For the illustration, we take i.i.d. series Zt in a location-scale model,

Xt =

(
µ1

µ2

)
+

(
σ1 0
0 σ2

)
Zt with Zt ∼ i.i.d.

(
0,

(
1 ρ
ρ 1

))
.

Given that we work under i.i.d. sampling, the assumptions in Section 2 can easily be shown to
hold, provided that enough moments of Zt are �nite and the parameter space is compact, so we
do not spell out the details here to save space. Then,

g (z) = z1z2, Ẑt = Xt − X̄ and h (x) =

(
x1 − θ1

x2 − θ2

)
with θ̂1 = µ̂1 and θ̂2 = µ̂2. Hence

∂g

∂z1
= z2

∂g

∂z2
= z1,

∂h

∂θ
=

(
−1 0
0 −1

)
,

1

n

[sn]∑
t=1

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

=
1

n

[sn]∑
t=1

(−Zt2,−Zt1) ⇒ 0.

Here the distribution is not asymptotically a�ected compared to the test based on Zt,1Zt,2.

Then again, if looking at the correlation ρ rather than the covariance of Zt1 and Zt2, the residual
e�ect is present. We have like before g (z) = z1z2, but, for i = 1, 2, we have that

Ẑti =
Xti − µ̂i

σ̂i

with µ̂i = X̄i and

σ̂2
i =

1

n

n∑
t=1

(
Xti − X̄i

)2
=

1

n

n∑
t=1

σ2
i

(
Zti − Z̄i

)2
=

1

n

n∑
t=1

σ2
iZ

2
ti +Op

(
n−1

)
,

such that, with θ3 = σ2
1 and θ4 = σ2

2 , we write h (x) =
(
x1−θ1√

θ3

x2−θ2√
θ4

)′
. While ∂g

∂z is the same

c© Royal Economic Society 2018
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as in the case of the covariance,

∂h

∂θ
=

(
− 1
σ1

0 − 1
2
x1−µ1

σ3
1

0

0 − 1
σ2

0 − 1
2
x2−µ2

σ3
2

)
such that

1

n

[sn]∑
t=1

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

=
1

n

[sn]∑
t=1

(Zt2, Zt1)

 − 1
σ1,0

0 − 1
2
Zt1−µ1,0

σ3
1,0

0

0 − 1
σ2,0

0 − 1
2
Zt2−µ2,0

σ3
2,0


⇒−ρ0 s

(
0 0 1

2σ3
1,0

1
2σ3

2,0

)
≡ τ (s)

and variance estimation matters whenever the correlation is nonzero, but demeaning does not.

Kicking out the zero elements, τ (s) = −ρ0 s
(

1
2σ2

1,0

1
2σ2

2,0

)
; the relevant Brownian motion is

1√
n

[sn]∑
t=1

 Zt1Zt2 − ρ0

σ2
1,0Z

2
t1 − σ2

1,0

σ2
2,0Z

2
t2 − σ2

2,0

⇒ Ψ (s)

with quadratic covariation

[Ψ] (s) = s

 E
(
Z2
t1Z

2
t2

)
− ρ2

0 σ2
1,0

(
E
(
Z3
t1Zt2

)
− ρ0

)
σ2

2,0

(
E
(
Zt1Z

3
t2

)
− ρ0

)
σ2

1,0

(
E
(
Z3
t1Zt2

)
− ρ0

)
σ4

1,0 (µ4,1,0 − 1) σ2
1,0σ

2
2,0

(
E
(
Z2
t1Z

2
t2

)
− 1
)

σ2
2,0

(
E
(
Zt1Z

3
t2

)
− ρ0

)
σ2

1,0σ
2
2,0

(
E
(
Z2
t1Z

2
t2

)
− 1
)

σ4
2,0 (µ4,2,0 − 1)

 .

If interested in tests on constant correlation, τ is linear in s so the estimation e�ect cancels out.

