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Abstract

We propose a new multivariate constant correlation test based on residuals.

This test takes into account the whole correlation matrix instead of the con-

sidering merely marginal correlations between bivariate data series. In financial

markets, it is unrealistic to assume that the marginal variances are constant. This

motivates us to develop a constant correlation test which allows for non-constant

marginal variances in multivariate time series. However, when the assumption of

constant marginal variances is relaxed, it can be shown that the residual effect

leads to nonstandard limit distributions of the test statistics based on residual

terms. The critical values of the test statistics are not directly available and we

use a bootstrap approximation to obtain the corresponding critical values for the

test. We also derive the limit distribution of the test statistics based on residuals

under the null hypothesis. Monte Carlo simulations show that the test has ap-

pealing size and power properties in finite samples. We also apply our test to the

stock returns in Euro Stoxx 50 and integrate the test into a binary segmentation

algorithm to detect multiple break points.
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1 Introduction

The test of the stability of parameters or coefficients is always of interest in statistical

modeling, Brown et al. (1975) introduced the CUSUM-type test on the constancy of

coefficients in a linear regression model. It is also prevalent to construct such a test

based on residuals, Ploberger and Krämer (1992) proposed a test of the stability of

regression coefficients based on OLS residuals. Furthermore, in order to reveal the

property of a data generating process, it is crucial to construct change point tests for

relevant quantities of data series, such as tests for volatility or dependence measures.

For example, Wied, Arnold, Bissantz and Ziggel (2012) presented a fluctuation test for

univariate variance constancy. Aue et al. (2009) dealt with the covariance structure sta-

bility tests in multivariate time series model. Regarding tests for constant correlation,

Wied, Krämer and Dehling (2012) tested the change of correlation between bivariate

random vectors using a new functional delta method, while Galeano and Wied (2014)

used a binary segmentation algorithm to locate the break points in the correlation

structure of bivariate random variables.

Constant correlation tests attract considerable attention as the correlation coeffi-

cient is widely accepted as an easily interpretable way of dependence measures between

random variables. From a practical point of view, the correlations between financial

returns on assets, for example, are rarely assumed to be constant over time in financial

models. Given the importance of the impact of structural changes on the dynamic

modeling of asset correlations, Berens et al. (2015) empirically investigated whether

the performance of the constant conditional correlation (CCC) model and dynamic

conditional correlation (DCC) model are improved with the combination of certain

structural break tests.
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The need for multivariate modeling has also motivated researchers to derive a mul-

tivariate constant correlation test instead of merely bivariate tests. Recently, Wied

(2017) considered a nonparametric test based on a vector of successively computed

pairwise correlations to test the constancy of correlation matrix, and Galeano and

Wied (2017) extended their previous work on bivariate random variables to the whole

correlation matrix. A potential drawback of these approaches is that the unconditional

variance of the random variables under consideration is assumed to be constant. This

is a restrictive assumption for financial returns (see e.g. Pape et al., 2016). To cir-

cumvent this problem, it would be possible to use residuals, in which these variance

changes are calculated out, but this solution potentially leads to a residual effect.

As far as we know, the literature about such a residual effect is rather limited.

Recently, Demetrescu and Wied (2017) identified the residual effect in correlation con-

stancy tests. They discussed whether the effect is asymptotically negligible in various

scenarios. Their approach falls into the category of inference on the moment hypothesis,

which relates to some well-known formal tests on moments, as exemplified by the work

of Bai and Ng (2005). Nevertheless, they restricted their work to bivariate data series.

In response, we sought to fill the gap with a multivariate test on pairwise correlations

with the help of an analytic derivation of the residual effect on the limit distribution

given the assumption of non-constant marginal variances. The cost of the flexibility

of that assumption is that the critical values of test statistic can not be obtained di-

rectly, we use a bootstrap approximation to ascertain the related critical values in the

test. The residual-based approach remains useful for detecting structural breaks in the

model and turns out to be convenient for handling the problem of inconstant marginal

variances.

This paper is organized as follows. We introduce the test and derive its asymptotic

properties in Section 2. In Section 3, we discuss the approximation methods of the limit

distribution of the test statistics, after which we identify the residual effect and provide

a corresponding example in Section 4. In Section 5 we present finite sample simulation

studies, followed by an application of the test with real-world data in Section 6. Lastly,

we offer our conclusions in Section 7.
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2 Testing procedure

We are interested in the pairwise correlations based on a sequence of d-dimensional

unobservable variables Zt = (Zt,1, Zt,2, . . . , Zt,d), t = 1, . . . , n. Furthermore, we assume

that there is a sample of d-dimensional observable variablesXt = (Xt,1, Xt,2, . . . , Xt,d), t =

1, . . . , n and a filter to connect the unobservable quantities and observable sample. All

random variables in our setting have finite |4 + δ|-th moments with arbitrary δ > 0.

We assume the following simple parametric relationship:

Xt,i = (µi,1 + σi,1Zt,i)D̄t,λ0 + (µi,2 + σi,2Zt,i)Dt,λ0 , i = 1, . . . , d, t = 1, . . . , n. (1)

Here, we use the period indicator functions Dt,λ0 = I(t/n > λ0) for the post-break

period, and D̄t,λ0 = 1 − Dt,λ0 for the pre-break period. With λ0 ∈ (0, 1), we denote

the true change point in the parameter vector θλ0 = (θ′0,1,θ
′
0,2)′. This means that we

have parameters in the pre-break subsample θ0,1 = (µ′1, (σ
2
1)′)′ and in the post-break

subsample θ0,2 = (µ′2, (σ
2
2)′)′. The model implies that all parameters share an identical

change point. The relation in equation (1) can be considered as a filter f : Rd×4d → Rd,

which allows for discontinuities at the break point [λ0n]. The expression [λ0n] denotes

the greatest integer less than or equal to λ0n. The filter is not smooth in the whole

sample with respect to the change point λ0, but smooth in the θ0,1 and θ0,2 in the two

subsamples separated by the change point.

Since Zt, which serves as the essential part in the test statistics, is unobservable,

one has to estimate the unknown parameters θλ0 based on sample Xt and uniquely

backward induce Zt assuming the above filter f is invertible. In the full sample esti-

mation of the parameter vector θλ0 , the Generalized Method of Moments (GMM)-type

estimators are available for two subsamples (see Hansen, 1982), we choose the simple

sample averages here:

µ̂i,1 =
1

[λn]

[λn]∑
t=1

Xt,i and µ̂i,2 =
1

n− [λn]

n∑
t=[λn]+1

Xt,i, i = 1, . . . , d.

σ̂2
i,1 =

1

[λn]

[λn]∑
t=1

(Xt,i − X̄i)
2 and σ̂2

i,2 =
1

n− [λn]

n∑
t=[λn]+1

(Xt,i − X̄i)
2, i = 1, . . . , d.

Then the vector of estimators is written as

θ̂λ0 = (µ̂1,1, . . . , µ̂d,1, σ̂
2
1,1, . . . , σ̂

2
d,1, µ̂1,2, . . . , µ̂d,2, σ̂

2
1,2, . . . , σ̂

2
d,2)′
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where µ̂i,1, σ̂
2
i,1, i = 1, . . . , d denote the estimators based on the first subsample and

µ̂i,2, σ̂
2
i,2, i = 1, . . . , d denote the estimators using the second subsample. The change

point λ is either known or needs to be estimated. If the break point is known, one

simply inserts λ = λ0, whereas, if the break point is unknown, the estimated break

point λ = λ̂ is required. One natural estimator of such a break point in the marginal

mean or variance is the corresponding time point associated with the maximum of test

statistics based on the cumulative first or second moments, which is commonly used

in the framework of structural break dating. This decision could also be based on the

fluctuation test in Wied, Arnold, Bissantz and Ziggel (2012). As we assume that means

and variances change at the same time, in practice one would have to decide for either

a mean or variance constancy test or to merge the results appropriately.

Apart from the full sample estimation, the recursive estimation of θλ0 based on the

sample up to t ≤ n serves as an alternative, but we will not proceed with this method

in this paper.

