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Abstract
There is a great interest in the financial literature for evaluating Value-at-Risk forecasts, so called back-

testing, and several recently developed tests show increased empirical power in simulation studies. This
paper describes the Value-at-Risk Backtest package for Matlab, implementing most existing backtests. In
addition, the Monte Carlo method of Dufour [2006] is implemented to allow exact small sample inference.
We demonstrate the capabilities of the package in a simulation study to evaluate the backtests empirical
power in a Credit Risk setup.

Keywords: Value-at-Risk, Backtesting, Risk Management, Matlab

Contents
1 Hit-sequence Based Backtesting 2

1.1 The Generalized Markov Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Duration Based Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Dynamic Quantile Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 GMM Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Software Implementation and Features 6

∗The newest version of the Value-at-Risk Backtest package is available from the authors website at econ.ku.dk/pajhede/backtest.

1

http://www.econ.ku.dk/pajhede/miscellaneous.html


1 Hit-sequence Based Backtesting
Let Rt denote the realization of a return of an asset or a portfolio of assets at time t. The ex ante VaR for
time t and coverage rate p, denoted as VaRt|t−1(p), conditional on all information, Ft−1, available at time
t− 1 (for example past returns and macroeconomic indicators) is defined as the p’th conditional quantile of the
distribution of Rt:

P (Rt < VaRt|t−1(p)|Ft−1) = p, t = 1, ..., T.

Since its introduction in the 90s Value-at-Risk (VaR), has become widely used when reporting aggregate market
risk. Typically the coverage rate used is 1% or 5%. Several parametric (for example GARCH models) and
non-parametric (for example Historical Simulation) methods are used to forecast VaRt|t−1(p), see McNeil et al.
[2005].

Backtesting is the procedure of comparing realized losses to the forecasted VaR. To implement backtesting
of a VaR forecast, we follow Christoffersen [1998] in defining the hit-sequence, {It}T

t=1, as follows:

Definition 1. The hit-sequence, {It}T
t=1, for a sequence of VaR forecast,

{
VaRt|t−1(p)

}T

t=1, is defined as,

It
..= 1

(
Rt < VaRt|t−1(p)

)
, t = 1, ...T (1.1)

Where 1(·) is the indicator function. Thus, the hit-sequence is by construction a binary time series indicating
whether a loss at time t greater than the VaR, termed a violation or a hit, was realized.

A VaR forecast is valid, in the sense of actually having forecasted the desired quantile, only if the associated
hit-sequence satisfies the following criteria due to Christoffersen [1998]:

• The unconditional coverage criteria The unconditional probability of a violation must be exactly
equal to the coverage rate p:

HUC : P (It = 1) = p

• The independence criteria: The conditional probability of a violation must be constant:

HInd : P (It = 1|Ft−1) = P (It = 1)

Combining these criteria we obtain the conditional coverage criteria:

• The conditional coverage criteria: The probability of a violation must be constant and equal to the
coverage rate:

HCC : P (It = 1|Ft−1) = P (It =) = p

It follows, see Christoffersen [1998], that the hit-sequence of a valid VaR forecast, is in fact a sequence of i.i.d
Bernoulli distributed variables:

It ∼
i.i.d

Bernoulli(p), t = 1, ..., T. (1.2)

The waiting time between hits, the duration, is given by:

Di = ti − ti−1,

where ti denotes the time of violation number i. It follows that the durations is a sequence of i.i.d geometrically
distributed variables:

Di ∼
i.i.d

Geometric(p) (1.3)

The backtests described in this paper are based on either the distribution of the hit-sequence or the distri-
bution of the duration, as given by equations (1.1) and (1.3). In the four following subsections we detail the
commonly used methods of conducting backtesting.
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1.1 The Generalized Markov Framework
The Markov model for backtesting is introduced in Christoffersen [1998], while the work of ? extends the model
to k’th order dependence. The hit-sequence, (1.2), is modeled as a k’th order Markov chain:

It|Ft−1,k ∼
i.i.d

Bernoulli(pt(θ)), Ft−1,k = It−1, ..., It−k, t = 1, ..., T. (1.4)

The likelihood for this model conditioned on k observations prior to t = 1 fixed, is given by LT (θ) =
∏T

t=1 pt(θ)It(1−
pt(θ))1−It . The transition probabilities of (1.4), pt(θ), can be quite general, but this also yields a large parameter
vector. Instead it is suggested that the probability of a hit at time t, pt(θ) be a function of a hit occurring in
the k latest observations, reducing the number of observations to two:

pt(θ) = Jt−1pE + (1− Jt−1)pS , Jt−1 ..= 1
(

k∑
i=1

It−1 > 0
)
. (1.5)

The likelihood is then given by, LT (θ) = (1− pS)T00pT01
S (1− pE)T10pT11

E , where Tij =
∑T

t=1 ItJt−1. Defining
the estimated unrestricted estimator, the estimated restricted under HInd estimator restricted under HCC as

θ̂ = (p̂S , p̂E)′ , θ̃ = Hφ̂ and θ0 = Hp.

