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1 Introduction

Copula models are superior in multivariate modeling compared to standard multivari-

ate distributions in terms of their flexibility, e.g., one can construct the joint distribu-

tion by separately specifying the marginal distributions and the dependence structure

that links the marginal distributions. In financial market modeling, it is of interest

to analyze the dependence structure of various financial assets. For example, risk

managers would like to know how asset returns co-move during a financial crisis. In

such a period one might observe non-zero tail dependence between assets and certain

Archimedean or elliptical copulas such as the Clayton or the t copula could be suffi-

cient to capture the hidden trait of fat tails, i.e., the possibility of correlated crashes

or booms. In addition, since such dependence might not be symmetric, asymmetric

copulas such as the Clayton or the rotated Gumbel copula that allow for lower tail

dependence may be favored for the scenario that the dependence between assets is

stronger in crashes than in booms. The copula approach is also applied to forecast the

Value-at-Risk (VaR) of a portfolio using non-normal joint distributions.

Since one may be interested in the dependence among variables in a large set in-

stead of merely a small number of variables, one might run into problems with the

specification of a sufficiently flexible model and the estimation of a large number of

parameters in the dependence model. The factor copula model stands out as an elegant

tool, as it is capable of representing high dimensional variables with a smaller number

of latent factors. In addition to the ability of dimensionality-reduction, factor copula

models can impose an informative structure to provide economic interpretations in

high dimensional modeling. For example, the movements of the return series in a stock

market may possibly be associated with common factors such as the macroeconomic

state.

Research on factor copulas has become active in the past decade. The model was

originally introduced in credit risk modeling of a portfolio. Andersen & Sidenius (2004)

extended the Gaussian copula in a non-linear way to capture the heavy upper tails in

portfolio loss distributions as well as correlation skews in CDO tranches. The Gaussian

factor copula with a single factor was extended by van der Voort (2005) to a model
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that avoids the correlation effect of instantaneous defaults by additionally modeling

external default risks. One of the most general factor copula models was presented

by Joe (2014). This factor copula can be seen as a conditional independence model in

which observed variables are conditionally independent given latent factors. This family

of factor copulas was further developed by Krupskii & Joe (2013) and Nikoloulopoulos

& Joe (2015). More recently, Ivanov et al. (2017) fit a copula autoregressive model

to estimate unobservable factors in a dynamic factor model. Oh & Patton (2017)

proposed the factor copula model with a linearly additive structure, which serves as a

descendant of the model proposed by Hull & White (2004) for the evaluation of default

probabilities and default correlations. Due to the fact that a closed form likelihood is

not available, the model is estimated using the simulated method of moments, matching

different dependence measures in the sample to the ones implied by the model. We

focus on the setup in Oh & Patton (2017) throughout this paper.

The main contribution of this paper is to propose a simultaneous model and moment

selection procedure for various specifications of factor copula models along with dif-

ferent combinations of moment conditions. Regarding the model selection task, factor

copula models can be specified flexibly, i.e., latent factors and the idiosyncratic terms

possibly follow distinct distributions as, e.g., in the Skew t-t factor model. Given an

asymmetric and fat-tailed data generating process (DGP), the Skew t-t factor copula

is expected to provide a better fit to the data than a model with only Gaussian factors.

The issue is whether one can consistently select the true model or an approximately

true model from a pool of candidate models. As far as we know, only the specification

test of factor copula models proposed by Oh & Patton (2013) partially answered this

question in the existing literature, but their approach is less helpful in the comparison

of a set of nested models. That is, their approach could fail to detect the most parsi-

monious model which potentially performs better in terms of prediction compared to

highly parametrized models.

Since the Simulated Method of Moments (SMM) serves as a popular method in the

estimation of the parameters in factor copula models, the selection of correct moments,

i.e., whether the moment conditions hold asymptotically, becomes crucial. In addition,

the choice of moment conditions has an impact on model selection. In fact, it is
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unrealistic to take infinitely many moment conditions into account. One might be

interested in characterizing a certain group of moments which are of particular interest

in specific applications, e.g., the lower tail of the distribution when one deals with

problems such as VaR estimation or prediction. To this end, we propose a feasible

procedure of simultaneous selection of moments and models for factor copulas. From

a practical point of view in risk management, we investigate the interplay between

the selection of moments and models in backtesting VaR forecasts. Considering that

the true model is generally unknown in empirical work, we point out the possibility of

obtaining reasonable risk forecasts based on misspecified models using a specific set of

moments in the lower tail of the distribution.

The rest of this paper is organized as follows. We briefly introduce factor copula

models in Section 2. In Section 3, we review the estimation method for factor copulas

and necessary assumptions for consistent parameter estimation, after which we discuss

the model and moment selection criterion and its consistency in Section 4. In Section

5 we present simulation studies, followed by an empirical application of the procedure

in Section 6. Lastly, we offer our conclusions in Section 7.

2 Factor Copula Models

Factor copulas are constructed on a set of latent variables with a factor structure. Each

of the latent variables is modeled as a linear combination of a smaller number of latent

factors and an idiosyncratic term for individual characteristics. Consider the following

model with one common factor:

Xi = βiZ + εi, i = 1, 2, . . . , N,

Z ∼ FZ(θZ),

εi ∼ iid Fε(θε), and εi ⊥ Z, ∀i

X = (X1, · · · , XN)′ ∼ FX = C(G1(θ), . . . , GN(θ);θ),

(1)

where Z is the common factor. βi is the factor loading of the common factor associated

with i-th latent variable Xi, i = 1, . . . , N , whereas θ = (θ′Z ,θ
′
ε, β1, . . . , βN)′ denotes the

vector of the copula parameters. Let p be the number of parameters to be estimated.

The corresponding factor copula C(θ) is used as the model of the copula of the observ-

able variables Y . Note that the marginal distributions of the latent variables Xi are not
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necessarily identical to those of the observable variables Yi. The latent factor structure

is employed to specify the copula and the estimation of the marginal distributions is

left to, e.g., semiparametric models.

Although we impose a factor structure to obtain a more parsimonious copula model

in high dimensions, a potential challenge in the estimation of such a model remains: N

factor loadings have to be estimated, which is still a difficult task in large dimensions.

In response, Oh & Patton (2017) suggested that one can sort the latent variables into

groups and formulate a so-called block equi-dependence model. The intuition of such

a clustering strategy can be implied by the scenario that, e.g., the stock prices in the

same industry would have an analogous reaction to the latent factor representing the

macroeconomic status. The aforementioned specifications could be extended to include

multiple latent factors. A similar setting of this multiple factor structure in the general

heterogeneous factor model can be found in Ansari et al. (2002). The nonlinear factor

copula model relaxes the assumption of linearity and additivity; see Oh & Patton

(2017) for discussions in greater detail. Throughout the paper, we restrict attention

to the equi-dependence model with a single common factor as in specification (1) with

identical factor loadings for all variables.

In our context, the factor copula of X is generally not known in closed form. A

Gaussian copula is implied by specification (1) when the distributions of the common

factor Z and the idiosyncratic term εi, i = 1, . . . , N , are Gaussian, or equivalently

the joint distribution of X is multivariate Gaussian. However, the joint distribution

of X and thus the copula of X are typically not known in closed form if Z and εi

come from different families of distribution. To specify a factor copula, it is crucial

to choose the distributions of the common factors and the idiosyncratic term in the

first place. Among assorted options of the distributions of common and idiosyncratic

variables, a favorable choice is the skewed Student t distribution, see Hansen (1994).

This distribution is useful for modeling tail dependence and asymmetric dependence

because it allows for tail thickness and skewness:

t(z|ν, λ) =

bc(1 + 1
ν−2

( bz+a
1−λ )2)−(ν+1)/2 z < −a/b,

bc(1 + 1
ν−2

( bz+a
1+λ

)2)−(ν+1)/2 z ≥ −a/b,

where 2 < ν <∞, −1 < λ < 1. a, b and c are constants: a = 4λc(ν+2
ν−1

), b2 = 1+3λ2−a2
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and c =
Γ( ν+1

2
)√

π(ν−2)Γ(ν/2)
. It is parameterized by two parameters: ν for tail thickness and λ

for skewness. A lower ν indicates fatter tails. When λ = 0, it collapses to the standard

Student t distribution. λ > 0 indicates that the variable is skewed to the right, whereas

λ < 0 implies the left skewed variable.

To show how the tail and the skewness parameters affect the dependence structure

implied by the model, Figure 1 shows T = 5000 bivariate random samples from a t-t

and a skewt-t model with factor loading β = 1, shape parameter ν = 2 and skewness

parameter λ = −0.5. For the t-t model in Figure 1(a) two clusters emerge at both tails

in a symmetric way. The asymmetric dependence structure is apparent in Figure 1(b)

as the skewness parameter comes into play.