This preliminary �nding extends to the case of tests on the correlation if the breaks accounted
for are only in the mean but not in the variance as follows. Let

Xt = µ1,0 (1−Dt,λ0) + µ2,0Dt,λ0 +

(
σ1,0 0

0 σ2,0

)
Zt

with λ0 known. We still have g (z) = z1z2, but

Ẑti =
Xti − µ̂1,i (1−Dt,λ)− µ̂2,iDt,λ

σ̂i
(B.1)

such that, with θ1 = µ1, θ2 = µ2, θ3 = σ2
1 and θ4 = σ2

2 , and de�ning for brevity D̄t,λ = 1−Dt,λ,
we obtain

hλ (x) =

(
x1−θ1D̄t,λ−θ2Dt,λ√

θ5
x2−θ3D̄t,λ−θ4Dt,λ√

θ6

)
.

While ∂g
∂z = (z2, z1), we now have

∂h

∂θ
= −

(
1
σ1
D̄t,λ

1
σ1
Dt,λ 0 0 1

2
x1−µ1,1D̄t,λ−µ2,1Dt,λ

σ3
1

0

0 0 1
σ2
D̄t,λ

1
σ2
Dt,λ 0 1

2
x2−µ2,1−µ2,2Dt,λ

σ3
2

)
,

hence

1

n

[sn]∑
t=1

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

= −
1

n

[sn]∑
t=1

(Zt2, Zt1)

 1
σ1,0

D̄t,λ0
1

σ1,0
Dt,λ0

0 0 1
2
Zt1
σ2
1,0

0

0 0 1
σ2,0

D̄t,λ0
1

σ2,0
Dt,λ0

0 1
2
Zt2
σ2
2,0


⇒ −ρ0 s

(
0 0 0 0 1

2σ2
1,0

1
2σ2

2,0

)
≡ τλ0

(s)

and only the variance estimation has an e�ect on the limiting behavior of the partial sums, which
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would cancel out if testing the constancy of the correlation. The relevant Brownian motion is the
same as for demeaning only, and breaks in the mean (accounted for) do not matter for testing
the correlation either.1

Finally, if allowing for a break in the variance, say a model

Xt =

 √
σ2

1,1 (1−Dt,λ) + σ2
1,2Dt,λ 0

0
√
σ2

2,1 (1−Dt,λ) + σ2
2,2Dt,λ

Zt
(for simplicity with known zero mean since demeaning does not have an asymptotic e�ect in this
setup), we obtain

Ẑti =
Xti√

σ̂2
i,1 (1−Dt,λ) + σ̂2

i,2Dt,λ

and h (x) =

 x1√
θ1D̄t,λ+θ2Dt,λ

x2√
θ3D̄t,λ+θ4Dt,λ


and consequently

∂h

∂θ
= −1

2

 x1D̄t,λ

(σ2
1,1D̄t,λ+σ2

1,2Dt,λ)
3/2

x1Dt,λ

(σ2
1,1D̄t,λ+σ2

1,2Dt,λ)
3/2 0 0

0 0
x2D̄t,λ

(σ2
2,1D̄t,λ+σ2

2,2Dt,λ)
3/2

x2Dt,λ

(σ2
2,1D̄t,λ+σ2

2,2Dt,λ)
3/2

 .

Then, we obtain for 1
n

∑[sn]
t=1

∂g
∂z

∣∣∣
z=Zt

∂h
∂θ

∣∣
θ=θ0

the expression

−
1

2n

[sn]∑
t=1

(Zt2, Zt1)


Zt1D̄t,λ0

σ2
1,1,0D̄t,λ0+σ2

1,2,0Dt,λ0

Zt1Dt,λ0
σ2
1,1,0D̄t,λ0+σ2

1,2,0Dt,λ0
0 0

0 0
Zt2D̄t,λ0

σ2
2,1,0D̄t,λ0+σ2

2,2,0Dt,λ0

Zt2Dt,λ0
σ2
2,1,0D̄t,λ0+σ2

2,2,0Dt,λ0


⇒ −

ρ0

2

( I(s<λ0)

σ2
1,1,0

s+
I(s≥λ0)

σ2
1,1,0

λ0
I(s≥λ0)

σ2
1,2,0

(s− λ0)
I(s<λ0)

σ2
2,1,0

s+
I(s≥λ0)

σ2
2,1,0

λ0
I(s≥λ0)

σ2
2,2,0

(s− λ0)
)
≡ τλ0

(s)

which is piecewise linear for s ∈ [0, 1]. Hence the e�ect of accounting for breaks in the variance is
not negligible when concerned about the correlation, not even when testing the constancy, unless
ρ0 = 0. The corresponding process is also not a Brownian motion,

1√
n

[sn]∑
t=1


Zt1Zt2 − ρ0

σ2
1,1,0

(
Z2
t1 − 1

)
(1−Dt,λ0)

σ2
1,2,0

(
Z2
t1 − 1

)
Dt,λ0

σ2
2,1,0

(
Z2
t2 − 1

)
(1−Dt,λ0

)
σ2

2,0,2

(
Z2
t2 − 1

)
Dt,λ0

⇒ Ψλ0 (s) ≡
(

Ω1/2Γ (s)
Σ1/2Θλ0

(s)

)
.

