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Abstract A nonparametric procedure for detecting and dating multiple change points
in the correlation matrix of sequences of random variables is proposed. The proce-
dure is based on a recently proposed test for changes in correlation matrices at an
unknown point in time. Although the procedure requires constant expectations and
variances, only mild assumptions on the serial dependence structure are assumed.
The convergence rate of the change point estimators is derived and the asymptotic
validity of the procedure is proved. Moreover, the performance of the proposed algo-
rithm in finite samples is illustrated by means of a simulation study and the analysis
of areal data example with financial returns. These examples show that the algorithm
has large power in finite samples.

Keywords Binary segmentation algorithm - Correlation matrix - CUSUM statistics -
Financial returns - Multiple change point detection - Nonparametric estimation

Mathematics Subject Classification (2000) 62M10 - 62G10 - 91B84
1 Introduction

The problem of detecting change points in a sequence of random variables can be
stated as follows: a sequence of random variables has a set of characteristics, such
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as the mean and/or the variance, that follow a piecewise constant structure. Then,
the goal is to detect the number of times that these characteristics change from a
set of values to another, as well as the location of the changes. Additionally, it is of
interest to estimate the characteristics in each constant period. The piecewise constant
structure can then be taken into account to construct an appropriate model that can be
used, for instance, to forecast future values of the sequence.

Many different strategies have been proposed to solve specific change point prob-
lems, such as penalized likelihood methods or binary segmentation procedures, see
Aue and Horvéath (2013) and Jandhyala et al (2013) for two recent and rather com-
plete references on the topic. There are either methods which estimate all change
points concurrently or ones that do so hierarchically. For instance, concurrent meth-
ods generally optimize a single objective function, i.e., given that there are k change
points, Hawkins (2001) estimates change point locations by maximizing a likelihood
function, whilst Lavielle and Teyssiere (2006) accomplish the same task by minimiz-
ing a loss function. Sequential methods generally estimate change points one at a time
(Guralnik and Srivastava, 1999), although some have the ability to estimate two or
more at any given stage (Olshen and Venkatraman, 2004). Such approaches are often
characterized as bisection procedures, which is the case in the proposed method that
utilizes a bisection (binary segmentation) approach for its computational efficiency.

The idea of the procedure is the following: first, one searches for a single change
point in the whole sequence using, for instance, a likelihood ratio or a cumulative
sum (CUSUM) statistic. If a change point is detected, then the sequence is split in
two subsequences that are used to search for new change points. This procedure was
first proposed by Vostrikova (1981) and posteriorly implemented in various problems
by Incladn and Tiao (1994), Bai (1997), Bai and Perron (1998), Andreou and Ghysels
(2002), Gooijer (2006), Galeano (2007) and Galeano and Tsay (2010), among many
others. See also Fryzlewicz and Rao (2014) and Fryzlewicz (2014) for two recent
references on binary segmentation.

Change point problems have been mainly focused on changes in the mean and/or
the variance of univariate sequences and in the mean and/or the covariance matrix of
multivariate sequences. However, the case of changes in the correlation between se-
quences of multiple random variables has not been extensively analyzed. Wied et al
(2012) proposed a nonparametric CUSUM statistic to test if correlations between
two random variables remain constant over time, while Galeano and Wied (2014)
proposed an algorithm based on the correlation constancy test to estimate both the
number and the timing of possible change points. However, these two papers only
consider single correlations between two random sequences. This restricts the appli-
cability of these procedures when more than two variables are of interest. Recently,
Wied (2015) proposed a CUSUM statistic that extends the methodology from the test
proposed by Wied et al (2012) to higher dimensions, but keeping its nonparamet-
ric and model-free approach. A difference is that, in contrast to Wied et al (2012),
a bootstrap estimator is used for standardizing purposes. Wied (2015) shows that
the matrix-based test outperforms a method based on performing several pairwise
tests and using a level correction like Bonferroni-Holm in some situations. Moreover,
Berens et al (2015) show that the test is useful for Value at Risk (VaR) forecasting.
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The main aim of this paper is twofold. First, we extend the nonparametric proce-
dure for detecting and dating multiple change points in bivariate correlations pro-
posed by Galeano and Wied (2014) to the case of dating multiple change points
in the correlation matrix of sequences of random variables based on the test pro-
posed by Wied (2015). In contrast to the bivariate procedure, the multivariate one is
bootstrap-based. The procedure proceeds as follows: first, we determine the “domi-
nating” change point and decide if this point is statistically significant. Then, we split
the series in two pieces and again test for possible change points in each part of the
series. The procedure stops if we do not find any new change point any more. Finally,
a refinement step is performed to delete all possible false change points and to es-
timate their location more accurately. We believe that the proposed extension to the
multivariate framework can be useful in several situations. For instance, in portfolio
management, the number of assets considered is usually more than two and typically
the interest lies in determining where a possible change occurs or how many changes
there are. The papers cited previously do not consider both situations simultaneously
as it is done in this paper. So, there is a need for such a procedure covering these
two important aspects. The second aim is to provide a theoretical justification of the
multivariate procedure. Due to its multivariate nature, the theory involved in order to
show the main characteristics of the proposed procedure is more involved than that of
the procedure in Galeano and Wied (2014) for single correlations. Assuming a finite
number of change points, we analytically show that the proposed procedure gives the
correct number of change points and that these are consistently estimated. As a by-
product, we derive the convergence rate of the change point estimator which is not
done in Galeano and Wied (2014). Furthermore, we show that the algorithm yields
appealing results in simulated samples and in an empirical application.