Based on the parameter estimators, we obtain the residual term

Ẑt,i =
Xt,i − µ̂i,1

σ̂i,1
D̄t,λ +

Xt,i − µ̂i,2
σ̂i,2

Dt,λ, i = 1, . . . , d, (2)

which will be used for the test later on.

Define a vector of pairwise correlations as vech(ρ) where ρ is the pairwise correlation

matrix of d-dimensional variables Xt whose i, j-element is

ρi,j = E(ZiZj), for 1 ≤ i, j ≤ d,

and vech(·) is the operator that stacks the upper off-diagonal elements in the d × d

correlation matrix ρ as a vector with d(d − 1)/2 components. The null hypothesis of

the test for constant correlation is given as

H0 : vech(ρ1) = . . . = vech(ρn).

The alternative hypothesis that there exists one change point in the correlation at an

arbitrary time point k,

HA : vech(ρ1) = . . . = vech(ρk) 6= vech(ρk+1) = . . . = vech(ρn).
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The test statistics is in a multivariate cumulative sum version such that

Qn = max
1≤j≤n

j√
n

√
(Sj − Sn)′Ω−1(Sj − Sn) (3)

where Sj = 1
j

∑j
t=1 vech(ZtZ

′
t) , and the corresponding feasible test statistics follows

Q̂n = max
1≤j≤n

j√
n

√
(Ŝj − Ŝn)′Ω̂−1(Ŝj − Ŝn) (4)

where the partial sums based on residuals are defined as Ŝj = 1
j

∑j
t=1 vech(ẐtẐ

′
t).

Moreover, Ω̂ is the estimator of the covariance matrix of vech(ẐtẐ
′
t). The null hypoth-

esis is rejected whenever the test statistics Q̂n becomes too large, that is, whenever the

cumulative sum of at least one pair of the cross products of residuals fluctuates too

much over time. We denote convergence in probability by→p, convergence in distribu-

tion by→d and weak convergence in the space of càdlàg functions on the interval [0, 1]

by ⇒. In order to derive the limit distribution of the test statistics, we first impose

some assumptions.

Assumption 1. Denote

Un,t,1 :=


Zt,1Zt,2 − E(Zt,1Zt,2)

Zt,1Zt,3 − E(Zt,1Zt,3)
...

Zt,d−1Zt,d − E(Zt,d−1Zt,d)

 , Un,t,2 :=


σ1,1,0Zt,1D̄t,λ0

...

σd,1,0Zt,dD̄t,λ0

 ,

Un,t,3 :=


σ2

1,1,0(Z2
t,1 − 1)D̄t,λ0

...

σ2
d,1,0(Z2

t,d − 1)D̄t,λ0

 , Un,t,4 :=


σ1,2,0Zt,1Dt,λ0

...

σd,2,0Zt,dDt,λ0

 ,

Un,t,5 :=


σ2

1,2,0(Z2
t,1 − 1)Dt,λ0

...

σ2
d,2,0(Z2

t,d − 1)Dt,λ0

 .

Moreover, let Ψλ0(s) be a
(
d(d−1)

2
+4d

)
-dimensional Gaussian process with Ψλ0(0) = 0

and the
(

4d + d(d−1)
2

)
×
(

4d + d(d−1)
2

)
covariance matrix Cov(Ψλ0(1)) := Ξλ0 = Ω Λ′λ0

Λλ0 Σλ0 .

. (This implies that Ψ
1:
d(d−1)

2
λ0

(s) is a Gaussian process with Ψ
1:
d(d−1)

2
λ0

(1) ∼

N (0,Ω) whereas Ψ
(
d(d−1)

2
+1):(

d(d−1)
2

+4d)

λ0
(s) is a Gaussian process with Ψ

(
d(d−1)

2
+1):(

d(d−1)
2

+4d)

λ0
(1) ∼

N (0,Σλ0).)
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Then,

Un(s) :=
1√
n

[sn]∑
t=1



Un,t,1

Un,t,2

Un,t,3

Un,t,4

Un,t,5


⇒ Ψλ0(s) :=

 Ω1/2Γ(s)

Σ
1/2
λ0

Θλ0(s)

 .

Assumption 2. Define a neighborhood Φn = {θ∗λ0 : ||θ∗λ0 − θλ0|| < Cn−1/2+ε, 0 < ε <

1/2, C > 0} of θλ0, such that

sup
θ∗λ0
∈Φn;t=1,...,n

||∂vech(zz′)

∂z

∣∣∣
z=Z∗t

∂Z∗t
∂θ

∣∣∣
θ=θ∗λ0

− ∂vech(zz′)

∂z

∣∣∣
z=Zt

∂Zt

∂θ

∣∣∣
θ=θλ0

|| →p 0

where

Z∗t,i =
Xt,i − µ∗i,1

σ∗i,1
D̄t,λ0 +

Xt,i − µ∗i,2
σ∗i,2

Dt,λ0 , i = 1, . . . , d

and

θ∗λ0 = (µ∗1,1, . . . , µ
∗
d,1, (σ

∗
1,1)2, . . . , (σ∗d,1)2, µ∗1,2, . . . , µ

∗
d,2, (σ

∗
1,2)2, . . . , (σ∗d,2)2).

Assumption 3. Ξ̂λ0 →p Ξλ0 where Ξ̂λ0 is the estimator of covariance matrix.

Assumption 4. The block length in block bootstrap method l ∼ nα, α ∈ (0, 1) such that

l→∞ and n→∞ but l/n→ 0.

The first assumption, i.e., the limit process of (cross-)moment conditions, is neces-

sary to derive the asymptotic behaviors of estimated correlation sequence. This means

that we impose stationary conditions on the sequence of the Zt, but not on the observed

Xt. Specifically, we do not assume that Xt,i, i = 1, . . . , d has constant expectation and

variance, whereas Wied (2017) assumed that moments of the observed random vari-

ables as being constant. Later on, it will be shown that the time-varying variances

play a crucial role in the appearance of residual effect. The setup in Assumption 2

controls the approximation error in the expansion of partial sums term, it ensures that

the negligible parts of partial sums are able to be dropped asymptotically. In order

to derive the asymptotic distribution of the proposed test, it is necessary to assume

the existence of a consistent estimator of covariance matrix. One popular choice of

such estimator is HAC estimator by Andrews (1991). Assumption 4 imposes a general
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restriction that the block length should not become too large compared to the sample

size when the block length increases. Intuitively, if the process is more persistent, one

needs a larger block length to better capture the dependence structure in the block

bootstrapping. Since it is important to choose the block length in overlapping or non-

overlapping block bootstrap procedure, there are several seminal works in this topic.

Lahiri (1999) theoretically compared various block bootstrap methods for dependent

data and determined the MSE-optimal block length, whereas Hall and Horowitz (1996)

studied the block bootstrap in test of overidentifying restrictions and t test based on

GMM estimation with dependent data. According to Inoue and Shintani (2006), one

could set the block length in block bootstrap procedure equal to the HAC truncation

parameter in the HAC covariance matrix estimator. Then one might consider the

choice of bandwidth of Bartlett kernel in Andrews (1991) to select the order of block

length as O(n1/3), and this length is close to the average block length in Inoue and

Shintani (2006).

If we simply make the test based on Zt, then we have the asymptotic behavior for

centered partial sums of correlations as

1√
n

[ns]∑
t=1

(vech(ZtZ
′
t)− E(vech(ZtZ

′
t))⇒ Ω1/2Γ(s).

One can see that only Ω1/2Γ(s) term is involved in the limit. However, our test relies on

Ẑt instead of Zt because Zt is unobservable quantity. Then the effect of the estimation

of parameter vector matters, and as a consequence τλ(s), Σ
1/2
λ and Θλ(1) are relevant

terms. Then we propose the asymptotic behavior for the partial sums with Ẑt which

includes the residual effect.