Similar conclusions hold for the case of recursive parameter estimation. Summing up, breaks in
the variances complicate the analysis of correlation tests, but breaks in the mean do not.

C. ADDITIONAL EXAMPLE: TESTING FOR NORMALITY

Let us consider testing hypotheses about the higher-order moments of a (univariate latent)
i.i.d. series Zt in a location-scale model,

Xt = µ+ σZt with Zt ∼ i.i.d. (0, 1) .

1A similar result can be shown for testing the constancy of variances, which is asymptotically not a�ected by
changes in the mean, if residuals taking into account these changes are used. This justi�es the procedure applied
in Borowski et al. (2014).
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Letting

Ẑt =
Xt − µ̂
σ̂

with σ̂2 =
1

n

∑
(Xt − µ̂)

2
and µ̂ = X̄,

we may test hypotheses about the skewness µ3 of Zt (or equivalently the standardized skewness
of Xt) building on the statistic

T =
1√
n

n∑
t=1

(
Ẑ3
t − µ3,0

)
.

The relevant quantities are

g (z) = z3, θ =
(
µ, σ2

)′
and h (x) =

x− θ1√
θ2

,

such that

∂g

∂z
= 3z2 and

∂h

∂θ
=

(
− 1√

θ2

,−1

2

x− θ1

θ
3/2
2

)
,

leading to

1

n

[sn]∑
t=1

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

=
1

n

[sn]∑
t=1

3Z2
t

(
− 1

σ0
,−1

2

Zt
σ3

0

)
⇒−3s

(
σ0,

µ3,0

2σ3
0

)
≡ τ (s) .

Hence

1√
n

[sn]∑
t=1

(
Ẑ3
t − µ3,0

)
⇒ Ω

1/2Γ (s)− 3s

(
σ0,

µ3,0

2σ3
0

)
Σ

1/2Θ (1)

where

1√
n

[sn]∑
t=1

 Z3
t − µ3,0

σ0Zt
σ2

0Z
2
t − σ2

0

⇒ Ψ (s) ≡
(

Ω1/2Γ (s)
Σ1/2Θ (s)

)
with Ψ a Brownian motion with quadratic covariation process

[Ψ] (s) = s

 µ6,0 − µ2
3,0 σ0µ4,0 σ2

0 (µ5,0 − µ3,0)
σ0µ4,0 σ2

0 σ3
0µ3,0

σ2
0 (µ5,0 − µ3,0) σ3

0µ3,0 σ4
0 (µ4,0 − 1)

 ,

hence Ω = µ6,0 − µ2
3,0, Σ =

(
σ2

0 σ3
0µ3,0

σ3
0µ3,0 σ4

0 (µ4,0 − 1)

)
and Λ =

(
σµ4

σ2
0 (µ5,0 − µ3,0)

)
. Also,

Π(s) = sI2 is this case, as we deal with estimators that are essentially sample averages. (This is
the case for the following examples as well.)

We note that demeaning always has an e�ect on the partial sums, but whether estimating the
variance has an e�ect or not depends explicitly on the true skewness µ3,0 of the considered DGP.
If one is interested in testing the constancy of the skewness, both e�ects cancel out in the statistic
according to Corollary 3.2.

Note also that Jarque and Bera (1980) claim that there is no e�ect when testing the null of nor-
mality in the Pearson family of distributions. Jarque and Bera (1980, p. 257) indicate m2

3/6m
3
2 as

unfeasible statistic, with mk = n−1
∑n
t=1 Z

k
t , and the analog m̂2

3/6m̂
3
2, with m̂k = n−1

∑n
t=1 Ẑ

k
t ,

as residual-based one. So, as it is known that the residual-based statistic works, their conclusion

c© Royal Economic Society 2018
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seems correct. However, since the 6th centered moment of the normal distribution is 15σ6, it is
immediately seen that the statistic m2

3/6m
3
2 is not χ2

1 in the limit (and the correct unfeasible
statistic would have been m2

3/15m3
2), so the residual e�ect is actually present, as discussed above.