Figure 1 about here

3 Estimation

3.1 Dependence Measures

Since it is necessary to choose dependence measures which can be used in the SMM es-

timation step, we firstly introduce two popular choices of dependence measures: Spear-

man’s rho and quantile dependence; see Nelsen (2006), Genest & Favre (2007) and Joe

(2014). Consider a pair of variables ηi and ηj. Spearman’s rank correlation is defined

as

ρijS = 12

∫ 1

0

∫ 1

0

uvdCij(u, v)− 3, (2)

where u = Fi(ηi), v = Fj(ηj) and Cij(u, v) is the copula of the pair (ηi, ηj). In contrast

to Spearman’s rho which can be considered as a global measure of the dependence

structure, quantile dependence focuses on the dependence structure in specific regions

of the support of a distribution. The quantile dependence between the pair (ηi, ηj)

at quantile q is defined as the conditional probability that Fi(ηi) is smaller (greater)

than q given that Fj(ηj) is smaller (greater) than q for the lower (upper) tail. If q

goes to zero, then the quantile dependence is the probability that Fi(ηi) is extremely

small given that Fj(ηj) is also extremely small. It is practically useful for measuring

concurrent extreme events in financial markets. The quantile dependence at quantile
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q between ηi and ηj is defined as

λijq =

P [Fi(ηi) ≤ q|Fj(ηj) ≤ q], for q ∈ (0, 0.5],

P [Fi(ηi) > q|Fj(ηj) > q], for q ∈ (0.5, 1).

(3)

The estimators of ρ̂ijS and λ̂ijq are

ρ̂ijS = 12
T

∑T
t=1 F̂i(η̂it)F̂j(η̂jt)− 3,

λ̂ijq =


1
Tq

∑T
t=1 1[F̂i(η̂it)≤q,F̂j(η̂jt)≤q], for q ∈ (0, 0.5],

1
T (1−q)

∑T
t=1 1[F̂i(η̂it)>q,F̂j(η̂jt)>q]

, for q ∈ (0.5, 1),

(4)

where F̂i(η̂it) and F̂j(η̂jt) are the empirical distribution functions of the variables η̂it and

η̂jt, respectively. Following the definition in Oh & Patton (2017), linear combinations of

these dependence measures can be used as moment conditions in the SMM estimation.

In the equi-dependence model, the vector of dependence measures is the average over

the pairwise measures

mT =
(
ρS λq1 . . . λqr−1

)
=

2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

(
ρijS λijq1 . . . λijqr−1

)′
, (5)

where q1, . . . , qr−1 ∈ (0, 1) denote the quantiles of interest.

3.2 Simulated Method of Moments

The factor copula does not generally have a closed-form likelihood and Maximum

Likelihood Estimation (MLE) is therefore only applicable in a few cases; see, e.g.,

Krupskii et al. (2018). In cases where MLE is not possible, however, the Simulated

Method of Moments (SMM) can be applied; see McFadden (1989). Oh & Patton

(2013) integrated this method into the estimation of factor copula models. Consider the

following data generating process (DGP) which allows for a time-varying conditional

mean and conditional variance for each variable. This setting can also be found in

Chen & Fan (2006), Oh & Patton (2013) and Rémillard (2017):

Yt = µt(φ) + σt(φ)ηt, (6)

with

µt(φ) = [µ1,t(φ), . . . , µN,t(φ)]′,

σt(φ) = diag[σ1,t(φ), . . . , σN,t(φ)]′,

ηt ∼iid Fη = C(F1, . . . , FN ;θ),
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where µt(φ) and σt(φ) are Ft−1 measurable and independent of ηt, and Ft−1 is the

σ-Algebra containing the past information of {Yt−1,Yt−2, . . .}. The parameter vector

φ controls the dynamics in the marginal distributions. When this parameter vector

is known or both µt(φ) and σt(φ) are constant, this model describes i.i.d time series.

The estimation of the copula parameters θ is based on the estimated standardized

residuals η̂t = σ−1
t (φ̂)(Yt−µt(φ̂)), t = 1, . . . , T, and simulations from the multivariate

distribution Fx. Define m̂T as the r × 1 vector of dependence measures computed

from the estimated standardized residuals η̂t, t = 1, . . . , T, and m̃S(θ) as a vector

of dependence measures obtained from Xs, s = 1, . . . , S, i.e., S simulations from the

parametric joint distribution Fx(θ). The SMM estimator is defined as

θ̂T,S = arg min
θ∈Θ

gT,S(θ)′ŴTgT,S(θ), (7)

where gT,S(θ) denotes the difference between m̂T and m̃S(θ),

gT,S(θ) = m̂T − m̃S(θ). (8)

ŴT is a positive definite weighting matrix. Intuitively, one needs to find the vector

of simulated dependence measures with an appropriate parameter vector θ̂T,S which

is able to represent the dependence structure based on the empirical data. Next we

restate some necessary assumptions for the consistency of the SMM estimator.

Assumption 1 The sample rank correlation and quantile dependence converge in prob-

ability to their theoretical counterparts, respectively, i.e., ρ̂ijS →p ρ
ij
S and λ̂ijq →p λ

ij
q , for

pair i, j, ∀q ∈ (0, 1).

This assumption implies weak convergence of gT,S(θ):

gT,S(θ) ≡ m̂T − m̃S(θ)→p g0(θ) ≡m0(θ0)−m0(θ), ∀θ ∈ Θ, T, S →∞, (9)

where θ0 denotes the true value of the parameter vector. This assumption requires that

Fη and Fx are continuous, and the partial derivative of each bivariate marginal copula

Cij of C is continuous with respect to ui and uj, as in Assumption 1 in Oh & Patton

(2013). When one employs standardized residuals in the estimation of the copula, it is

necessary to control the estimation error arising from the estimation of the conditional

means and conditional variances. Assumption 2 in Oh & Patton (2013) or equivalently

8



assumptions A1-A6 in Rémillard (2017) enable us to prove the weak convergence of

the empirical copula process based on standardized residuals to its theoretical limit.

We make one additional assumption for the consistency of the SMM estimator, which

is identical to Assumption 3 in Oh & Patton (2013):

Assumption 2 (i) g0(θ) 6= 0 for θ 6= θ0.

(ii) Θ is compact.

(iii) Every bivariate marginal copula Cij(ui, uj;θ) of C(θ) on (ui, uj) ∈ (0, 1)× (0, 1)

is Lipschitz continuous on Θ.

(iv) ŴT →p W0, where ŴT is Op(1) and W0 is some positive definite weighting

matrix.

Under Assumptions 1 and 2, the SMM estimator is a consistent estimator:

θ̂T,S →p θ0, as T, S →∞.

Oh & Patton (2013) also established the asymptotic normality of the SMM estimator

under correct model specification.

In the next section we propose a model and moment selection procedure for factor

copula models estimated by SMM. Since it is possible that some or all of the model

candidates are misspecified, it is necessary to consider the SMM estimator under model

misspecification. Oh & Patton (2013) also considered the misspecified case, but not

the asymptotic distribution in this situation, since the pseudo-true SMM estimator

depends on the limit distribution of the weighting matrix, and an alternative procedure

for establishing stochastic equicontinuity of the objective function would be required.

They adapted the definition of nonlocal misspecification in the GMM context in Hall

& Inoue (2003) to the SMM world. This type of misspecification is defined as the case

that there exists no such θ ∈ Θ that g0(θ) = 0.

Definition 1 The pseudo-true value of the SMM estimator under misspecification is

defined as θ∗(W0) = arg minθ∈Θ g0(θ)′W0g0(θ).

We recapitulate the additional assumptions for the consistency of the SMM estimator

under misspecification:
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Assumption 3 (i) Under nonlocal misspecification of model, ||g0(θ)|| > 0,∀θ ∈ Θ.

(ii) ∃θ∗(W0) ∈ Θ such that g0(θ∗(W0))′W0g0(θ∗(W0)) < g0(θ)′W0g0(θ),∀θ ∈

Θ\{θ∗(W0)}.

Under Assumptions 1,2 and 3, we have θ̂T,S →p θ∗(W0) as T, S →∞.

4 A Model and Moment Selection Procedure

4.1 Existing Approaches

In general, in order to handle the model selection problem in a parametric economet-

ric model, one tends to assess the goodness-of-fit and penalize the excessive usage of

parameters among competing models using likelihood-based information criteria; see

Hastie et al. (2009) and Hannan & Quinn (1979). It is a common approach to apply the

Akaike information criterion (AIC) in the selection of parametric copula models, see,

e.g., Dias & Embrechts (2004). In a simulation study, Manner (2007) showed good per-

formance of the AIC model selection procedure for copula models which possess sym-

metric and asymmetric tail behavior. Chen & Fan (2006) extended a pseudo likelihood

ratio test for model selection between two semiparametric copula-based multivariate

dynamic models under misspecification. Another appealing approach to model selec-

tion relies on Goodness-of-Fit (GoF) tests, see Patton (2012) for a general review. Two

widely used GoF tests are the Kolmogorov-Smirnov (KS) and the Crámer-von-Mises

(CvM) tests. Rémillard (2017) pointed out that one can use a CvM-type statistic,

which is more powerful and easier to compute compared to the KS statistic, to test if

the parametric family of copulas under consideration is correctly specified. Note that

a distinction needs to be made between model comparison and selection, and GoF

testing, which are two different problems. In this paper we are concerned with the

problem of model comparison and selection, but we base our approach on a statistic

that is originally used for model evaluation.