Proposition 1. (Convergence of partial sums)

Under Assumptions 1 and 2, if the true break point is known as λ0 ∈ (0, 1), it holds

for n→∞ and s ∈ [0, 1],

1√
n

[ns]∑
t=1

(vech(ẐtẐ
′
t)− E(vech(ZtZ

′
t))⇒ Ω1/2Γ(s) + τλ0(s)Σ

1/2
λ0

Θλ0(1), (5)

where the asymptotic residual effect term τλ0(s) is a deterministic matrix of differential

functions which can be obtained via 1
n

∑[ns]
t=1

∂vech(zz′)
∂z

∣∣∣
z=Zt

∂Zt
∂θ

∣∣∣
θ=θλ0

⇒ τλ0(s).
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The proof can be found in appendix. The residual effect term in the limit τλ0(s)

can also be rewritten as

τλ0(s) =
(
τθ0,1(s)D̄t,λ0 + τθ0,1(λ0)Dt,λ0 (τθ0,2(s)− τθ0,2(λ0))Dt,λ0

)
and τθ0,1(s) and τθ0,2(s) denote the matrices of differential functions based on the

parameter vectors in pre-break regime and post-break regime, respectively. The explicit

expressions of terms τλ0(s), τθ0,1(s) and τθ0,2(s) will be given in Section 4. The residual

effect exists when τλ0(s) 6= 0. In contrast, the residual effect does not appear when

τλ0(s) = 0, ∀s ∈ [0, 1]. Demetrescu and Wied (2017) also named some exceptions that

the residual-based tests of moment hypothesis are not affected by the residual effect

even when τλ0(s) 6= 0.

Proposition 2. (Asymptotic under H0)

Under Assumptions 1, 2 and 3, if the true break point is known as λ0 ∈ (0, 1), under

H0, it holds as n→∞ that

max
1≤j≤n

j√
n

√
(Ŝj − Ŝn)′Ω̂−1(Ŝj − Ŝn)⇒ sup

s∈[0,1]

√
(Γ̂(s)− sΓ̂(1))′(Γ̂(s)− sΓ̂(1)), (6)

where Ŝj = 1
j

∑j
t=1 vech(ẐtẐ

′
t) and Γ̂(s) = Γ(s) + Ω−1/2τλ0(s)Σ

1/2
λ0

Θλ0(1).

Note that if we use the unobservable term Zt to compute the test statistics, we have

the form of limit distribution of Qn as sups∈[0,1]

√
(Γ(s)− sΓ(1))′(Γ(s)− sΓ(1)), where

the residual term does not play a role in the limit distribution of the test statistics, the

limit distribution collapses to some functional forms based on multi-dimensional Brow-

nian bridge. We have full information of this limit distribution and the corresponding

critical values for the inference are directly available. As corollary 2 in Demetrescu

and Wied (2017) pointed out, there are possibilities that Qn and Q̂n are asymptoti-

cally equivalent if τλ0(s) = 0, ∀s ∈ [0, 1]. This occurs, for example, when structural

breaks only exist in marginal means in a residual-based constancy test for the second

moments. In addition, even if the residual term appears, the asymptotic equivalence of

Qn and Q̂n also holds when τλ0(s) term is linear in s, i.e., τλ0(s) = sτλ0(1),∀s ∈ [0, 1].

The leading example would be the case of constant correlation test only with breaks

in marginal means, but not in marginal variances. For more details, please see the

example in Section 4. If we do not have full information on the true break time point,
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one needs to plug in the estimated change point λ̂, and we are able to establish an

asymptotic equivalence of convergence with estimated change point and convergence

with true change point. Proposition 2 in Demetrescu and Wied (2017) determines the

limit distribution of the test statistics with the usage of estimated break point, which

can be applied to our case once the moment function is set to be the vector of cross

correlations.

3 Approximation of limit distribution

If the residual effect does exist, the asymptotic distribution of the test statistics depends

on unknown parameters under the null hypothesis. If the limit random variable can

be expressed by a matrix that includes the unknown parameters times a parameter-

free random variable, it is possible to make the test statistics pivotal. This is the

case, e.g., in the context of testing simple hypotheses, e.g., tests for skewness and

kurtosis. However, this task becomes more difficult on the test for constant correlation,

as the test statistic in Proposition 2 depends on the whole path of Γ process and

τλ process instead of Γ and τλ only at s = 1, then one should consecutively make

the correction of covariance matrices over s. In this case, in order to sidestep the

problem of appropriate correction of Ω̂, it is easier to resort to bootstrap approach

to approximate the asymptotic distribution of test statistics, for example, some block

bootstrap strategies for non-IID data generating process, see Lahiri (2003), or bootstrap

procedure for piecewise locally stationary time series by Zhou (2013), as the bootstrap

is easy to implement, even in high dimensions.

In our bootstrap procedure, we use the demeaned random variables. If we have the

IID data sample Xn = X1, . . . ,Xn, where Xi, i = 1, . . . , n is d-dimensional vector, it is

very straightforward to obtain a bootstrap sample with IID bootstrap: draw a random

sample X ∗b = X∗1 , . . . ,X
∗
n with replacement from Xn, repeat this random draw B times,

where B is a large number, then obtain the B bootstrap samples. However, if Xn is

m-dependent random variables, i.e., {X1, . . . ,Xk} and {Xk+m+1, . . .} are independent

for all k ≥ 1, for some integer m ≥ 0, the IID bootstrap method is not adequate, since

the approximation error of bootstrap limit distribution does not vanish in the limit.
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There are several works of bootstrap on dependent case in the literature, we consider

the nonoverlapping block bootstrap based on the work of Carlstein (1986). According

to Lahiri (2003), we define the length of block as l ∈ [1, n] and divide the whole time

series into b nonoverlapping blocks

Bi = (X(i−1)l+1, . . . ,Xil)
′, i = 1, . . . , b

where b is the largest integer such that lb ≤ n. In each bootstrap repetition, we sample

k = n
l

times with replacement one of original blocks {B1, . . . ,Bb} and concatenate the

elements of sampled B∗1, . . . ,B∗k into a sequence, then one bootstrap sample is obtained:

X ∗b = (X∗1 , . . . ,X
∗
l , . . . ,X

∗
(b−1)l+1, . . . ,X

∗
n).

We repeat this random draw B times to get B bootstrap samples. Since we allow

a change point in each of marginal variances in the original sample, one additional

transformation is necessary before we compute the bootstrap test statistics and corre-

sponding bootstrap p-value in both IID bootstrap procedure and nonoverlapping block

bootstrap procedure. In order to ensure that each bootstrap sample has the same

empirical variance as the original series, after one bootstrap sample X ∗b is drawn, we

transform it in this way: firstly each variate of X ∗b is split into two parts based on

the estimated variance break time points in the original sample and then we variance-

standardize both parts to get X ∗λ,b which has the same empirical marginal variance as

the original sample. Then B bootstrap samples based on X ∗λ,b are used in the computa-

tion of the bootstrap test statistics Q∗j , j = 1, . . . , B. One calculates the test statistics

Q̂ based on the original data sample Xn. The bootstrap p-value is given by

p(Q̂) =
1

B

B∑
j=1

1Q̂≤Q∗j
.

If one use appropriate bootstrap method to capture the data structure such as serial

correlations and nonstationarities of the true data generating process if exists, then one

should have the following convergence corresponding to the proposition above:

1√
n

[ns]∑
t=1

(vech(Ẑ∗t,λ,b(Ẑ
∗
t,λ,b)

′)− E∗(vech(Z∗t,λ,b(Z
∗
t,λ,b)

′)⇒ Ω1/2Γ(s) + τλ0(s)Σ
1/2
λ0

Θλ0(1).

The simulation result in Section 5 validates that the empirical size and empirical power

of test stay reasonable with bootstrap strategy.
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4 Characterization of residual effect

There are several scenarios in which the limit distribution of test statistics is not affected

by residual effects, see Demetrescu and Wied (2017). To enumerate few of examples,

we have the test of constant correlation when no change point exists in marginal means

and in marginal variances, or the test on simple hypothesis of constant variance when

a break only appears in the marginal mean. In this section we focus on test for the

multivariate constant correlations when the residual effect exists, more explicitly, the

case when there is one known break point λ0 ∈ (0, 1) in both marginal variances and

marginal means, the residual effect is obtained through deriving the analytic solution

of the sequence of essential term τ nλ0 as well as its asymptotic term τλ0 . Assume that

Xt = µ1D̄t,λ0 + µ2Dt,λ0 + V Zt, t = 1, . . . , n

where

V =



√
σ2

1,1D̄t,λ0 + σ2
1,2Dt,λ0 0 . . . 0

0
√
σ2

2,1D̄t,λ0 + σ2
2,2Dt,λ0 . . . 0

...
...