Where xx H = (1, 1)′, p̂S = T01/(T01 + T00), p̂E = T11/(T11 + T10) and φ̂ = (T01 + T11)/(T01 + T11 + T00 + T10).
It follows that the test of independence with asymptotics for T →∞ and restriction in parenthesis, are given by

QG−Ind(θ = Hφ) = −2
[
log(LT (θ̃))− log(LT (θ̂))

]
= −2{log(1− φ̂)(T00 + T10) + log(φ̂)(T01 + T11)
− log(1− p̂S)T00 − log(p̂S)T01 − log(1− p̂E)T10 − log(p̂E)T11}
d−→ χ2(1)

(1.6)

the test of conditional coverage with asymptotics for T →∞, by

QG−CC(θ = Hp) = −2
[
log(LT (θ0))− log(LT (θ̂))

]
= −2{log(1− p)(T00 + T10) + log(p)(T01 + T11)
− log(1− p̂S)T00 − log(p̂S)T01 − log(1− p̂E)T10 − log(p̂E)T11}
d−→ χ2(2)

(1.7)

and the test of unconditional coverage with asymptotics for T →∞, by

QG−UC(Hφ = Hp) = QG−CC(θ = Hp)−QG−Ind(θ = Hφ) d−→ χ2(1)

Tests derived from the first specification of equation (1.5) are referred to as generalized Markov tests. See ? for
details.

An alternative specification of the transition probability is that the probability of a hit at time t, pt(θ), is a
function of the number of observations since the last hit (the duration) in the preceding k lags, after which the
probability is a constant. This reduces the parameters of the model to k + 1, or equivalently,

pt(θ) = J(1)t−1pE1 + ...+ J(k)t−1pEk + (1−
k∑

i=1
J(i)t−1)pS , (1.8)

where J(1)t−1 ..= 1 (It−1 = 1) , ..., J(k)t−1 ..= 1 (It−1 = 0, ..., It−k = 1). The likelihood is then given by, LT (θ) =
(1−pS)T00pT01

S

∏k
i=1(1−pEi)T10(i)p

T11(i)
Ei , where T10(i) =

∑T
t=1(1−It)J(i)t−1. Defining the estimated unrestricted

estimator, the estimated restricted under HInd estimator restricted under HCC as

θ̂ = (p̂S , p̂E1, ..., p̂Ek)′ , θ̃ = Hφ̂ and θ0 = Hp.
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Where H = (1, ..., 1)′ is a k × 1 vector, with MLE estimates φ̂ and p̂S unchanged while p̂Ei = T11(i)/(T11(i) +
T10(i)), for i = 1, ..., k. It follows that the test of independence with asymptotics for T →∞, are given by

QD−Ind(θ = Hφ) = −2
[
log(LT (θ̃))− log(LT (θ̂))

]
(1.9)

= −2
(
log(1− φ̂)(T00 + T10)× log(φ̂)(T01 + T11)− log(1− p̂S)T00 − log(p̂S)T01

−
k∑

i=1
log(1− p̂Ei)T10(i)−

k∑
i=1

log(p̂Ei)T11(i)
)
,

d−→ χ2(k − 1) (1.10)

the test of conditional coverage with asymptotics for T →∞, by

QD−CC(θ = Hp) = −2
[
log(LT (θ0))− log(LT (θ̂))

]
= −2(log(1− p)(T00 + T10)× log(p)(T01 + T11)− log(1− p̂S)T00 − log(p̂S)T01

−
k∑

i=1
log(1− p̂Ei)Ti0(i)−

k∑
i=1

log(p̂Ei)Ti1), (1.11)

d−→ χ2(k) (1.12)

and the test of unconditional coverage with asymptotics for T →∞, by

QD−UC(Hφ = Hp) = QD−CC(θ = Hp)−QD−Ind(θ = Hφ) d−→ χ2(1)

Tests derived from the second specification of equation (1.8) are referred to as Markov duration tests. See ? for
details. For k = 1 the tests, of either specification, reduce to the tests of Christoffersen [1998] and Kupiec [1995].

1.2 Duration Based Tests
Since the durations follows a geometric distribution, see equation (1.3), this implied a constant hazard rate
P (Di = d|Di ≥ d) = p. The duration based backtests are then constructed by modeling the distribution of Di

by some other distrbution with a non-constant hazard rate but which nests the geometric distribution under
some restrictions which can be tested using likelihood ratio tests.