Unfortunately, because the density of the factor copula and its corresponding like-

lihood is not known in closed form, the aforementioned methods can not be directly

borrowed to deal with the model selection problem. Oh & Patton (2013) suggest that
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the J test of over-identifying restrictions can be used as a specification test of the fac-

tor copula model when the number of moments is greater than the number of copula

parameters. The statistic and its limit distribution are given as follows:

JT,S := min(T, S)gT,S(θ̂T,S)′ŴTgT,S(θ̂T,S)→d u
′A′0A0u, T, S →∞, (10)

where u ∼ N(0, I) and A0 := W
1/2
0 Σ

1/2
0 R0. Σ0 denotes the asymptotic variance of

m̂T and

R0 = I −Σ
−1/2
0 G0(G′0W0G0)−1G′0W0Σ

1/2
0 ,

where G0 is the derivative of g0(θ). If one uses the efficient weighting matrix, i.e.,

ŴT = Σ̂−1
T,B, where Σ̂T,B is the iid bootstrap estimator of the covariance matrix Σ0,

the limit distribution turns out to be the chi-squared distribution χ2
r−p. Recall that

r is the number of moments used in the estimation and p is the number of estimated

parameters. If a weighting matrix different from the efficient weighting matrix, such

as the identity matrix, is employed, the asymptotic distribution of the J test statistics

is nonstandard and the corresponding critical values can be obtained via simulation.

Unfortunately, the J test appears to be less helpful to choose less parametrized model,

which could perform better for the task of prediction.

When it comes to moment selection for factor copula models, the literature is rather

scarce. Clearly in our context, moment conditions are constructed on dependence

measures, i.e., moments under consideration are based on the linear combination of

Spearman’s rho and quantile dependence. Some moment conditions may be correct

whereas others may be incorrect. The selection of correct moments has an interplay

with model selection: under the true model, with increasing inclusion of moments, the

procedure we propose below tends to select all moment conditions asymptotically. If

the model is not correctly specified, moment conditions which are continuously included

would hardly jointly hold and only some of them will be selected. On the one hand,

it would be valuable to determine a certain set of ‘useful’ moment conditions, e.g.,

quantile dependence at certain quantiles, to consistently and efficiently select the true

model. On the other hand, if the set of moments is predetermined in a specific region of

the support, e.g., quantile dependence measures restricted to certain quantiles, whether

the true model is selected or not remains an issue. We would like to seek a method

for the consistent selection of correct moments in addition to the selection of the true
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model. In the case that all candidate models are misspecified, on the other hand, we

would like our method to select the combination of model and moment conditions that

is most appropriate for the data of interest.

4.2 A New Selection Procedure

Our proposed procedure is inspired by the moment selection procedure for Generalized

Methods of Moments (GMM) originally proposed by Andrews (1999). The simultane-

ous selection procedure for moments and models in GMM by Andrews & Lu (2001)

also sheds light on the possibility of the model and moment selection of factor copula

models constructed on J test statistics. Our selection criterion measures the degree of

model fit, penalizing a larger number of model parameters, and rewards the selection

vectors that use more over-identifying restrictions in the model. This is an analogous

procedure to classical likelihood based information criteria. It measures the model fit

based on the J statistic in (10) with a bonus term rewarding the selection of more

moment conditions and fewer parameters.

Following Andrews & Lu (2001), the starting point is a finite set of r moments

and a p-dimensional vector of parameters θ, which corresponds to different models.

The crucial component of the new procedure are pairs of model and moment selection

vectors (b, c) ∈ {0, 1}p×{0, 1}r, which only contain zeros and ones. For instance, if the

i-th element of c equals one, then the i-th moment condition is included in the SMM

estimation procedure, while it is excluded if it is equal to zero. Similarly, if the i-th

element of b equals one, then the i-th element of the parameter vector θ is estimated,

while it is set to zero and not estimated if the i-th element of b equals zero.

As an example, the selection vector c = (1, 1, 0, 0, 0, 0, 1, 1)′ of the moments m =

(λ0.05, λ0.1, λ0.25, λ0.45, λ0.55, λ0.75, λ0.9, λ0.95)′ only chooses quantile dependence measures

at both tails to construct moment conditions. Clearly, the construction allows for

nested models. For example, b = (1, 1)′ of θ = (ν−1, λ)′ gives a Skew t-t factor copula

model whereas in this case b = (1, 0)′ implies a t-t factor copula. On the other hand,

this setup also incorporates non-nested models. It is convenient to stack parameter

vectors from two non-nested models into a single vector, and let the model selection

vector assign the corresponding positions of parameters in the first model with ones
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and the rest with zeros to select out the first model and vice versa.

Define the set

M = {(b, c) ∈ {0, 1}p × {0, 1}r}.

Furthermore, let θb be the element-wise product of θ and b, and gcT,S(θ) are the

moment conditions specified by c. Let |b| =
∑p

i=1 bi denote the number of parameters

to be estimated in the vector b, and |c| =
∑r

j=1 cj denote the number of moments

selected in the vector c. We make the following assumption for ensuring that the

model parameters are overidentified. This appears to be natural as otherwise one

could match every moment condition and it would not be possible to identify wrong

models. Moreover, this assumption guarantees that we consider at least one moment

condition.

Assumption 4 The number of moments is greater than the number of parameters,

i.e., |c| − |b| > 0.

The definition of selection vectors and a series of sets consisting of these vectors are

borrowed from Andrews & Lu (2001). Denote the selection vector of correct moments

as c0 and the selection vector of the correct model as b0, respectively. c0 selects the

moments for which gc0(θ) = 0, as T, S → ∞ and b0 selects the model associated with

the true DGP. We initially define a subset containing all selection vectors of models

and moments such that gT,S(θ) equals zero asymptotically and that the parameters

are overidentified:

M1 = {(b, c) ∈M : |c| − |b| > 0, gcT,S(θb)→p 0, as T, S →∞, for some θb ∈ Θ}.

We further define a subset of M1 containing the model and moment selection vectors

with maximum number of over-identifying restrictions:

M2 = {(b, c) ∈M1 : |c| − |b| ≥ |c̃| − |b̃|,∀(b̃, c̃) ∈M1}.

Next, consider the parameter space of (b̂, ĉ), denoted as P ⊂ M, where (b̂, ĉ) is a

generic estimator of model and moment selection vectors. This is the set of model

and moment selection vectors that is chosen by the researcher in practice, having a

limited set of model specifications and moment conditions in mind. The parameter
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space P is a smaller space than M ensuring that the estimator (b̂, ĉ) has good finite

sample behavior and is computationally feasible. For instance, when moment condi-

tions are comprised of quantile dependencies λq, q ∈ (0, 1), it is infeasible to consider

infinitely many quantile dependencies on the grid over q. Using a large number of

quantile dependence measures would lead to a cumbersome computational burden in

the estimation of (b̂, ĉ). The parameter space P can also incorporate the information

that certain moments are known to be correct and certain parameters in the models

are known to be non-zero.

Define MP1 = P ∩M1 as the set of pairs of selection vectors in the parameter

space P that select the models and moments that are asymptotically equal to zero

evaluated at some parameter vectors. We further define a set of selection vectors in

MP1 as

MP2 = {(b̂, ĉ) ∈MP1 : |ĉ| − |b̂| ≥ |c̃| − |b̃|,∀(b̃, c̃) ∈MP1},

which is the set of selection vectors in MP1 with the maximum number of over-

identifying restrictions.

The setsMP1 andMP2 can be both empty or non-empty. In the former case, there

is no pair (b̂, ĉ) in the parameter space with over-identified parameters which fits to

the data generating process, i.e., which ensures that gT,S(θ) equals zero asymptotically.

We will consider this case separately, but first focus on the standard non-empty case.1

The selection procedure in Andrews & Lu (2001) is constructed on the J test

statistic. Similarly, our simultaneous model and moment selection criterion is defined

as:

MSCT,S(θb, c) = JcT,S(θb)− (|c| − |b|)κT,S, (11)

where JcT,S(θb) = min(T, S)gcT,S(θb)′Ŵ c
Tg

c
T,S(θb). |c| denotes the number of moment

conditions used in the SMM, which are based on the selected dependence measures

under consideration such as Spearman’s rho and quantile dependence λq, q ∈ (0, 1),

1Note that even if gT,S(θ) equals zero asymptotically, the moment conditions could have been

derived from a model which is different from the actual data generating process. This can arise if two

different models lead to the same moment conditions, as it is the case in certain copula models, see

Fredricks & Nelsen (2007). It is the task of the researcher to choose the moment conditions such that

sufficiently accurate statements about the data generating process are possible.
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the dependence measured used throughout this paper. The penalizing factor κT,S can

be specified in the following three ways, which are analogous to classical information-

based criteria adapted to our setting:

SMM-AIC : κT,S = 2,

SMM-BIC : κT,S = ln(min (T, S)),

SMM-HQIC : κT,S = Q ln ln(min (T, S)) for some Q > 2.

The estimator of the vector of the model and moment selection based on MSC is

determined by minimizing the MSC criterion, i.e.,

(b̂MSC , ĉMSC) := arg min
(b,c)∈P

MSCT,S(θb, c). (12)

The intuition behind this criterion is as follows. In the case of a correctly specified

model, the J statistic converges to a random variable by construction and the more

parsimonious model with more correct moments will be preferred by the procedure. In

contrast, when the model is misspecified, the J statistic diverges asymptotically with

the divergence being faster in the case of more incorrect moments, which enlarge the

J statistic.

The consistency of the MSC estimator for the selection vector requires the following

two assumptions.

Assumption 5 κT,S = o(min{T, S}) and κT,S →∞, as T, S →∞.

Assumption 6 MP2 = {(b0, c0)}, where b0 is the model selection vector for the true

model.