. . .
...

0 . . . . . .
√
σ2
d,1D̄t,λ0 + σ2

d,2Dt,λ0


and Xt, Zt, µ1 and µ2 are d-dimensional vectors defined in Section 2. Demetrescu

and Wied (2017) showed that the break in marginal means does not have asymptotic

effect in bivariate case, which can be consistently extended to the multivariate setting.

However, we would like to derive a general result for the multivariate case, so we do

not set (µ′1,µ
′
2)′ = 0 at this moment. The residual term is given by

Ẑt,i =
Xt,i − µ̂i,1D̄t,λ0 − µ̂i,2Dt,λ0√

σ̂2
i,1D̄t,λ0 + σ̂2

i,2Dt,λ0

, for i = 1, . . . , d, t = 1, . . . , n.

Staying in line with the notation in previous section, we consider a vectorized version

of cross product term zizj, i = 1, . . . , d− 1, j = i+ 1, . . . , d:

vech(zz′) = (z1z2, z1z3, . . . , z1zd, z2z3, . . . , z2zd, . . . , zd−1zd)
′.

The τ nλ0 sequence consists of two parts, the first part is the Jacobian matrix of vech(zz′)

evaluated at z = Zt, we write the Jacobian matrix of vech(zz′) with respect to d-
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dimensional vector z in partitioned form:

∂vech(zz′)

∂z
=


J1(z)

J2(z)
...

Jd−1(z)


d(d−1)

2
×d

where Ji(z) =
∂z∗i
∂z
, i = 1, . . . , d − 1 is the (d − i) × d Jacobian matrix for the i-th

sub-vector of vech(zz′):

z∗i = (zizi+1, zizi+2, . . . , zizd)
′, i = 1, . . . , d− 1.

More explicitly,

Ji(z) =


(
z−i zi · I(d−i)×(d−i)

)
for i = 1(

0(d−i)×(i−1) z−i zi · I(d−i)×(d−i)

)
for i = 2, . . . , d− 1.

Note that the sub-block matrix 0(d−i)×(i−1), i = 2, . . . , d−1 in Ji(z) is a (d− i)× (i−1)

matrix where all elements are 0, this sub-block matrix is dropped when i = 1. The

sub-block z−i, i = 1, . . . , d − 1 is a column vector with length d − i consisting of

zi+1, . . . , zd, i = 1, . . . , d − 1. In other words, it excludes the first i elements in the

vector z. The last sub-block matrix zi · I(d−i)×(d−i), i = 1, . . . , d − 1 is the diagonal

matrix with zi on the diagonal and 0 at all off-diagonal positions, where I(d−i)×(d−i) is

(d− i)× (d− i) identity matrix. The second essential part in τ nλ0 is the gradient of Zt

evaluated at θλ0 :
∂Zt

∂θ

∣∣∣
θ=θλ0

=
(
A1 A2 A3 A4

)
d×4d

where A1, A2, A3, A4 are d× d diagonal matrices such that

A1 = diag

(− D̄t,λ0√
σ2
1,1D̄t,λ0 + σ2

1,2Dt,λ0

,− D̄t,λ0√
σ2
2,1D̄t,λ0 + σ2

2,2Dt,λ0

, . . . ,− D̄t,λ0√
σ2
d,1D̄t,λ0

+ σ2
d,2Dt,λ0

)′


A2 = diag

(
(−1

2

Zt,1D̄t,λ0

σ2
1,1D̄t,λ0 + σ2

1,2Dt,λ0

,−1

2

Zt,2D̄t,λ0

σ2
2,1D̄t,λ0 + σ2

2,2Dt,λ0

, . . . ,−1

2

Zt,dD̄t,λ0

σ2
d,1D̄t,λ0 + σ2

d,2Dt,λ0

)′

)

A3 = diag

(− Dt,λ0√
σ2
1,1D̄t,λ0

+ σ2
1,2Dt,λ0

,− Dt,λ0√
σ2
2,1D̄t,λ0

+ σ2
2,2Dt,λ0

, . . . ,− Dt,λ0√
σ2
d,1D̄t,λ0 + σ2

d,2Dt,λ0

)′


A4 = diag

(
(−1

2

Zt,1Dt,λ0

σ2
1,1D̄t,λ0

+ σ2
1,2Dt,λ0

,−1

2

Zt,2Dt,λ0

σ2
2,1D̄t,λ0

+ σ2
2,2Dt,λ0

, . . . ,−1

2

Zt,dDt,λ0

σ2
d,1D̄t,λ0

+ σ2
d,2Dt,λ0

)′

)
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where the diag(·) operator transforms a column vector into its corresponding diagonal

matrix. The sample (cross-) moments of Zt converges to its theoretical counterparts

before and after the change point, respectively. After combine two differentials above,

we obtain the asymptotic term of τ nλ0(s) as

Proposition 3. (Characterization of the residual effect in the limit)

Under Assumption 1, if the true break point is known as λ0 ∈ (0, 1), as n → ∞, we

have

τ nλ0(s) =
1

n

[ns]∑
t=1

∂vech(zz′)

∂z

∣∣∣
z=Zt

∂Zt

∂θ

∣∣∣
θ=θλ0

⇒
(
B1 B2 B3 B4

)
:= τλ0(s)

where the sub-matrices B1,B2,B3,B4 are of d(d−1)
2
×d dimensions. They can be further

expressed in an explicit way:

B1 = 0 d(d−1)
2
×d and B3 = 0 d(d−1)

2
×d

B2 =


B∗2,1

B∗2,2
...

B∗2,d−1


d(d−1)

2
×d

and B4 =


B∗4,1

B∗4,2
...

B∗4,d−1


d(d−1)

2
×d

where

B∗2,i =


(
− 1

2 (sD̄t,λ0
+ λ0Dt,λ0

)ρ∗i,1 − 1
2 (sD̄t,λ0

+ λ0Dt,λ0
)ρ∗∗i,1

)
i = 1(

0(d−i)×(i−1) − 1
2 (sD̄t,λ0

+ λ0Dt,λ0
)ρ∗i,1 − 1

2 (sD̄t,λ0
+ λ0Dt,λ0

)ρ∗∗i,1

)
i = 2, . . . , d− 1

B∗4,i =


(
− 1

2 (s− λ0)Dt,λ0
ρ∗i,2 − 1

2 (s− λ0)Dt,λ0
ρ∗∗i,2

)
i = 1(

0(d−i)×(i−1) − 1
2 (s− λ0)Dt,λ0

ρ∗i,2 − 1
2 (s− λ0)Dt,λ0

ρ∗∗i,2

)
i = 2, . . . , d− 1.

The vector ρ∗i,j and the diagonal matrix ρ∗∗i,j follow

ρ∗i,j = (ρi,i+1/σ
2
i,j, ρi,i+2/σ

2
i,j, . . . , ρi,d/σ

2
i,j)
′

ρ∗∗i,j = diag
(
(ρi,i+1/σ

2
i+1,j, ρi,i+2/σ

2
i+2,j, . . . , ρi,d/σ

2
d,j)
′) .

The derivation of this proposition is trivial and not presented here. Both B1 and

B3 are d(d−1)
2
× d matrices consisting of nothing but zeros. B2 and B4 are rewritten in

partitioned form. In B∗2,i and B∗4,i, i = 1, . . . , d − 1, the sub-block matrix 0(d−i)×(i−1)
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remains as a (d− i)× (i− 1) matrix consisting of zeros ∀i > 1, whereas it disappears

when i = 1. The next sub-block in B∗2,i(or B∗4,i) which consists of ρ∗i,1(or ρ∗i,2) is a

(d− i) length vector where (ρi,i+1, ρi,i+2, . . . , ρi,d)
′, i.e., the i-th sub-vector of vectorized

pairwise correlations vech(ρ) plays a role. The last sub-block matrix is a (d−i)×(d−i)

diagonal matrix, where the aforementioned i-th sub-vector of vech(ρ) emerges once

again. Alternatively, one can rewrite τλ0(s) in terms of τθ0,1(s) and τθ0,2(s) which

capture the residual effect with respect to the parameter vectors before and after the

break point:

τλ0(s) =
(
τθ0,1(s)D̄t,λ0 + τθ0,1(λ0)Dt,λ0 (τθ0,2(s)− τθ0,2(λ0))Dt,λ0

)
where

τθ0,1(s) :=
(
C1 C2

)
and τθ0,2(s) :=

(
C3 C4

)
.