A small complication is that the durations are subject to right and left censoring, specifically if I1 = 1, then
D1 is the time between that 1 and the next 1. If on the other hand I1 = 0, then the D1 is the time until the
first 1 and is a left censored observation. If IT = 0, then the last duration, DN(T ), is the time between the last
hit (which we designate N(T )) and the remaining length of the hit sequence and is considered a right censored
observation. This leads to the log-likelihood:

ln(LT (θ)) = C1ln(S(D1))+(1−C1)ln(f(D1))+
N(T )−1∑

i=2
ln(f(Di))+CN(T )ln(S(DN(T )))+(1−CN(T ))ln(f(DN(T )))

Where θ are the parameters of the survival and PMF functions and S(Di) = 1−F (Di) is the survival function.
The censoring series Ci, indicates if there is censoring (Ci = 1) or no censoring (Ci = 0) for hit i. If the hit
sequence starts with a 0 indicating no hit, then C1 = 1 because the duration will be censored. However, if the
hit sequence starts with a violation, then C1 = 0. The procedure is similar for the last observation. Other Cj

values are always 0.
Christoffersen [2004] introduced the first duration test. The durations are modeled using the (continuous)

Weibull distribution, this contains the exponential distrbution, the continuous analogue of the geometric distri-
bution, as a special case. The Weibull distribution is able to model increasing and decreasing hazard rates and
has PDF and CDF as follows:

f(D; a, b) = ba−bDb−1e−( D
a )b

, F (D; a, b) = 1− e−( D
a )b

(1.13)
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Independence is tested using a likelihood-ratio statistic by the restriction HInd : b = 1 which reduces the Weibull
distribution to the exponential distribution:

QC−W eibull−Ind = −2 [log(LT (a, 1))− log(LT (a, b))]

This test will not have standard χ2(1) asymptotics due to the use of continuous distributions, instead simulation
methods are required for finding the asymptotic distribution. The tests require two or more durations, at least
one of which is not censored, to be calculated.

Haas [2006] suggested a discrete version of the duration test which the discrete Weibull distribution of
Nakagawa and Osaki [1975] and nests the geometric distribution. A re-parametrized version of the discrete
Weibull is recommended by the author based on ease of estimation. Its PMF and CDF is:

g(D; a, b) = e−ab(D−1)b

− e−abdb

, G(D; a, b) = 1− e−abDb

(1.14)

The independence criteria is tested using a likelihood-ratio statistic by the restriction HInd : b = 1 and
conditional coverage by the restrictions Hcc : b = 1, a = −log(1 − p). The test statistics with asymptotics for
T →∞ are given as

QD−W eibull−Ind = −2 [log(LT (a, 1))− log(LT (a, b))] d−→ χ2(1)

and

QD−W eibull−CC = −2 [log(LT (−log(1− p), 1))− log(LT (a, b))] d−→ χ2(2).

1.3 Dynamic Quantile Test
Rather than specify a full distributional model for the hit-sequence,Engle and Manganelli [1999] models it as a
regression on the demeaned hit-sequence using the lagged hit-sequence as regressors:

It − p = δ +
K∑

k=1
βkIt−k + εt (1.15)

Where the parameter vector be given by θ = (δ, β1, ..., βk)′ which is estimated by ordinary least squares as θ̂
and with Z the design matrix of covariates. The Wald test statistic for the hypothesis of conditional coverage
H0 : δ = β1, ..., βk = 0 then has closed form expression, with asymptotic distribution for T →∞, given by:

DQCC = θ̂′Z ′Zθ̂

p(1− p)
d−→ χ2(k + 1) (1.16)

Dumitrescu et al. [2012] suggest replacing the linear model with a non-linear probit or logit style binary model,
but find only slight increases in power at the cost of a much more complicated implementation.

1.4 GMM Tests
Candelon et al. [2011] develops a GMM-J test of the durations, comparing the k first theoretical moments of
the geometric distribution to those estimated from the observed durations. For a geometric distribution with
success probability p, a series of orthonormal polynomials are given by the following recursive relation, ∀d ∈ N :

Mj+1(d; p) = (1− p)(2j + 1) + p(j − d+ 1)
(j + 1)

√
1− p

Mj(d; p)− j

j + 1Mj−1(d; p) (1.17)

For any j ∈ N , with M−1(d; p) = 0 and M0(d; p) = 1. These polynomials have expectation E(Mj+1) = 0,
are asymptotically independent with unit variance and are known to converge in distribution when squared as[

1√
N

∑N
i=1 Mj(di, p)

]2 d−→ χ2(1) for N → ∞. From this it follows that the test statistic, with asymptotics for
N →∞, using k such moments can be expressed as

J(k) =
(

1√
n

N∑
i

M(di; p)
)′(

1√
n

N∑
i

M(di; p)
)

d−→ χ2(k) (1.18)
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Where M is a vector whose elements are the k orthonormal polynomials Mj(di, α). When setting k = 1, this
will test the unconditional coverage criteria while setting k > 1 tests the conditional coverage criteria. A test
of independence can be found by replacing p with the ML estimator in the geometric distribution, p̂ = I. The
GMM tests require at least 1 violation to be computed.