Assumption 5 ensures that the penalty term diverges to ∞. Assumption 6 guarantees

that the set contains one single element, i.e., the selection vector of the true model and

correct moments. It rules out the case that MP2 is empty but also that it contains

multiple elements. For example, given a certain set of moment conditions, suppose

there exists a selection vector (b∗, c∗) ∈MP1 with (b∗, c∗) 6= (b0, c0), but this selection

vector has the same number of over-identifying conditions as the one which represents

the true model, i.e., |c∗| − |b∗| = |c0| − |b0|. Both (b∗, c∗) and (b0, c0) are included in

MP2 and the selection procedure could fail to discriminate between those two vectors.

Assumption 6 also implies that the selection vector (b0, c0), which points to the true
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model along with a set of correct moments, lies in P . Hence, M must also contain

(b0, c0).

Proposition 1 Suppose Assumptions 1 to 6 hold. (b̂MSC , ĉMSC) = (b0, c0) ∈ P , wp→

1, as T, S →∞.

The proof of Proposition 1 can be found in the appendix. wp → 1 denotes that

the probability goes to 1 as T, S → ∞. Clearly, the SMM-AIC procedure is not

consistent since κT,S = 2 does not satisfy Assumption 5. The simultaneous selection

procedure asymptotically selects the true model and the largest possible number of

correct moment conditions. If Assumption 6 does not hold and Assumption 4 holds,

two possible cases emerge: MP2 could be either non-empty or empty. In the first

case, the setMP2 contains multiple elements. For example, ifMP1 only contains two

vectors, i.e.,MP1 = {(b, c1), (b, c2)} with |c1| − |b| = |c2| − |b|, then both two vectors

are included in MP2. In this case, we have the following corollary:

Corollary 1 Suppose Assumptions 1 to 5 hold and MP2 6= ∅, (b̂MSC , ĉMSC) ∈MP2,

wp→ 1, as T, S →∞.

Corollary 1 is self-evident from the proof of Proposition 1. In the second case,MP2 =

∅, then MP1 is empty and {(b0, c0)} /∈ P . This means that there exists no selection

vector (b, c) ∈ P such that gcT,S(θb) →p 0, as T, S → ∞. We adapt the set MP1

to MP ′1 = {(b, c) ∈ P : infθb∈Θ g
c
0(θb)′W c

0g
c
0(θb) ≤ infθb∗∈Θ g

c∗
0 (θb∗)′W c∗

0 g
c∗
0 (θb∗),

∀(b∗, c∗) ∈ P}, where min(T, S)−1MSCT,S(θb, c) →p infθb∈Θ g
c
0(θb)′W c

0g
c
0(θb), for

(b, c) ∈ P , as T, S →∞. If (b, c) ∈ P but (b, c) /∈MP1, infθb∈Θ g
c
0(θb)′W c

0g
c
0(θb) > 0.

In this case, we have the following corollary:

Corollary 2 Suppose Assumptions 1 to 5 hold and MP2 = ∅, (b̂MSC , ĉMSC) ∈MP ′1,

wp→ 1, as T, S →∞.

Therefore, in the case that for none of the model candidates the moment condi-

tions hold asymptotically, our procedure selects the model that asymptotically mini-

mizes the (weighted) distance between true and the model implied moment conditions,

i.e., gc0(θb)′W c
0g

c
0(θb). In applied work, when it is likely that all candidate models

are misspecified in some sense, one may therefore expect our criterion to select a
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model/moment combination that fits the data as well as possible with respect to the

considered moments conditions, while maintaining parsimony in the parametrization

of the model.

5 Simulation Study

We investigate the finite sample performance of the selection procedure in this section.

Section 5.1 focuses on the in-sample performance. A comparison of different model

and moment combinations is conducted and we try to identify which specific moment

conditions are useful for the task of model selection. Section 5.2 is concerned with the

out-of-sample forecasting performance of the Value-at-Risk of different combinations

of models and moments.

5.1 Estimation and In-sample Fit

Consider the following factor copula model as the data generating process:

Xi = βZ + εi, i = 1, 2, · · · , N,

Z ∼ Skew t(ν−1, λ),

εi ∼ iid t(ν−1), and εi ⊥ Z, ∀i

(X1, · · · , XN)′ ∼ FX = C(G1, · · · , GN).

(13)

All factor loadings are restricted to be identical, and the true coefficient is specified as

β0 = 1. This corresponds to an equi-dependence model and the variance of the common

factor is half of the variance of each variable Xi, i = 1, . . . , N . We consider time-varying

conditional means and variances in the marginal distributions of the variables, i.e., we

assume an AR(1)-GARCH(1,1) process,

Yi,t = φ0 + φ1Yi,t−1 + εi,t, εi,t = σi,tηi,t, t = 1, . . . , T, i = 1, . . . , N,

σ2
i,t = ω + γσ2

i,t−1 + αε2i,t−1,

ηt = [η1,t, . . . , ηN,t] ∼iid Fη = C(Φ,Φ, . . . ,Φ),

(14)

where C is implied by the equi-dependent factor copula model above and Φ is the

cumulative distribution function of the standard normal distribution. In the estimation

step, the AR-GARCH parameters are estimated by MLE in the first stage and the
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standardized residuals η̂i,t are obtained after the conditional mean and variance are

filtered out. These quantities are used to estimate copula parameters in the second

stage. We use S = 25 × T simulations in the calculation of simulated dependence

measures in the SMM estimation. The procedure is briefly summarized as:

1. Generate a T × N matrix of pseudo random numbers uniformly distributed in

[0, 1] from a given factor copula.

2. Transform each margin by the inverse AR(1)-GARCH(1,1) filter with Gaussian

innovations and parameter vector

φ = (φ0, φ1, ω, α, γ)′ = (0.01, 0.05, 0.05, 0.1, 0.85)′

to obtain the simulated data.

3. Estimate an AR(1)-GARCH(1,1) model for each marginal series and calculate the

corresponding standardized residuals η̂t. Obtain the probability integral trans-

formation of the residuals ût using the empirical distribution function (EDF).

4. Based on the transformed residuals ût, each candidate pair of model and moments

is estimated by SMM with the identity weighting matrixW = Ir. Then calculate

the quantities of the simultaneous selection procedure (MSC) evaluated at the

estimated parameter vector θ̂.

5. Repeat the steps 1-4 R = 200 times and record the empirical selection frequencies

of all combinations of models and moments based on the selection procedure.

All parameters of the factor copula model are treated as unknowns in the model

estimation and we are considering the case of nested models. Note that the shape

parameters ν in the latent factor and the idiosyncratic term are specified to be iden-

tical, and thus we have θ = (β, ν−1, λ)′. Four factor copula models are consid-

ered as true underlying DGPs in this section. When both the tail parameter2 ν−1

and the skewness parameter λ are zero, corresponding to the selection vector b1 =

(1, 0, 0)′, this corresponds to the normal-normal factor copula (abbreviated as n-n

2The shape parameter ν is reparametrized as ν−1 in order to be able to get more accurate estimation

results.
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thereafter). The t-t factor copula with θ = (1, 0.25, 0)′ is obtained by the selec-

tion vector b2 = (1, 1, 0)′. The case b3 = (1, 1, 1)′ implies the skew t-t factor cop-

ula with θ = (1, 0.25,−0.5)′. The last DGP we consider is the skew normal-normal

factor copula (abbreviated as skewn-n thereafter) with θ = (1, 0,−0.5)′ specified by

b4 = (1, 0, 1)′. Spearman’s rho and quantile dependence λq at quantiles q ∈ (0, 1)

are adopted as the dependence measures. The sets of moment conditions under con-

sideration are m1 = {λ0.01, λ0.05, λ0.1, λ0.15}, m2 = {ρS, λ0.01, λ0.05, λ0.1, λ0.15}, m3 =

{ρS, λ0.05, λ0.1, λ0.9, λ0.95}, m4 = {ρS, λ0.25, λ0.45, λ0.55, λ0.75}, m5 = {ρS, λ0.05, λ0.1, λ0.25,

λ0.45, λ0.55, λ0.75, λ0.9, λ0.95}. The choices of the sample length are T = 500, 1000, 20003

and we consider the dimensions N = 5, 10. The results in all scenarios are based on

R = 200 Monte Carlo replications.

Table 1 reveals the selection frequency for various model specifications, i.e., the

fraction of times that a specific combination of the four candidate models and five sets

of moments is chosen according to the SMM-BIC criterion4. Not surprisingly, the BIC

selection procedure rewards the additional usage of moment conditions and it selects the

models combined with largest moment set m5. Panel A together with Panel B in Table

1 show the dimension effect on the selection frequencies whereas Table 1 together with

Tables S.A.1 to S.A.4 in web appendix show the effect of the sample size. The selection

procedure generally produces higher correct selection rates when the sample size or the

dimension is increased. The probabilities of choosing the true model are closer to 1

when the sample size increases from T = 500 to T = 2000 or the dimension increases

from N = 5 to N = 10. Given the property of the equi-dependence model, there is only

one unknown factor loading to be estimated. Increasing the dimensionality does not

increase the number of unknown parameters, but increases the effective sample size for

an equally complex model. Therefore, the selection procedure becomes more powerful

not only with an increasing sample size but also with an increasing dimensionality.

Table 1 about here
3Here we only present the results for the case T = 1000. The results for T = 500, 2000 can be

found in Tables S.A.1 to S.A.4 in the supplemental appendix to this article.
4The results based on SMM-AIC and SMM-HQIC are available in Tables S.A.5 to S.A.12 in the

supplemental appendix to this article.
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Furthermore, Table 2 presents the empirical selection frequencies of the candidate

models for a predetermined choice of moments for N = 5 and N = 10 dimensions.