Write out the expressions of Cj, j = 1, . . . , 4 as

C1 = 0 d(d−1)
2
×d and C3 = 0 d(d−1)

2
×d

C2 =


C∗2,1

C∗2,2
...

C∗2,d−1


d(d−1)

2
×d

and C4 =


C∗4,1

C∗4,2
...

C∗4,d−1


d(d−1)

2
×d

where

C∗2,i =


(
−1

2
sρ∗i,1 −1

2
sρ∗∗i,1

)
i = 1(

0(d−i)×(i−1) −1
2
sρ∗i,1 −1

2
sρ∗∗i,1

)
i = 2, . . . , d− 1

C∗4,i =


(
−1

2
sρ∗i,2 −1

2
sρ∗∗i,2

)
i = 1(

0(d−i)×(i−1) −1
2
sρ∗i,2 −1

2
sρ∗∗i,2

)
i = 2, . . . , d− 1.

The series of sub-matrices C∗2,i(or C∗4,i), i = 1, . . . , d− 1 can be clarified in the similar

manner as series B∗2,i(or B∗4,i) i = 1, . . . , d − 1, although the indicator functions are

taken into account only in the later series. The above derivations imply that the

τλ0(s) term is merely piecewise linear in s as a result of discontinuity of the indicator

function. B1 and B3 matrices indicate that the piecewise demeaning does not lead any
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residual effect whereas this effect is not asymptotically ignorable when the breaks in

marginal variances occur, which is implied byB2 andB4. With the help of the analytic

results derived above, one could adopt a simulation-based approximation of the limit

distribution of our test statistics with consecutive corrections on covariance matrices

along the time path, this serves as an alternative to bootstrap method. As discussed in

Demetrescu and Wied (2017), one has to check additionally if the linear combination of

Γ and Θλ0 has the same properties as Γ itself. We leave it to further research and stick

to the off-the-shelf bootstrap procedures at this moment. To illustrate how exactly

τλ0(s) term behaves, we present an example for 3-dimensional variables with breaks

both in marginal means and in marginal variances.

Example. We assume 3-dimensional random variables Xt and Zt ∼i.i.d. (0, I3). The

breaks in marginal means and in marginal variances occur at the same time fraction

λ0 for simplicity, note that there is only one break point in each variate. We have

Xt = µ1D̄t,λ0 + µ2Dt,λ0 + V Zt

where

V =


√
σ2

1,1D̄t,λ0 + σ2
1,2Dt,λ0 0 0

0
√
σ2

2,1D̄t,λ0 + σ2
2,2Dt,λ0 0

0 0
√
σ2

3,1D̄t,λ0 + σ2
3,2Dt,λ0


and the residual is given as

Ẑt,i =
Xt,i − µ̂i,1D̄t,λ0 − µ̂i,2Dt,λ0√

σ̂2
i,1D̄t,λ0 + σ̂2

i,2Dt,λ0

, for i = 1, 2, 3.

The true parameters vector is

θλ0 = (µ1,1, µ2,1, µ3,1, σ
2
1,1, σ

2
2,1, σ

2
3,1, µ1,2, µ2,2, µ3,2, σ

2
1,2, σ

2
2,2, σ

2
3,2)′.

Let the cross correlation pairs be

vech(zz′) =
(
z1z2 z1z3 z2z3

)′
.

The corresponding derivative of vech(zz′) evaluated at Zt:

∂vech(zz′)

∂z

∣∣∣
z=Zt

=


Zt,2 Zt,1 0

Zt,3 0 Zt,1

0 Zt,3 Zt,2

 .
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The corresponding derivative of Zt evaluated at θλ0:

∂Zt

∂θ

∣∣∣
θ=θλ0

=
(
A1 A2 A3 A4

)
where

A1 =


− D̄t,λ0√

σ2
1,1D̄t,λ0+σ2

1,2Dt,λ0
0 0

0 − D̄t,λ0√
σ2
2,1D̄t,λ0+σ2

2,2Dt,λ0
0

0 0 − D̄t,λ0√
σ2
3,1D̄t,λ0+σ2

3,2Dt,λ0



A2 = −1

2


Zt,1D̄t,λ0

σ2
1,1D̄t,λ0+σ2

1,2Dt,λ0
0 0

0
Zt,2D̄t,λ0

σ2
2,1D̄t,λ0+σ2

2,2Dt,λ0
0

0 0
Zt,3D̄t,λ0

σ2
3,1D̄t,λ0+σ2

3,2Dt,λ0



A3 =


− Dt,λ0√

σ2
1,1D̄t,λ0+σ2

1,2Dt,λ0
0 0

0 − Dt,λ0√
σ2
2,1D̄t,λ0+σ2

2,2Dt,λ0
0

0 0 − Dt,λ0√
σ2
3,1D̄t,λ0+σ2

3,2Dt,λ0



A4 = −1

2


Zt,1Dt,λ0

σ2
1,1D̄t,λ0+σ2

1,2Dt,λ0
0 0

0
Zt,2Dt,λ0

σ2
2,1D̄t,λ0+σ2

2,2Dt,λ0
0

0 0
Zt,3Dt,λ0

σ2
3,1D̄t,λ0+σ2

3,2Dt,λ0

 .

Finally, we have

τ nλ0(s) =
1

n

[ns]∑
t=1

∂vech(zz′)

∂z

∣∣∣
z=Zt

∂Zt

∂θ

∣∣∣
θ=θλ0

⇒
(

0(3×3) B2 0(3×3) B4

)
:= τλ0(s)

where

B2 = −1

2


ρ1,2I(s<λ0)

σ2
1,1

s+
ρ1,2I(s≥λ0)

σ2
1,1

λ0
ρ1,2I(s<λ0)

σ2
2,1

s+
ρ1,2I(s≥λ0)

σ2
2,1

λ0 0

ρ1,3I(s<λ0)

σ2
1,1

s+
ρ1,3I(s≥λ0)

σ2
1,1

λ0 0
ρ1,3I(s<λ0)

σ2
3,1

s+
ρ1,3I(s≥λ0)

σ2
3,1

λ0

0
ρ2,3I(s<λ0)

σ2
2,1

s+
ρ2,3I(s≥λ0)

σ2
2,1

λ0
ρ2,3I(s<λ0)

σ2
3,1

s+
ρ2,3I(s≥λ0)

σ2
3,1

λ0



B4 = −1

2


ρ12I(s≥λ0)

σ2
1,2

(s− λ0) ρ12I(s≥λ0)

σ2
2,2

(s− λ0) 0

ρ13I(s≥λ0)

σ2
1,2

(s− λ0) 0 ρ13I(s≥λ0)

σ2
3,2

(s− λ0)

0 ρ23I(s≥λ0)

σ2
2,2

(s− λ0) ρ23I(s≥λ0)

σ2
3,2

(s− λ0)

 .
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In this case, τθ0,1(s) and τθ0,2(s) terms follow

τθ0,1(s) =


0 0 0 −1

2
s ρ1,2
σ2
1,1
−1

2
s ρ1,2
σ2
2,1

0

0 0 0 −1
2
s ρ1,3
σ2
1,1

0 −1
2
s ρ1,3
σ2
3,1

0 0 0 0 −1
2
s ρ2,3
σ2
2,1
−1

2
s ρ2,3
σ2
3,1



τθ0,2(s) =


0 0 0 −1

2
s ρ1,2
σ2
1,2
−1

2
s ρ1,2
σ2
2,2

0

0 0 0 −1
2
s ρ1,3
σ2
1,2

0 −1
2
s ρ1,3
σ2
3,2

0 0 0 0 −1
2
s ρ2,3
σ2
2,2
−1

2
s ρ2,3
σ2
3,2

 .