Now, for testing the kurtosis of Zt, h is the same but

g(z) = z4 and
∂g

∂z
= 4z3,

such that

1

n

[sn]∑
t=1

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

=
1

n

[sn]∑
t=1

4Z3
t

(
− 1

σ0
,−1

2

Zt
σ2

0

)
⇒−4s

(
µ3

σ0
,
µ4

2σ2
0

)
≡ τ (s) .

The process Ψ(s) (in particular the component Γ(s)) is di�erent,

1√
n

[sn]∑
t=1

 Z4
t − µ4,0

σ0Zt
σ2

0Z
2
t − σ2

0

⇒ Ψ (s) ,

having a di�erent quadratic covariation,

[Ψ] (s) = s

 µ8,0 − µ2
4,0 σ0µ5,0 σ2

0 (µ6,0 − µ4,0)
σ0µ5,0 σ2

0 σ3
0µ3,0

σ2
0 (µ6,0 − µ4,0) σ3

0µ3,0 σ4
0 (µ4,0 − 1)

 .

Contrary to the case of the skewness, estimating the variance has an e�ect on the partial sums
irrespective of the skewness, but the actual skewness µ3,0 controls now whether demeaning has
an e�ect. Again, if interested in the constancy of the kurtosis, both e�ects cancel out and the
asymptotics is not a�ected by the residual e�ect.

D. ASYMPTOTIC AND BOOTSTRAP CORRECTIONS

For the cases where there is a residual e�ect, corrections are required. We �rst discuss the more
straightforward case of simple hypotheses, E (g (Zt)) = µ(0).

If basing the test on residuals with full-sample parameter estimation, we have under the null

√
n
(
ḡ − µ(0)

)
⇒ Ω1/2Γ (1) + τ (1) (Π′(1)W Π(1))

−1
Π′(1)W Σ1/2Θ (1)

which is actually multivariate normally distributed under Assumption 2.1, so making the distri-
bution of this quadratic form pivotal is a matter of using the right covariance matrix estimator:
Ω̂ is only correct when τ is zero; see the corollaries above. Otherwise, one should have used(

IL;W ′Π(1) (Π′(1)W Π(1))
−1
τ ′ (1)

)
Ξ̂

(
IL

τ (1) (Π′(1)W Π(1))
−1

Π′(1)W

)
(D.2)

instead of Ω̂. Here, IL denotes the L× L identity matrix. This situation is often encountered in
the literature; see e.g. Bai and Ng (2005).

This correction is not available for recursive estimation of the parameters. The di�erence is that
Cov(Γ̃(1)) depends on the entire path of τ which makes a correct estimation of the required co-
variance matrix more demanding. In principle, one could simulate from the limiting distribution,
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given estimates for τ , Π and Ξ. While this is feasible, it would may be easier to bootstrap, as is
not uncommon in the literature; see e.g. Zhou (2013) and Hansen (2000). This too is not without
disadvantages; see the discussion on bootstrap implementations below.

Now, if g (Zt) is weakly stationary then Ω1/2Γ is a Brownian motion. Under time-varying 2nd
moments of g (Zt), however, the process Ω1/2Γ would have nonlinear quadratic covariation. In
this case Γ cannot be a vector of independent Wiener processes, and the test statistic is not
asymptotically pivotal under the null. Provided that (consistent) estimates of τ , Π and Ξ, as
well as of the nonlinear (co)variance pro�les of the limiting process Ψ, are available, one may
simulate critical values from the limiting distribution. Again, it may be more convenient to resort
to a suitable bootstrap. E.g. Zhou (2013) uses the block wild bootstrap.