The choice of moment conditions affects the performance of the selection procedure in

the model selection. We illustrate the importance of the choice of quantile dependence

measures from the following three comparisons:

First, comparing the candidate sets of moments m3 and m4, the former solely uti-

lizes Spearman’s rho and tail quantile dependence measures, the latter merely consists

of Spearman’s rho and quantile dependence measures in the center of the distribution.

One can observe in Table 2 that the procedure works worse with the quantile depen-

dence measures in the middle area m4. No matter which model is the true model,

the selection procedure highly prefers n-n model. For example, when the t-t factor

copula is the true model, the selection frequencies of the n-n factor copula are close to

1 regardless of the dimension and the sample size, whereas the selection rates of the t-t

factor copula remain zero. This is not surprising due to the fact that only the quantiles

in the central region are considered, which do not capture the dependence structure in

the tails.

Second, considering the candidate sets of moments m1 and m3, the first set only

includes quantile dependence measures at the left tail, whereas the second set considers

quantile dependence measures at both tails. When m1 is used in the estimation and

the true DGP is an asymmetric model, i.e., the skewn-n or skewt-t factor copula, the

selection procedure points to the n-n and t-t factor copulas, their symmetric counter-

parts, respectively. This is due to the fact that the set m1 excludes the dependence

measures at right tail and is not able to capture the asymmetric dependence structure

in the data.

Third, compared with m1, the set m2 additionally includes Spearman’s rho com-

pared to the set m1. Although both sets exclude quantile dependence measures at the

right tail, the problem of merely capturing symmetric dependence structure is resolved

with increasing sample size due to the inclusion of ρS .

Table 2 about here

To sum up, the simultaneous selection of models and moments consistently selects

the true model combined with the moment set with the largest number of moment con-
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ditions. The selection frequencies of the correct model improve with higher dimensions

or larger sample sizes except in the case when one only utilizes quantile dependence

measures at the central region of the support in the selection of the models.

5.2 Value-at-Risk Prediction

Precise estimates and forecasts of the Value-at-Risk (VaR) are often of interest in risk

management. We use the following simulations to compare the performance of the

correctly specified model and misspecified models in terms of their VaR forecasting

accuracy. The usage of moment based estimation with factor copulas makes it possible

to solely concentrate on the representation of the dependence structure in a specific

region of the support instead of the global area. Hence, it is possible to restrict the

choice of dependence measures to certain quantiles when one deals with a problem

such as estimating the VaR. Given that the underlying DGP is generally unknown, the

simulation design is to additionally answer the question whether a wrong model could

achieve an acceptable or even better performance in the forecasting task, especially

when the misspecified model has fewer parameters.

In this section, we consider the same models as in previous section, but restrict the

sets of moment conditions to m1 = {λ0.01, λ0.05, λ0.1, λ0.15}, m2 = {ρS, λ0.01, λ0.05, λ0.1,

λ0.15}, and m5 = {ρS, λ0.05, λ0.1, λ0.25, λ0.45, λ0.55, λ0.75, λ0.9, λ0.95}. In contrast to the

previous section, the data generating process is the skewt-t factor copula with param-

eters β = 1, ν−1 = 0.25 and λ = −0.5. The marginal dependence structure is the same

as in Section 5.1. The equal weighted portfolio consists of N series of returns and we

consider N = 5 and N = 10. The portfolio return at time t is determined by

Yp,t = log(1 +
1

N

N∑
i=1

(exp(Yi,t)− 1)), (15)

where Yi,t is the simulated return of the i-th stock. The simulation procedure is as

follows.

1. Simulate a sample of T = 1500 returns Y from the true factor copula model

with a Gaussian AR-GARCH model for the margins. We select the first Te =

1000 observations as the estimation window whereas the remaining Ts = 500

observations are left for testing the VaR forecasts.
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2. For each t in the test window we compute the true VaR obtain using B1 =

1, 000, 000 random draws generated from the true DGP, i.e., the skewt-t factor

copula model using the true parameters with Gaussian margins using the true

conditional mean µt and variance σ2
t .

3. At each time point t in the test window, we estimate the dynamic parameter

vector φt−1 with a rolling window of length l = 1000 based on the information

up to t − 1. This is used to predict the conditional mean vector µ̂t(φ̂t−1) and

conditional volatility vector σ̂t(φ̂t−1) at time t.

4. Only using the data from the estimation window, estimate the parameters θ =

(β, ν−1, λ)′ of the n-n, skewn-n, t-t and skewt-t factor copula models using the

three candidate sets of moment conditions, respectively.5

5. The predicted VaRs are computed using B2 = 100, 000 simulations from the es-

timated factor copula models and the predicted conditional means and variances

from Step 3.

6. Repeat steps 1-5 for R = 100 times, record the average coverage rate of the VaR

violations, the average percentage bias, the average percentage RMSE and the

average loss of VaR forecasts in test window. The Diebold & Mariano (1995) test

is used to obtain a pairwise comparison of the VaR forecasting accuracy of the

four candidate models along with the three sets of moment conditions.

The average coverage rate Cov is the ratio of number of VaR exceedances and the

length of test window averaged over the R Monte Carlo replications. Since the ‘true’

VaR changes over time, we compute the average of %bias and %RMSE of the VaR

forecasts. The average %bias of the VaR forecasts is calculated via

%bias =
1

Ts

Ts∑
t=1

100
1

R

R∑
r=1

VaRr,t − VaR0
r,t

|VaR0
r,t|

,

whereas the average %RMSE of the VaR forecasts follows

%RMSE =
1

Ts

Ts∑
t=1

100

√√√√ 1

R

R∑
r=1

(VaRr,t − VaR0
r,t

VaR0
r,t

)2

.

5Note that re-estimating the copula parameters over the rolling window was computationally in-

feasible.
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The loss function used to make the pairwise comparisons of the VaR prediction using

the Diebold & Mariano (1995) test is chosen as (see Gneiting 2011)

L(Yp,t,VaRα,t) = α(Yp,t−VaRα,t)(1− I[Yp,t<VaRα,t]) + (1−α)(VaRα,t− Yp,t)I[Yp,t<VaRα,t].

(16)

The average loss of the VaR forecasts over the test horizon and the R Monte Carlo

replications is computed by

Loss =
1

Ts

Ts∑
t=1

1

R

R∑
r=1

L(Y r
p,t,VaRr

α,t).

The upper panels in Tables 3 and 4 list the average coverage rate, average %bias and

average %RMSE of the 5%-VaR and 1%-VaR forecasts for N = 10.6 The misspecified

models perform reasonably well in terms of the coverage rates as well as in terms of

the %bias and %RMSE when a small set of moments is used. For example, looking at

the 5%-VaR forecasts, the average coverage rate obtained from the t-t factor copula is

close to the nominal level 5% when m1 is used. The average %RMSE is only slightly

larger than that from the true model. If m1 is selected, the t-t model achieves a smaller

average %bias than the skewt-t model. However, when the quantile dependence at the

upper tail is included into the set of moments, the misspecified models perform much

worse than the true model in terms of these three metrics. Overall, however, the most

accurate average coverage rate, lowest average %bias and lowest average %RMSE are

achieved by the skewt-t model. The results for the 1%-VaR forecasts in Table 4 show

similar results.

Table 3 and 4 about here

In the lower panels of Tables 3 and 4, the Diebold-Mariano (DM) test provides

additional information on the pairwise comparisons between the models in terms of

the VaR forecasting error. Regarding the 5%-VaR forecasts, when quantiles only at

the lower tail are taken into account, the n-n factor copula model surpasses any other

possible combinations of models and sets of moments. When Spearman’s rho is ad-

ditionally included in the set of moments, the n-n factor copula continues to be the

6The results of N = 5 case are available in Tables S.A.13 and S.A.14 in the supplemental appendix

to this article.
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preferred model except when the candidate model is the skewn-n factor copula along

with m1 or m2. This could be explained by the fact that n-n factor copula is the most

parsimonious model among all candidate models. The t-t factor copula along with the

set m1 is preferred in comparison with the skewt-t factor copula estimated using m1.

When any other set of moments is utilized, the t-t factor copula is strongly dominated

by the skewt-t factor model along with all possible choices of moments. When the

skewt-t, t-t and n-n models are paired with the moment set m5, which also includes

Spearman’s rho and the upper tail quantiles {λ0.9, λ0.95}, the skewt-t model eventually

outperforms both the t-t and n-n models. The skewn-n model generally dominates the

t-t and skewt-t factor copula models regardless of the choice of moment conditions.

When it comes to the evaluation of the 1%-VaR forecasts in Table 4, apart from the

result that the fraction of indifferent decisions between two models based on DM test

increases compared to the case of 5%-VaR forecasts, the combinations involving the n-n

factor copula tend outscore other combinations of models and moments less frequently.

For instance, the t-t factor copula model is able to produce better forecasts than the

n-n model when both of them use lower tail quantiles, i.e., the moment sets m1 and m2.

In addition, the skewt-t model along with any choice of moment sets outperforms the

combination of the n-n model and the set m1 in approximately 20% of the replications.

For the full set of moment conditions m5 the skewt-t model dominates the n-n model.

The worse performance of n-n model compared to the 5%-VaR can be explained by

its lack of tail dependence. When both the skewt-t and t-t models use the moment set

m1, the t-t model achieves a lower %RMSE than the true model and is selected more

often by the Diebold-Mariano statistic. Although the t-t factor copula is not able to

capture the asymmetric characteristics of the true DGP, it is less parametrized and

its performance in VaR prediction is quite acceptable even though it is misspecified.