The B1 and B3 matrix is 0(3×3), so demeaning does not have an asymptotic effect,

only the variance estimation affects the limit distribution, in addition, the τλ0(s) term

is only piecewise linear in s, the estimation effect does not cancel out, so there is a

residual effect in constant correlation test.

5 Finite Sample Simulation

We analyze the finite sample behavior of the multivariate constant correlation test

given time-varying marginal variances. In finite samples, the size and power of the

test are appealing. The case of time-varying marginal means is less attractive because

the limit distribution is not affected by the residual effect when a break appears in

the marginal means, as assured by the analytic derivation in Section 4. In this case,

the bootstrap approximation of the asymptotic distribution of test statistics is not

necessary, one could obtain the critical values directly via expressions in Kiefer (1959).

Demetrescu and Wied (2017) present simulations which show that the Wied, Krämer

and Dehling (2012)-test does not work well in the case of a break in marginal variances.

If the marginal variances decrease, the empirical size is lower than the nominal size,

if the marginal variances increase, the Wied, Krämer and Dehling (2012)-test is over-

sized. On the other hand, it turns out that the residual-based test keeps its size.

To see if this also holds in the multi-dimensional case, in the Monte Carlo simula-

tion design, we assume a series of d-dimensional random variables, d = 3, 5, 10. The

variables possess two types of dependence structure: serially independent process and
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MA(1) process. We summarize the underlying data generating process as

Xt = ut + φut−1, t = 1, . . . , n

whereXt = (Xt,1, . . . , Xt,d)
′ and ut = (ut,1, . . . , ut,d)

′ ∼ N(0,Σd). The d×d matrix φ is

set to 0d×d and diag(0.5)d×d for serially independent and dependent cases, respectively.

In the size analysis, two scenarios are further considered: under the null hypothesis,

on the one hand, the cross correlations of ut are restricted to be equal, on the other

hand, the cross correlations are allowed to be unequal, since the assumption of equal

cross correlations across all dimensions is too restrictive in the applications. In the for-

mer scenario, we fix all off-diagonal elements in the correlation matrix to 0.4, whereas,

in the latter scenario, we generate data samples from d = 3, 5, 10 dimensional normal

distribution with the following vectorized pairwise correlation matrices, respectively:

vech(ρ3) = (0.4, 0.7, 0.5)′,

vech(ρ5) = (0.4, 0.7, 0.1, 0.2, 0.5, 0.6, 0.2, 0.1, 0.3, 0.1)′,

vech(ρ10) =(0.4, 0.4, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6, 0.5, 0.5, 0.4,

0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.5, 0.5, 0.4, 0.5, 0.4, 0.4, 0.6, 0.5, 0.6, 0.5, 0.4, 0.4,

0.5, 0.6, 0.5, 0.4, 0.5, 0.4, 0.5, 0.6, 0.5)′.

All other settings of the simulation are identical to the first scenario except the cross

correlations, and the expression of the vector of cross correlations aligns with the

definition in previous section. The marginal variances in the first half of the sample

are 1, whereas they take the values {0.1, 0.2, . . . , 1.9, 2.0} in the second half of the

sample as a means to check the test performance given different magnitudes of marginal

variances. The sample size is T = 500 and we run 1000 times Monte Carlo simulations.

In order to obtain the critical values for the test, we use the IID bootstrap method and

nonoverlapping block bootstrap method for serially independent and dependent cases,

respectively, i.e., random draws of single elements or blocks of elements from joint

empirical distributions of demeaned Xt with replacement, the number of bootstrap

replications is B = 199 and the block length is T 1/3.

19



In the power analysis, under the alternative hypothesis, the marginal variances are

set to 1 in the first half and 2 in the second half of the sample. All pairs of cross

correlations in the first half of the sample is set to 0.4, and we have a change in cross

correlations in the middle of the sample such that the pairwise correlations take the

values {0, 0.1, . . . , 0.6, 0.7, 0.8} in the second half of the sample. This implies that all

pairs of cross correlations still remain equal to each other in the second half of the

sample, after the shift in the magnitude of pairwise correlations occurs. The cases with

the true and estimated break points are both considered.

Figures 1, 2 and 3 respectively correspond to the information stored in Tables 3,4

and 5 in appendix. Figure 1 shows the empirical size of testing procedure for the

serially independent data series, whereas Figure 2 shows the empirical size of the test

for the serially dependent data sample. The test generally keeps the size in both

the case of equal and of unequal cross correlations. The test with true and the test

with estimated break points do not yield significant differences in test size. However,

when simulating 10-dimensional variables, the test size is slightly smaller than the

nominal level of 0.05 given that the true data generating process is MA(1) process. We

increase the sample size T from 500 to 1000 to see if a short sample length caused an

under-size problem. In Figure 2, the blue curves represent the empirical rejection rates

given multiple choices of marginal variances in the second half of the sample after the

sample size is increased. We achieved generally better empirical size with the larger

sample, i.e., the empirical rejection frequencies are closer to the level of nominal size.

Alternative solutions would be trails with higher number of repetitions of simulations

or higher numbers of repetitions of bootstraps. At the same time, the standard block

bootstrap methods might fail in the case of high dimension, Zhang and Cheng (2014)

recently studied on bootstrap inference in high dimensionality with special interest

of the interplay between dependence structure and dimensionality. Nevertheless, it is

necessary to adopt some modified block bootstrap procedures when the dimension is

comparable or even greater than the sample size, our case clearly does not belong to

that category, then it is unnecessary to do so.

Concerning the empirical power of the test, please see Figure 3. Again, one can con-

clude that using the estimated break point does not significantly affect the test power.

20



Moreover, when N = 3, 5, we achieve considerably larger power for larger shifts of cor-

relation coefficients in the second part of the sample, whereas, in 10-dimensional case,

we achieve lower empirical rejection rates given large jumps in pairwise correlations

in the second subsample. This occurs, for example, when the correlation coefficient

changes from 0.4 to 0.8. We double the sample size and replicate the power analy-

sis for 10 variates, the blue curves in Figure 3 indicate that the empirical power is

improved for both serially independent and serially dependent data generating pro-

cesses. In addition, one can observe an asymmetric empirical power level, especially

for serially dependent data series. This means that the empirical test rejection rates

when the correlation coefficients change to higher values are not as high as those when

the correlation coefficients shift downward. This problem is possibly caused by the

simulation setting in our approach: an identical block length T 1/3 in nonoverlapping

block bootstrap is selected for all cases regardless of the persistence in data generating

process. It makes more sense, for example, to choose a larger block length in the case

of stronger correlation in the second subsample. To improve this, one could refer to

Politis and White (2004), they proposed a selection procedure of the optimal block

length for circular bootstrap and stationary bootstrap in an adaptive way. Since it is

not our main concern, we will not proceed with such method given that our result of

empirical power is considerable.
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Figure 1: Empirical size for serially independent data generating process: rejection

rates given constant cross correlations and nonconstant marginal variances, N =

3, 5, 10. CP indicates the change point in the marginal variances.
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Figure 2: Empirical size for serially dependent data generating process: rejection rates

given constant cross correlations and nonconstant marginal variances, N = 3, 5, 10. CP

indicates the change point in the marginal variances.
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Figure 3: Empirical power: rejection rates given nonconstant cross correlations and

nonconstant marginal variances, N = 3, 5, 10. CP indicates the change point in the

marginal variances.
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6 Application

In our empirical study we investigate the log returns of eight stocks from Euro Stoxx

50 from January 1 2005 to January 1 2010, for a sample length of T = 1304, which

encompasses the period of the recent global financial crisis. The stocks belong to various

industry sectors in France, Germany, Italy, Luxembourg and the Netherlands, please

see Table 1 for complete information. Data were obtained from database Datastream.