2 Software Implementation and Features
The package is written in the Matlab language, though some functions are implemented in C++ to increase
speed1. Each backtest described in this paper is implemented in a single function, the function has a header
describing its usage, inputs, outputs and a small example. To use the backtests, simply add the backtest toolbox
to the Matlab directory and call the functions as described in their header.

When conducting backtesting there is a number of caveats with regards to implementation. For example
when implementing the QG−Ind(θ = Hφ) test of equation (1.6), it is important to use the last expression even
though it might seem more complex since the first term contains expressions wherein numbers between 0 and 1
are raised to potentially large powers, leading to precision problems due to computers floating point memory.
For this reason all the tests are implemented so as to be robust to floating point errors.

The varying requirements on the data can be a concern when conducting backtest, for example the duration
based backtests require at least 2 durations, one of which must not be censored. If a backtest function is given
data that does not fit its requirement as input a warning is returned to the user.

Due to the discrete nature of the data the asymptotic distributions of the test statistics is often not a
good approximation for the finite sample distribution, see Christoffersen [2004]. For this reason the package
implements the Monte Carlo technique of Dufour [2006], this allows the users to easily obtain valid p-values
regardless of the observations available.

References
Bertrand Candelon, Gilbert Colletaz, Christophe Hurlin, and Sessi Tokpavi. Backtesting Value-at-Risk: A
GMM Duration-Based Test. Journal of Financial Econometrics, 9(2):314–343, Spring 2011. URL http:
//ideas.repec.org/a/oup/jfinec/v9y2011i2p314-343.html.

Peter Christoffersen. Backtesting Value-at-Risk: A Duration-Based Approach. Journal of Financial Economet-
rics, 2(1):84–108, 2004. URL http://ideas.repec.org/a/oup/jfinec/v2y2004i1p84-108.html.

Peter F Christoffersen. Evaluating interval forecasts. International Economic Review, 39(4):841–62, 1998.

Jean-Marie Dufour. Monte carlo tests with nuisance parameters: A general approach to finite-sample inference
and nonstandard asymptotics. Journal of Econometrics, 133(2):443–477, 2006. URL http://ideas.repec.
org/a/eee/econom/v133y2006i2p443-477.html.

Elena-Ivona Dumitrescu, Christophe Hurlin, and Vinson Pham. Backtesting value-at-risk: From dynamic quan-
tile to dynamic binary tests. Working Papers halshs-00671658, HAL, 2012. URL http://ideas.repec.org/
p/hal/wpaper/halshs-00671658.html.

Robert F. Engle and Simone Manganelli. Caviar: Conditional value at risk by quantile regression. NBER
Working Papers 7341, National Bureau of Economic Research, Inc, September 1999. URL http://ideas.
repec.org/p/nbr/nberwo/7341.html.

Markus Haas. Improved duration-based backtesting of value-at-risk. Journal of Risk, 8(2):17–38, 2006.

Paul H. Kupiec. Techniques for verifying the accuracy of risk measurement models. Finance and Economics
Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.), 1995. URL http://ideas.
repec.org/p/fip/fedgfe/95-24.html.

Alexander J. McNeil, Rudiger Frey, and Paul Embrechts. Quantitative Risk Management: Concepts, Techniques,
and Tools (Princeton Series in Finance). Princeton University Press, 2005. ISBN 0691122555. URL http:
//www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0691122555.

Nakagawa and Osaki. The discrete weibull distribution. IEEE Transactions on Reliability, 24, 1975.
1Matlab functions are included but are significantly slower.

6

http://ideas.repec.org/a/oup/jfinec/v9y2011i2p314-343.html
http://ideas.repec.org/a/oup/jfinec/v9y2011i2p314-343.html
http://ideas.repec.org/a/oup/jfinec/v2y2004i1p84-108.html
http://ideas.repec.org/a/eee/econom/v133y2006i2p443-477.html
http://ideas.repec.org/a/eee/econom/v133y2006i2p443-477.html
http://ideas.repec.org/p/hal/wpaper/halshs-00671658.html
http://ideas.repec.org/p/hal/wpaper/halshs-00671658.html
http://ideas.repec.org/p/nbr/nberwo/7341.html
http://ideas.repec.org/p/nbr/nberwo/7341.html
http://ideas.repec.org/p/fip/fedgfe/95-24.html
http://ideas.repec.org/p/fip/fedgfe/95-24.html
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0691122555
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0691122555

	Hit-sequence Based Backtesting
	The Generalized Markov Framework
	Duration Based Tests
	Dynamic Quantile Test
	GMM Tests

	Software Implementation and Features