Finally, the skewt-t factor copula outperforms the skewn-n factor copula regardless of

the choice of moment conditions.
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6 Empirical Illustration

In this section, the model and moment selection procedure is applied to determine an

appropriate dependence model for daily log returns of ten stocks in the DAX 30 index:

SAP, Siemens, Deutsche Telekom, Bayer, Allianz, Daimler, BASF, BMW, Continental

and Deutsche Post. These companies possessed the ten highest market values in the

index on May 31, 2016. The sample ranges from January 1, 2010 to May 31, 2016, and

T = 1629 observations are obtained after the exclusion of non-trading and settlement

days. The descriptive statistics can be found in Panel A of Table 5. The means of the

log returns (in percentages) are close to zero, and all stock returns are left-skewed and

leptokurtic.

Table 5 about here

To estimate the factor copula model, it is necessary to filter out the conditional

mean and variance in each of the ten series in the first step. We consider the AR(1)-

GJR-GARCH(1,1,1) model with skewed Student t distributed innovations, see Glosten

et al. (1993).

ri,t = φ0,i + φ1,iri,t−1 + εi,t, εi,t = σi,tηi,t,

σ2
i,t = ωi + αiε

2
i,t−1 + βiε

2
i,t−11εi,t−1≤0 + γiσ

2
i,t−1,

(17)

where ri,t denotes the log return of stock i for i = 1, . . . , 10. Unlike in Oh & Patton

(2013) and Oh & Patton (2017), the market returns are not considered in modeling

time-varying conditional means and variances. The parameters determining the dy-

namics of the margin are estimated via MLE and the results are presented in Panel B

of Table 5. The estimated residuals η̂it are obtained using the estimated parameters

and the transformation of the residuals η̂it to uniform series is accomplished by the

empirical distribution function (EDF).

Table 6 presents the sample dependence measures between the ten stocks. The

upper panel shows the sample Spearman’s rho of the uniform residuals, which ranges

from 0.402 to 0.796. The lower panel presents quantile dependence measures at the

tails. The elements in the upper triangular matrix are computed as the average of

the 1% and 99% quantile dependence measures λ0.01 and λ0.99. For some cases, we
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observe rather weak tail dependence, for example, zero dependence between Deutsche

Telekom and Continental. However, substantial tail dependence is observed between

Bayer and BASF, or between BMW and Daimler. This could be explained by the

fact that stocks belonging to the same industry sector behave similarly in crashes or

booms. The difference between the 90% and 10% quantile dependence presented in the

lower triangular matrix reveals some degree of asymmetry in the dependence. Since all

elements are negative, this left skewness indicates higher dependence in crashes than

during booms.

Table 6 about here

Next, the various factor copula models are estimated. The n-n factor copula corre-

sponds to the Gaussian Copula and the skewn-n factor copula allows for the asymmetric

dependence but imposes zero tail dependence. The t-n and t-t factor copulas imply

symmetric tail dependence whereas the skewt-n and skewt-t factor copulas allow tail

dependence in both tails and an asymmetric dependence structure. Figure 2 shows the

sample and fitted quantile dependence measures by three of those factor copula models

estimated using the sets of moment conditions m1, m2, m3, m4 and m5 (as defined in

Section 5.1), respectively. In general, all presented model/moment combinations fit the

lower tail of the distribution fairly well, with the exception of the skewt-t in combina-

tion with m4. However, the fit in the upper tail is considerably worse when the models

are estimated with m1, m2 and m4, which do not contain quantile dependence in this

region of the support. Overall, it appears that the less parametrized models n-n and

skewn-n fit the data fairly well when used together with the appropriate moments.

Figure 2 about here

The first three columns in Table 7 contain the estimated parameters for the 30

model/ moment combinations. Note that the identity matrix I is fixed as the weighting

matrix in the SMM estimation. The p-values of the over-identifying test proposed by

Oh & Patton (2013) are additionally provided. The limit distribution of this test is

approximated via B = 1000 bootstrap replications. The step size εT,S utilized in the

computation of the numerical derivative of gcT,S(θb) at θb = θ̂T,S is 0.005. The results
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of the J tests show that the skewt-t factor copula is clearly rejected for the sets of

lower-tail-moments m1 and m2, but not rejected for the sets m3, m4 and m5 at the

5% significance level, whereas the n-n factor copula is not rejected when m1 and m2

are used, but it is rejected when m3 and m5 are used. Only the skewt-n and skewn-

n models are not rejected at the 5% significance level for any set of moments. This

information is not very useful in comparing and ranking various model candidates and

the choice of moment conditions. To this end, our selection procedure is applied.

Table 7 about here

The selection decisions are presented in the last three columns in Table 7. The

SMM-AIC, SMM-BIC and SMM-HQIC criteria agree on the skewn-n factor copula

model along with the moment set with the largest number of overidentifying conditions,

i.e., m5, as the best choice out of all combinations of models and moments. It is followed

by the skewt-n factor copula and the skewt-t factor copula with the same moment set.

It highlights the importance of the skewness parameter in these factor copula models.

The best model implies an asymmetric dependence but zero tail dependence in the

empirical data. The estimators of the tail parameter ν̂−1 from the second and the

third best model are close to zero, which further validates that the empirical data

possesses little tail dependence. Models allowing for tail dependence therefore perform

worse. When the set of moments is predetermined as m2, m3 or m5, the skewn-n factor

copula dominates the other models. Restricted to m1 and m4, the n-n model is selected

as the best model.

Lastly, one-day ahead VaR forecasting and backtesting is performed on the portfolio

of these ten stocks. Each stock is assigned an equal weight in this portfolio. For the

sake of simplicity, we fix the set m5 as the selected set of moments. In order to evaluate

the accuracy of the VaR forecasts at the 5% and 1% level, we backtest the six factor

copula models as follows.

1. The whole sample is initially split into the estimation period with sample length

Te = 1000 and the testing period with sample length Ts = 629.

2. For each time t in the testing period, the past Te data points, i.e., the sample

from t−Te+1 to t−1, are utilized in the estimation of the copula parameters θt−1
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for all six models and the parameters φt−1 of the margins. The one-step-ahead

forecasts of the conditional means and variances are obtained by the plug-in

method based on the information up to t− 1.

3. To approximate the distribution of portfolio returns at time t, we simulate B =

100, 000 standardized residuals η̂t which are determined by θ̂t−1 in each factor

copula model along with φ̂t−1 in the AR(1)-GJR-GARCH(1,1,1) models for the

margins. For each copula model, we use rst = µ̂t(φ̂t−1) + σ̂t(φ̂t−1)η̂t to generate

the simulated distribution of the return at time t. An equally weighted portfolio

is constructed from these simulated returns.

4. The 5%- and 1%-VaR forecasts at time t are computed based on the simulated

distribution of portfolio returns. The number of VaR violations and the corre-

sponding coverage rate are obtained by comparing the VaR forecasts and the

actual returns.

To evaluate the forecasting performance of the competing models, three tests are

performed to test the coverage level and the distribution of the violations: the uncon-

ditional coverage test by Kupiec (1995), the conditional coverage test by Christoffersen

(1998) and the dynamic quantile test by Engle & Manganelli (2004). The results are

available in Table 8. For the 5%-VaR forecasts all average coverage rates are generally

slightly larger than the nominal VaR level. None of the factor copula models is rejected

by the unconditional coverage test of Kupiec at the 5% significance level. The conclu-

sions from the conditional coverage test stay in line with the unconditional coverage

test. The dynamic quantile test provides further information on the distribution of the

VaR violations. It shows that the violations are independent to each other for the VaR

forecasts from all factor copula models. When it comes to 1%-VaR forecasts, none of

models is rejected by any of the three tests. Given the fact that the testing window

in our analysis is rather short, the occurrence of VaR violations at 1% level can be

considered as relatively rare events. One could prolong the testing window to check if

the difference of the performance of the VaR forecasts turns out to be significant.

Table 8 about here
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The Diebold-Mariano test is used to compare the performance of the VaR forecasts

between pairs of models. Considering the 5%-VaR forecasts, Table 9 shows that the

skewed factor copula models are preferred and smaller models mostly outperform can-

didate models with more parameters. For instance, the skewn-n factor copula stands

out in the skewed family, since it solely focuses on modeling the asymmetric depen-

dence structure and has few parameters. This also coincides with the results from our

selection procedure. When it comes to the 1%-VaR forecasts, the family of skewed

models remains the most favorable choice. In addition, the Diebold-Mariano test tends

to be indifferent in more occasions compared to the 5%-VaR analysis. For example, the

forecasting performance of skewt-t and skewt-n are as good as for the skewn-n model

for the 1%-VaR.

Table 9 about here

7 Conclusions

Since most factor copula models do not have a closed-form likelihood, this causes ad-

ditional difficulties in the selection task of models and moments. In this paper, by

integrating the specification test for factor copula models proposed by Oh & Patton

(2013) into the model and moment selection framework in Andrews & Lu (2001), we

obtain a simultaneous model and moment selection procedure for factor copula mod-

els. The consistency of the selection procedure is mathematically shown and its finite

sample performance is validated by Monte Carlo simulations under various scenarios.