Stock symbol Variance break date Country Sector

ARCELOR August 29, 2008 LUX Steel

BASF September 11, 2008 GER Chemistry

DAIMLER July 9, 2008 GER Automobile

ENEL September 2, 2008 ITA Energy

INGGROEP September 11, 2008 NL Finance

INTESA August 26, 2008 ITA Finance

LVMH January 7, 2008 FRA Luxury

SANOFI January 3, 2008 FRA Pharmacy

Table 1: Information of eight European stocks including stock symbols, the change

points in marginal variances, countries and industry sectors

Figure 4 shows the rolling correlations for all pairs of eight log stock returns. The

window of the calculation of the rolling correlations is set to be 120 trading days, which

is approximately the length of trading days in half a year. Time-varying correlations

are identified. For example, the correlation between DAIMLER and ARCELOR was

close to 0 in the beginning of September 2008 and had a significant increase after this.
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The correlation matrix based on the full sample of log returns is given as

R =



1.00 0.62 0.60 0.47 0.52 0.50 0.57 0.30

0.62 1.00 0.69 0.56 0.59 0.60 0.60 0.45

0.60 0.69 1.00 0.52 0.56 0.61 0.62 0.42

0.47 0.56 0.52 1.00 0.53 0.55 0.54 0.42

0.52 0.59 0.56 0.53 1.00 0.65 0.57 0.33

0.50 0.60 0.61 0.55 0.65 1.00 0.59 0.37

0.57 0.60 0.62 0.54 0.57 0.59 1.00 0.42

0.30 0.45 0.42 0.42 0.33 0.37 0.42 1.00



.

Figure 5 shows the rolling marginal variances calculated in rolling windows of 120

days for all series of stock returns, none of which can be assumed to be constant

throughout the period. By applying the variance constancy test from Wied, Arnold,

Bissantz and Ziggel (2012) combined with a binary segmentation algorithm searching

for potential multiple change points, exactly one change point is detected in each of

marginal variances. The change points in marginal variances appear in Table 1. Most

of the stocks exhibited a change point in summer/autumn 2008, whereas the change

points of LVMH and SANOFI occurred in January 2008. Since no additional change

points were detected in the refinement procedure, we continue to use those change

points in our analysis.

Figure 6 is a representative ACF plot which reveals autocorrelations in the prod-

uct of residuals of BASF and DAIMLER, see Figure 8 for ACF for all pairs of cross

products. Since the cross products of residuals ẐtiẐtj,∀i 6= j have autocorrelations

as Figure 8 shows, we need to use the block bootstrap strategy instead of the IID

bootstrap method to approximate the limit distribution of our test statistics, for which

the block length is set to T 1/3 and the number of bootstrap replications B = 10999.

The test statistics Qn equals to 4.675097, Figure 9 shows the histogram of asymptotic

distribution of test statistics approximated by block bootstrap procedure. The null

hypothesis is rejected at the significant level α = 0.05, and the approximate p-value

is smaller than 0.001 (0.0005455041). The maximum of our test statistics identifies

the break point on August 3, 2007, which was very near the beginning of the financial

event: liquidity crisis dated from August 9, 2007, when investment bank BNP Paribas

was unable to withdraw from two of three hedge funds, and European Central Bank
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Figure 4: The rolling pairwise correlations between stock log returns
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Figure 5: Rolling marginal variances of stock log returns
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Figure 6: Autocorrelation Function (ACF) plot of cross product of residuals of BASF

and DAIMLER

started to intervene in the banking market in order to improve the liquidity, as the

timeline listed by Guillén (2015) corroborates.

Figure 7 presents the process of our test statistics against the time axis, which

motivates us to investigate other potential break points in the sub-period between

2008 and 2009. We begin with the multivariate constant correlation test proposed by

Wied (2017) combined with binary segmentation algorithm, the test statistics is given

as

AT = max
2≤k≤T

k√
T
||Ê−1/2Pk,T ||1 with ||Pk,T ||1 = (ρ̂ijk − ρ̂

ij
T )1≤i<j≤p

where (ρ̂ijT )1≤i<j≤p is recursively estimated pairwise correlation coefficients, Ê is the

bootstrap estimator of the asymptotic covariance of (ρ̂ijk )1≤i<j≤p. It pinpoints two

break dates: July 6, 2007, and September 2, 2008. Details of the procedure of the

binary segmentation algorithm appear in Galeano and Wied (2017).

Results in Table 2 are provided by the new test in this paper combined with binary

segmentation algorithm, which show the details of each iteration in the algorithm. In

the first iteration, time point t = 674 (August 3, 2007) is recognized as the break

point in the correlation matrix with test statistics of 4.675 at the significant level 0.05.

We split the entire sample into two subintervals [1, 674] and [675, 1304], then try to

detect additional change points if available, respectively. In the first subinterval, the

29



2005 2006 2007 2008 2009 2010

0
1

2
3

4
5

Date

Te
st

 S
ta

tis
tic

s

Figure 7: Process of test statistics Qn

algorithm detects a change point at time point t = 353 (May 11, 2006) which is not

statistically significant, whereas, in the second subinterval, the statistically significant

time point t = 1016 (November 25, 2008) is labeled as a change point. Then we split

the second subinterval into two subintervals [675, 1016] and [1017, 1304] and search for

additional change points. A third statistically significant change point t = 1137 (May

13, 2009) appears in subinterval [1017, 1304], then this subinterval needs to be separated

into two subintervals [1017, 1137] and [1138, 1304], after which the searching procedure

continues in subintervals. No further change points are detected in four subintervals,

namely [1, 674], [675, 1016], [1017, 1137] and [1138, 1304], leaving only t = 674, t = 1016

and t = 1137 as change points. In the refinement step, the first change point shifts

to July 25, 2007, the second break point November 25, 2008 remains, and the third

change point is dropped. The results from test in Wied (2017) and our test can be

tied to financial facts: although our test seems to more precisely identify the date

related to liquidity crisis, Wied (2017) test provides better results of the change date

corresponding to the insolvency of Lehman Brothers.
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Time Interval Change point Q Date

Step 1

[1, 1304] t = 674 4.675∗ August 3, 2007

Step 2

[1, 674] t = 353 3.308 May 11, 2006

[675, 1304] t = 1016 3.991∗ November 25, 2008

[1, 674] t = 353 3.308 May 11, 2006

[675, 1016] t = 811 3.577 February 12, 2008

[1017, 1304] t = 1137 4.056∗ May 13, 2009

[1, 674] t = 353 3.308 May 11, 2006

[675, 1016] t = 811 3.577 February 12, 2008

[1017, 1137] t = 1079 2.716 February 20, 2009

[1138, 1304] t = 1211 2.860 August 25, 2009

Step 3 (Refinement)

[1, 1016] t = 667 4.995∗ July 25, 2007

[675, 1137] t = 976 3.296 September 30, 2008

[1017, 1304] t = 1137 4.056∗ May 13, 2009

[1, 1137] t = 667 4.855∗ July 25, 2007

[675, 1304] t = 1016 3.991∗ November 25, 2008

Table 2: Iterations in binary segmentation algorithm, ∗ denotes the statistically sig-

nificant change points, the initial significance level α0 = 0.05, followed by α1 ≈ 0.025,

α2 ≈ 0.017 in each iterations, respectively.
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R1 =



1.00 0.34 0.28 0.16 0.29 0.23 0.34 0.12

0.34 1.00 0.47 0.40 0.52 0.37 0.51 0.38

0.28 0.47 1.00 0.30 0.44 0.34 0.44 0.31

0.16 0.40 0.30 1.00 0.41 0.33 0.37 0.25

0.29 0.52 0.44 0.41 1.00 0.49 0.65 0.41

0.23 0.37 0.34 0.33 0.49 1.00 0.43 0.25

0.34 0.51 0.44 0.37 0.65 0.43 1.00 0.37

0.12 0.38 0.31 0.25 0.41 0.25 0.37 1.00



R2 =



1.00 0.72 0.68 0.58 0.56 0.53 0.67 0.48

0.72 1.00 0.73 0.65 0.62 0.61 0.62 0.62

0.68 0.73 1.00 0.65 0.59 0.70 0.69 0.60

0.58 0.65 0.65 1.00 0.62 0.63 0.62 0.60

0.56 0.62 0.59 0.62 1.00 0.68 0.61 0.48

0.53 0.61 0.70 0.63 0.68 1.00 0.69 0.52

0.67 0.62 0.69 0.62 0.61 0.69 1.00 0.57

0.48 0.62 0.60 0.60 0.48 0.52 0.57 1.00



R3 =



1.00 0.67 0.70 0.52 0.60 0.60 0.60 0.19

0.67 1.00 0.74 0.51 0.61 0.67 0.63 0.24

0.70 0.74 1.00 0.46 0.58 0.62 0.61 0.23

0.52 0.51 0.46 1.00 0.49 0.52 0.52 0.27

0.60 0.61 0.58 0.49 1.00 0.68 0.54 0.16

0.60 0.67 0.62 0.52 0.68 1.00 0.54 0.24

0.60 0.63 0.61 0.52 0.54 0.54 1.00 0.22

0.19 0.24 0.23 0.27 0.16 0.24 0.22 1.00


We also calculate the pairwise correlations based on the three subsamples separated by