Moving on to the case of moment constancy tests, it is worth asking the question whether Q̂n
or Q̃n could be corrected using the right covariance matrix estimator, like in the case of simple
hypotheses. This is more di�cult to achieve since the test statistic depends on the entire path of
Ψ and not only on the properties of Γ and Θ at s = 1. For such a correction to work, one needs
linear combinations of Γ and Θ to have the same properties as Γ only. This, as can be easily
checked, is the case only when Γ and Θ are Gaussian processes with covariance pro�le of the form
η (s) Υ with η(s) a suitable scalar function and Υ a constant positive de�nite matrix. Should the
correction be applicable, this works immediately for Q̂n, but becomes decisively more complex
for Q̃n where the integral of Θ over [0, s] is a Gaussian process, but no Brownian motion.

Finally, since analytical corrections may not be straightforward, and sometimes nonlinear quadratic
covariations need to be accounted for, the bootstrap suggests itself to obtain critical values. Since
the e�ect depends also on the properties of estimator θ̂ (in particular on At,n or Bt,n), on which
it is di�cult to get more precise without becoming too model-speci�c, a thorough analysis of
bootstrap validity is out of the reach of this paper. Rather, we point out some pitfalls associated
to standard (block) i.i.d. and wild bootstrap schemes.

Denote by X∗t,b the bootstrapped sample (which may be obtained either by bootstrapping Xt,

or by bootstrapping Ẑt or Z̃t and �ltering through an estimated version of f). For testing, we

shall assume that the null is suitably imposed when bootstrapping.2 Then, with �
p⇒� denoting

weak convergence in probability3 and E∗ the bootstrap expectation, it must be ensured that

1√
n

[sn]∑
t=1

(
g
(
Ẑ
∗
t,b

)
− E∗

(
g
(
Z∗t,b

))) p⇒ Ω1/2Γ (s) + τ (s) (Π′(1)W Π(1))
−1

Π′(1)W Σ1/2Θ (1)

for the full sample estimation, and

1√
n

[sn]∑
t=1

(
g
(
Z̃
∗
t,b

)
− E∗

(
g
(
Z∗t,b

))) p⇒ Ω1/2Γ (s)+

(ˆ s

0

Θ′ (r)
(

Σ1/2
)′
W ′Π(r)

(
Π′(r)W Π(r)

)−1
dτ ′ (r)

)′
for recursive estimation. I.e., the bootstrapped partial sums should converge to the same limit
process as in Proposition 3.1, such that the residual e�ect is correctly replicated by the bootstrap.

This, however, is not guaranteed with any bootstrap scheme. Consider e.g. the well-understood
case of the i.i.d. bootstrap performed on Xt. Then, the bootstrap samples do not replicate serial
correlation or nonstationarities of the DGP. One could of course use the block bootstrap to side-
step the �rst issue, and resort to the residual i.i.d. bootstrap, if the source of the nonstationarity

2This may not be di�cult if constancy is of interest, but one may have to go at some lengths to impose say zero
skewness in the bootstrap population.
3A sequence of random functions X∗1 , . . . converges weak in probability conditionally on the original data X1, . . .
to some limit function X, if E(f(X∗n)|X1, . . .)→p E(f(X)) for every bounded and continuous function f .
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lies in the �lter or in the structure of the estimator. If on the other hand the quantities g
(
Z̃t

)
or At,n are not stationary, but only piecewise locally stationary, one could use wild or block wild
bootstraps as suggested by Hansen (2000) or Zhou (2013) in related contexts. A seminal reference
for this bootstrap is Wu (1986). This too is not always going to lead to valid results. To see why,
take At,n = a (Xt). Then, wild bootstrapping Xt or Ẑt (Z̃t), even in block versions, does not
produce the desired result in general: in an extreme case, g or a may e.g. be even functions,
and using e.g. Rademacher random variables Rt,b to generate bootstrap samples X∗t,b = XtRt,b
would not give bootstrap sampling variability at all. But the issue is more subtle, because even
if we don't use the Rademacher distribution, the covariance of g

(
X∗t,b

)
and a

(
X∗t,b

)
need not

equal the covariance of g (Xt) and a (Xt).
4 (A related case of wild bootstrap failure is given in

Brüggemann et al., 2016.) The solution here would be to block wild bootstrap g (Zt) and At,n
jointly, e.g. (g (Xt) ,a (Xt))

∗
= (g (Xt) ,a (Xt))Rt,b. The bottom line is that bootstrapping

without understanding the asymptotics of the residual e�ect is likely to fail.

4Consider e.g. g(u) = u and a(u) = u2; then, unless E
(
R3
t,b

)
= 1, the wild bootstrap fails.
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