We find that the choice of quantile dependence measures plays a crucial role in the

selection of models. If one is merely concerned with VaR forecasts, a smaller model

with quantile dependence measures at the lower tail may achieve a good forecasting

performance. We also perform the selection procedure for the dependence modeling

based on a real data set. The empirical findings corroborate the performance of the

selection procedure in the sense that it chooses the candidate models with the largest

number of over-identifying restrictions. Here, we only consider a rather simple model,

i.e., the equi-dependence factor copula model. In the future research, it would be valu-

able to examine the performance of the proposed selection methods on other models
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such as blockwise dependence models. A further application of the method would be

the choice of the number of factors.
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A Proofs

A.1 Proof of Proposition 1

Proof According to Oh & Patton (2013), Assumption 1 and Assumption 2(iii) imply

the stochastic Lipschitz continuity of gT,S(θ). Lemma 2.9 in Newey & McFadden (1994)

shows that the stochastic Lipschitz continuity of gT,S(θ) guarantees the stochastic

equicontinuity of gT,S(θ). By Lemma 2 in Oh & Patton (2013), when Assumption 2 is

fulfilled, then supθ∈Θ ||gT,S(θ) − g0(θ)|| →p 0 as T, S → ∞ if and only if gT,S(θ) →p

g0(θ),∀θ ∈ Θ, and gT,S(θ) is stochastically equicontinuous. Given Assumption 2(iv),

Lemma 3 in Oh & Patton (2013) shows that uniform convergence of gT,S(θ) implies

uniform covergence of QT,S(θ), i.e., if supθ∈Θ ||gT,S(θ) − g0(θ)|| →p 0, as T, S → ∞,

then supθ∈Θ |QT,S(θ) − Q0(θ)| →p 0, as T, S → ∞. Let gcT,S(θb) be the moment

conditions selected by the moment selection vector c evaluated at θb, which is the

SMM estimator obtained from the model selected by model selection vector b. Then,

for (b, c) ∈ P , we have

min(T, S)−1J cT,S(θb) := gcT,S(θb)′Ŵ c
Tg

c
T,S(θb)→p g

c
0(θb)′W c

0g
c
0(θb), as T, S →∞.

(A.1)

For any (b, c) ∈MP1, there exists θb ∈ Θ such that gc0(θb) = 0. Therefore, we have

min(T, S)−1J cT,S(θb)→ 0, as T, S →∞.

Together with Assumption 5, κT,S = o(min(T, S)), the above equation yields, for

(b, c) ∈MP1,

min(T, S)−1MSCT,S(θb, c) = min(T, S)−1J cT,S(θb)−min(T, S)−1(|c| − |b|)κT,S →p 0.

For (b, c) ∈ P , but (b, c) /∈MP1, it holds that ∀θb ∈ Θ, gc0(θb) 6= 0. In addition, W c
0

is positive definite by Assumption 2(iv). Then Equation (A.1) and Assumption 5(i)

give:

min(T, S)−1J cT,S(θb, c)→p g
c
0(θb)′W c

0g
c
0(θb) > 0

and therefore, for (b, c) ∈ P , but (b, c) /∈MP1,

min(T, S)−1J cT,S(θb, c)−min(T, S)−1(|c| − |b|)κT,S →p g
c
0(θb)′W c

0g
c
0(θb) > 0 (A.2)
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as T, S →∞. The combination of Equations (A.1) and (A.2) implies (b̂MSC , ĉMSC) ∈

MP1, wp → 1 given the definition of (b̂MSC , ĉMSC) := arg min(b,c)∈P MSCT,S(θb, c).

Suppose that (bi, ci), (bj, cj) ∈ MP1, i 6= j, but (bi, ci) ∈ MP2 and (bj, cj) /∈ MP2,

then we have (|ci| − |bi|)− (|cj| − |bj|) =: c > 0 by the definition of the set MP2.

Now, define MSCT,S(θbi , ci) = J ciT,S(θbi) − (|ci| − |bi|)κT,S and MSCT,S(θbj , cj) =

J
cj
T,S(θbj)− (|cj| − |bj|)κT,S. Then, with Assumption 5, we have

1

κT,S

(
MSCT,S(θbi , ci)−MSCT,S(θbj , cj)

)
=

1

κT,S

(
J ciT,S(θbi)− J cjT,S(θbj)

)
− c→p −c ≤ 0

as T, S → ∞. Therefore (b̂MSC , ĉMSC) ∈ MP2, wp → 1. Assumption 6 ensures that

MP2 = {(b0, c0)}, then this directly leads to (b̂MSC , ĉMSC) = (b0, c0), wp→ 1. �

A.2 Proof of Corollary 2

Proof If MP1 6= ∅, then by definition of MP2, MP2 must contain at least one

element, i.e., MP2 6= ∅. Therefore, if MP2 = ∅, then MP1 = ∅. For (b̂MSC , ĉMSC) ∈

P ,

min(T, S)−1MSCT,S(b̂MSC , ĉMSC)

= min(T, S)−1J ĉMSC
T,S (b̂MSC , ĉMSC)−min(T, S)−1(|ĉMSC | − |b̂MSC |)κT,S.

According to equation (A.2) in the proof of Proposition 1 in Section A.1, for (b̂MSC , ĉMSC)

∈ P , (b̂MSC , ĉMSC) /∈MP1, we have

min(T, S)−1MSCT,S(b̂MSC , ĉMSC)→p g
ĉMSC
0 (θb̂MSC )′W ĉMSC

0 gĉMSC
0 (θb̂MSC ).

By definition of (b̂MSC , ĉMSC) := arg min(b,c)∈P MSCT,S(θb, c), for θb ∈ Θ. Hence,

(b̂MSC , ĉMSC) ∈MP ′1. �

B Tables
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Table 1: Simulation results: empirical selection frequencies among all model/moment

combinations based on the BIC for T = 1000 and N = 5, 10 dimensions

Panel A: N = 5 Panel B: N = 10

Ĉ

C0
n-n t-t skewn-n skewt-t n-n t-t skewn-n skewt-t

m1

n-n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

t-t 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

skewn-n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

skewt-t 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

m2

n-n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

t-t 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

skewn-n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

skewt-t 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

m3

n-n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

t-t 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

skewn-n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

skewt-t 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

m4

n-n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

t-t 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

skewn-n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

skewt-t 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

m5

n-n 0.980 0.435 0.060 0.000 0.995 0.480 0.020 0.000

t-t 0.000 0.480 0.000 0.000 0.000 0.460 0.000 0.000

skewn-n 0.020 0.035 0.940 0.270 0.005 0.015 0.980 0.205

skewt-t 0.000 0.050 0.000 0.730 0.000 0.045 0.000 0.795

Note: The vector of true model parameters is (β, ν−1, λ)′ = (1, 0.25,−0.5)′. The element-wise product

of θ and the selection vector b gives one specific candidate model. The n-n, skewn-n, t-t and skewt-

t factor copula models are the candidate models used in SMM estimation. The candidate sets of

moments are mi, i = 1, . . . , 5. The marginal distributions of the simulated data follow an AR(1)-

GARCH(1,1) process, see equation (14). The sample length is T = 1000. The number of Monte

Carlo replications is R = 200. Ĉ (rowwise) denotes the model/moment combination selected by the

SMM-BIC selection procedure, C0 (columnwise) denotes the DGP. The highest selection frequencies

are marked in bold.
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Table 2: Simulation results: empirical selection frequencies of models given predeter-

mined sets of moments based on the BIC for T = 1000 and N = 5, 10 dimensions

Panel A: N = 5 Panel B: N = 10

Ĉ

C0
n-n t-t skewn-n skewt-t n-n t-t skewn-n skewt-t

m1

n-n 0.985 0.470 0.945 0.195 0.985 0.450 0.985 0.205

t-t 0.015 0.525 0.045 0.795 0.015 0.550 0.015 0.790

skewn-n 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.000

skewt-t 0.000 0.005 0.000 0.010 0.000 0.000 0.000 0.005

m2

n-n 0.965 0.250 0.705 0.000 0.985 0.275 0.795 0.000

t-t 0.035 0.670 0.160 0.655 0.015 0.670 0.090 0.635

skewn-n 0.000 0.080 0.135 0.075 0.000 0.055 0.115 0.065

skewt-t 0.000 0.000 0.000 0.270 0.000 0.000 0.000 0.300

m3

n-n 0.980 0.535 0.090 0.000 0.995 0.610 0.040 0.000

t-t 0.000 0.400 0.000 0.000 0.000 0.325 0.000 0.000

skewn-n 0.020 0.035 0.910 0.305 0.005 0.030 0.960 0.295

skewt-t 0.000 0.030 0.000 0.695 0.000 0.035 0.000 0.705

m4

n-n 1.000 1.000 1.000 0.925 1.000 1.000 1.000 0.870

t-t 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

skewn-n 0.000 0.000 0.000 0.070 0.000 0.000 0.000 0.130

skewt-t 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000

m5

n-n 0.980 0.435 0.060 0.000 0.995 0.480 0.020 0.000

t-t 0.000 0.480 0.000 0.000 0.000 0.460 0.000 0.000

skewn-n 0.020 0.035 0.940 0.270 0.005 0.015 0.980 0.205

skewt-t 0.000 0.050 0.000 0.730 0.000 0.045 0.000 0.795

Note: The vector of true model parameters is (β, ν−1, λ)′ = (1, 0.25,−0.5)′. The element-wise product

of θ and the selection vector b gives one specific candidate model. The n-n, skewn-n, t-t and skewt-

t factor copula models are the candidate models used in SMM estimation. The candidate sets of

moments are mi, i = 1, . . . , 5. The marginal distributions of the simulated data follow an AR(1)-