the change points. The correlation matrices R1, R2 and R3 show that, for example,

the correlation between ARCELOR and DAIMLER increases from 0.28 to 0.68 at the

first break point, and to 0.70 at the second, which coincides with the usual observation

that stocks in financial markets exhibit the synchronized movement during the crisis

period.
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7 Conclusions

In this paper, we propose a new residual-based constancy test on a correlation matrix

in the light of a recently proposed general framework of residual-based inference on the

moment hypothesis. Our test is robust to the existence of the residual effect when the

marginal variances are not constant over time. The limit distribution of test statistics

and its approximation are provided, and the good finite sample behavior has been

validated by Monte Carlo simulations under various scenarios. We also examine the

performance of the test on the time series of log returns of eight European stocks. In

future research, one might develop a general theoretical foundation of the validity of

bootstrap approximation in this constant correlation test. It would also be interesting

to study whether the correlation models, such as DCC or CCC models can be improved

in terms of, for example, Value-at-Risk forecasting accuracy with the combination of

the proposed test in detecting and dating structural breaks in correlations.
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A Proof

A.1 Proof of Proposition 1

To prove the convergence of the random vector 1√
n

∑[ns]
t=1 vech(ẐtẐ

′
t), we need to prove

each element in this d(d−1)
2

dimensional vector has such convergence, for 1 ≤ i < j ≤ d:

1√
n

∑[ns]
t=1 Ẑt,iẐt,j = 1√

n

∑[ns]
t=1 Zt,iZt,j + 1√

n

∑[ns]
t=1

∂zizj
∂z

∣∣∣
z=Z∗t

∂Z∗t
∂θ

∣∣∣
θ=θ∗λ0

(θ̂λ0 − θλ0)

= 1√
n

∑[ns]
t=1 Zt,iZt,j + 1√

n

∑[ns]
t=1

∂zizj
∂z

∣∣∣
z=Zt

∂Zt
∂θ

∣∣∣
θ=θλ0

(θ̂λ0 − θλ0)

+ 1√
n

∑[ns]
t=1

(
∂zizj
∂z

∣∣∣
z=Z∗t

∂Z∗t
∂θ

∣∣∣
θ=θ∗λ0

− ∂zizj
∂z

∣∣∣
z=Zt

∂Zt
∂θ

∣∣∣
θ=θλ0

)
(θ̂λ0 − θλ0)

Note that θλ0 is true parameter vector with length 4d, the estimator θ∗λ0 is the convex

combination of θλ0 and θ̂λ0 such that it lies in the neighborhood Φn defined in As-

sumption 2 (as θ̂λ0 − θλ0 = Op(1/
√
n), so θ∗λ0 lies in

√
n-neighborhood of θλ0 hence in

Φn). The first equal sign is given by expansion with mean value theorem around θλ0 ,

and the third term in the second line vanishes asymptotically as

|| 1√
n

∑[ns]
t=1

(
∂zizj
∂z

∣∣∣
z=Z∗t

∂Z∗t
∂θ

∣∣∣
θ=θ∗λ0

− ∂zizj
∂z

∣∣∣
z=Zt

∂Zt
∂θ

∣∣∣
θ=θλ0

)
(θ̂λ0 − θλ0)||

≤ ||
√
n(θ̂λ0 − θλ0)|| supθ∗λ0 ,t=1,...,n ||

∂zizj
∂z

∣∣∣
z=Z∗t

∂Z∗t
∂θ

∣∣∣
θ=θ∗λ0

− ∂zizj
∂z

∣∣∣
z=Zt

∂Zt
∂θ

∣∣∣
θ=θλ0

||

→p 0

The last line is guaranteed by Assumption 2. By applying Lemma 18.7 in Davidson

(1994), p. 285, for 1 ≤ i < j ≤ d, we have

1√
n

[ns]∑
t=1

(∂zizj
∂z

∣∣∣
z=Z∗t

∂Z∗t
∂θ

∣∣∣
θ=θ∗λ0

− ∂zizj
∂z

∣∣∣
z=Zt

∂Zt

∂θ

∣∣∣
θ=θλ0

)
(θ̂λ0 − θλ0)→p 0

Note that, from Assumption 1, we have

√
n(θ̂λ0 − θλ0)→d Σ

1/2
λ0

Θλ0(1)

In addition, once Assumption 1 is valid, it holds that the sample (cross-) moments of

Zt converges to its theoretical counterparts, respectively, in the subsamples separated

by the change point λ0. As a consequence, the asymptotic property of the essential

part of residual effect follows

1

n

[ns]∑
t=1

∂vech(zz′)

∂z

∣∣∣
z=Zt

∂Zt

∂θ

∣∣∣
θ=θλ0

⇒ τλ0(s)
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where the asymptotic residual effect part is

τλ0(s) =
(
τθ0,1(s)D̄t,λ0 + τθ0,1(λ0)Dt,λ0 (τθ0,2(s)− τθ0,2(λ0))Dt,λ0

)
Following the elementwise convergence derived above, together with continuous map-

ping theorem and Assumptions 1-2, we have

1√
n

∑[ns]
t=1(vech(ẐtẐ

′
t)− E(vech(ZtZ

′
t)))

= 1√
n

∑[ns]
t=1(vech(ZtZ

′
t)− E(vech(ZtZ

′
t))) + 1√

n

∑[ns]
t=1

∂vech(zz′)
∂z

∣∣∣
z=Zt

∂Zt
∂θ

∣∣∣
θ=θλ0

(θ̂λ0 − θλ0)

+ 1√
n

∑[ns]
t=1

(
∂vech(zz′)

∂z

∣∣∣
z=Z∗t

∂Z∗t
∂θ

∣∣∣
θ=θ∗λ0

− ∂vech(zz′)
∂z

∣∣∣
z=Zt

∂Zt
∂θ

∣∣∣
θ=θλ0

)
(θ̂λ0 − θλ0)

⇒ Ω1/2Γ(s) + τλ0(s)Σ
1/2
λ0

Θλ0(1)

A.2 Proof of Proposition 2

Following proposition 1, we have

j√
n
(Ŝj − Ŝn)

= j√
n
(1
j

∑j
t=1 vech(ẐtẐ

′
t)− 1

n

∑n
t=1 vech(ẐtẐ

′
t))

= 1√
n

∑j
t=1[vech(ẐtẐ

′
t)− E(vech(ZtZ

′
t))]−

j
n

1√
n

∑n
t=1[vech(ẐtẐ

′
t)−

E(vech(ZtZ
′
t))]

⇒ Ω1/2Γ(s) + τλ0(s)Σ
1/2
λ0

Θλ0(1)− j
n
[Ω1/2Γ(1) + τλ0(1)Σ

1/2
λ0

Θλ0(1)]

:= Ω1/2(Γ̂(s)− sΓ̂(1))

where Γ̂(s) = Γ(s) + Ω−1/2τλ0(s)Σ
1/2
λ0

Θλ0(1) and j = [ns]. The conclusion of this

proposition follows with the continuous mapping theorem together with Assumption

3.

B Tables
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Figure 8: ACF plots of cross products of residuals Ẑt,iẐt,j,∀i 6= j for stocks, and A,

B, D, E, ING, INT, L, S are abbreviations for ARCELOR, BASF, DAIMLER, ENEL,

INGGROEP, INTESA, LVMH, SANOFI, respectively
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Figure 9: Histogram of asymptotic distribution of test statistics Qn approximated by

block bootstrap procedure with B = 10999 bootstrap replications and block length

T 1/3 (the blue vertical line indicates the 0.95 quantile)
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