GARCH(1,1) process, see equation (14). The sample length is T = 1000. The number of Monte Carlo

replications is R = 200. Ĉ (rowwise) denotes the model selected by the SMM-BIC procedure given

mi, i = 1, . . . , 5, respectively. C0 (columnwise) denotes the DGP. The highest selection frequencies

are marked in bold.
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Table 6: Sample dependence measures

SAP SIE BAYN ALV BAS DAI DTE BMW DPW CON

Panel A: Spearman’s rho

SAP - 0.562 0.547 0.540 0.562 0.532 0.466 0.513 0.496 0.482

SIE - - 0.622 0.634 0.707 0.641 0.539 0.629 0.597 0.565

BAYN - - - 0.604 0.669 0.592 0.556 0.563 0.564 0.507

ALV - - - - 0.660 0.600 0.580 0.567 0.611 0.540

BAS - - - - - 0.653 0.534 0.628 0.590 0.589

DAI - - - - - - 0.515 0.796 0.581 0.693

DTE - - - - - - - 0.462 0.502 0.402

BMW - - - - - - - - 0.556 0.696

DPW - - - - - - - - - 0.562

Panel B: Quantile dependence λq

SAP - 0.153 0.153 0.215 0.215 0.123 0.092 0.153 0.123 0.123

SIE -0.123 - 0.184 0.215 0.184 0.184 0.031 0.215 0.215 0.246

BAYN -0.135 -0.086 - 0.215 0.460 0.246 0.123 0.215 0.215 0.153

ALV -0.104 -0.068 -0.092 - 0.307 0.215 0.092 0.246 0.184 0.153

BAS -0.092 -0.080 -0.117 -0.074 - 0.276 0.153 0.276 0.184 0.153

DAI -0.061 -0.123 -0.086 -0.074 -0.055 - 0.061 0.430 0.276 0.276

DTE -0.061 -0.129 -0.104 -0.092 -0.068 -0.068 - 0.092 0.092 0.000

BMW -0.092 -0.055 -0.141 -0.153 -0.068 -0.080 -0.098 - 0.123 0.246

DPW -0.086 -0.178 -0.184 -0.092 -0.098 -0.117 -0.092 -0.080 - 0.215

CON -0.110 -0.160 -0.110 -0.074 -0.049 -0.080 -0.074 -0.080 -0.068 -

Note: This table contains the sample dependence measures between the ten stocks. The numbers in

Panel A are the estimates of Spearman’s rho. In Panel B, the upper triangular part shows the average

of the 1% and 99% quantile dependence measures, i.e., (λ̂0.01 + λ̂0.99)/2; the lower triangular part

presents the difference between 90% and 10% quantile dependence measures, i.e., λ̂0.9 − λ̂0.1.
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Table 7: Parameter estimates, J test and selection criteria for combinations of factor

copula models and candidate sets of moments

Moments Models β̂ ν̂−1 λ̂ p-value AIC BIC HQIC

m1

n-n 1.478 - - 0.950 -5.781 -21.969 -11.847

t-t 1.498 0.010 - 0.889 -3.939 -14.730 -7.982

t-n 1.496 0.011 - 0.942 -3.969 -14.761 -8.013

skewn-n 1.709 - 0.234 0.519 -3.004 -13.795 -7.048

skewt-t 2.210 0.119 0.434 0.002 -1.349 -6.744 -3.370

skewt-n 1.477 0.012 -0.017 0.568 -1.968 -7.364 -3.990

m2

n-n 1.397 - - 0.201 2.352 -19.231 -5.735

t-t 1.323 0.102 - 0.112 0.193 -15.994 -5.872

t-n 1.358 0.064 - 0.065 0.692 -15.495 -5.373

skewn-n 1.227 - -0.601 1.000 -5.993 -22.180 -12.059

skewt-t 1.427 0.286 0.203 0.000 12.968 2.176 8.924

skewt-n 1.232 0.011 -0.344 0.369 -3.361 -14.153 -7.405

m3

n-n 1.267 - - 0.013 12.876 -8.707 4.789

t-t 1.232 0.094 - 0.018 13.094 -3.094 7.028

t-n 1.252 0.071 - 0.018 13.457 -2.730 7.391

skewn-n 1.293 - -0.267 0.466 -4.005 -20.192 -10.071

skewt-t 1.247 0.080 -0.196 0.366 -3.486 -14.277 -7.529

skewt-n 1.264 0.056 -0.205 0.316 -3.417 -14.209 -7.461

m4

n-n 1.254 - - 0.157 -5.192 -26.775 -13.279

t-t 1.334 0.438 - 0.304 -4.514 -20.702 -10.580

t-n 1.535 0.276 - 0.153 -3.316 -19.503 -9.382

skewn-n 1.256 - -0.316 0.181 -4.606 -20.793 -10.671

skewt-t 1.357 0.442 -0.131 0.958 -3.987 -14.778 -8.030

skewt-n 1.691 0.326 -0.139 0.094 -2.705 -13.496 -6.748

m5

n-n 1.270 - - 0.029 6.934 -36.232 -9.240

t-t 1.262 0.071 - 0.025 7.713 -30.057 -6.440

t-n 1.273 0.012 - 0.026 8.466 -29.304 -5.687

skewn-n 1.297 - -0.266 0.521 −11.393 −49.163 −25.546

skewt-t 1.275 0.057 -0.202 0.415 -10.533 -42.907 -22.664

skewt-n 1.285 0.037 -0.208 0.345 -10.335 -42.709 -22.466

Note: This table presents the parameter estimates, p-values of the J test for overidentification, and

the SMM-AIC, SMM-BIC and SMM-HQIC selection criteria for all combinations of 6 factor copula

models and 5 sets of moments. The constant Q = 2.01 is selected for the SMM-HQIC criterion. The

minimum values for each of the three criteria among the 30 combinations are marked in bold.
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Table 8: Empirical evaluation of the VaR forecasting performance

Coverage Kupiec Christoffersen Dynamic Quantile

p value p value p value

Panel A: 5%-VaR

n-n 0.064 0.133 0.305 0.273

t-t 0.067 0.066 0.179 0.151

t-n 0.064 0.133 0.305 0.273

skewn-n 0.064 0.133 0.305 0.273

skewt-t 0.064 0.133 0.305 0.273

skewt-n 0.062 0.182 0.377 0.345

Panel B: 1%-VaR

n-n 0.013 0.511 0.725 0.738

t-t 0.011 0.780 0.888 0.918

t-n 0.011 0.780 0.888 0.918

skewn-n 0.010 0.907 0.938 0.966

skewt-t 0.010 0.907 0.938 0.966

skewt-n 0.010 0.907 0.938 0.966

Note: This table presents the coverage rates of the VaR violations and p-values from the Kupiec test,

the Christoffersen test and the dynamic quantile test. The upper and lower panels contain the results

for 5%-VaR and 1%-VaR forecasts from six factor copula models, respectively. The results are based

on the set of moment conditions m5.
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Table 9: Comparison of the relative forecasting accuracy of the 5%-VaR and 1%-VaR

by the Diebold-Mariano test

n-n t-t skewt-t skewn-n skewt-n t-n

Panel A: 5%-VaR

Loss ∗ 102 0.172 0.174 0.181 0.177 0.181 0.175

Diebold-Mariano test

n-n - -3.808 1.370 3.881 3.488 -3.812

t-t - - 3.882 4.105 4.072 3.491

skewt-t - - - 4.097 3.974 -3.628

skewn-n - - - - -3.709 -4.116

skewt-n - - - - - -4.100

Panel B: 1%-VaR

Loss ∗ 102 0.042 0.043 0.043 0.042 0.043 0.042

Diebold-Mariano test

n-n - 1.543 2.055 2.060 2.063 1.903

t-t - - 2.055 2.049 2.067 1.800

skewt-t - - - -1.396 2.014 -1.937

skewn-n - - - - 1.713 -1.754

skewt-n - - - - - -2.003

Note: Loss is the average loss of the VaR forecasts based on (16) over the testing preiod Ts. The other

entries are the Diebold-Mariano test statistics. A t-statistic less than −1.96 (greater than +1.96)

indicates that the row model has significantly lower (higher) average loss than the column model at

the 5% significance level. The results are based on the set of moment conditions m5.
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C Figures

Figure 1: Scatter plot of observations generated by the (a) t(2, 0)− t(2, 0) and the (b)

Skewt(2,−0.5)− t(2, 0) factor copula model
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Figure 2: Sample and fitted quantile dependence measures using m1, m2, m3, m4 and

m5
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(a) m1 = {λ0.01, λ0.05, λ0.1, λ0.15}
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(b) m2 = {ρS , λ0.01, λ0.05, λ0.1, λ0.15}
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(c) m3 = {ρS , λ0.05, λ0.1, λ0.9, λ0.95}
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(d) m4 = {ρS , λ0.25, λ0.45, λ0.55, λ0.75}
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(e) m5 = m3 ∪m4

Note: This figure plots the sample quantile dependence measures based on the empirical data (dark

blue solid line) and fitted quantile dependence measures based on three of the six estimated factor

copulas, i.e., n-n copula (red dashed line), skewn-n copula (orange circle solid line) and skewt-t copula

(purple dash-dot line).
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