As we are interested in the constancy of the correlation and not the covariance
matrix, our procedure is based on the correlation constancy test proposed by Wied
(2015) and not, for example, on the covariance constancy test proposed by Aue et al
(2009). While both approaches are rather similar, there is some evidence in Wied
et al (2012) (Table 2) that the correlation test might be powerful in some situations
in which both correlation and covariance change, in particular in the case of multiple
change points. Note also that our approach is nonparametric and consequently dif-
ferent than those assuming a parametric model for the multivariate time series, e.g.,
a VARMA model such as in Galeano and Pefia (2007), Dvorak and Praskova (2013)
and Dvorak (2017), among others.

The following part of the paper is organized as follows. Section 2 introduces the
proposed procedure for detecting multiple change points in the correlation matrix
of a multivariate random variable. Section 3 derives the asymptotic properties of the
procedure (in particular its validity). Sections 4 and 5 present some simulation studies
and a real data application that show the appealing behavior of the procedure in finite
settings. Finally, Section 6 provides some conclusions. All proofs are presented in the
supplementary material of the paper.
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2 The procedure

In this section, we present the algorithm for detection of change points in the correla-
tion matrix of a sequence of p-dimensional random vectors. First of all, we introduce
some notation. Throughout the paper, X; = (X1, X245 .- 7XPJ), t € 7Z, denotes a se-
quence of p-variate random vectors on a probability space (2,2, P) with finite 4-th
moments and (unconditional) correlation matrix R; = (p,” )1<i,j<p> Where

il — Cov(Xi;, X /)
! Var(X;,)Var(X;,)

We write A ~ (m,n) for a matrix A with m rows and n columns. Moreover, we call
|||~ the L-norm of a vector, where r > 0, that means, for A = (ay,...,an) ~ (m,1),

1/r

m

1Al = { Y- ladl

i=1

We denote by —,; and —, convergence in distribution and probability, respectively,
of random variables or vectors. The convergence symbols as well as all moment op-
erators like Var are used with respect to P if not denoted otherwise. Moreover, let V
and A denote maximum and minimum, respectively. We impose the convention that
in a vector indexed by 1 <i < j < p, the first entries correspond to i = 1, the next
ones to i = 2 and so on.

Given an observed time series X1, ..., Xr, the algorithm is based on the test statis-
tic!
—1 2p
A1T—maX / leH ; (D
for the hypothesis pair Hy : Ry = ... =Ry versus H; : = Hy. Here, P, | 7 := (ﬁi i ﬁ{jT) 1
) <i<j<p
19(192*1)

YE X — X)X — X1k

b
\/Z[] it — zlk \/Z; ]t jlk)2

Xiig = %ZleXi,z, )_(j,l,k = %ZleXj,t, and E| 7 is a bootstrap estimator which
serves for approximating

L N plp—1) plp—1)
SRl i A (\F (pl]T> 1§i<j§p) - ( 2 2 > @

for large T and large B, where B is the number of bootstrap replications. The bootstrap
estimator £ 1,7 of E is computed as follows. First, we divide the observed time series
Xi,...,Xr into T — Ir — 1 overlapping blocks O;,i =1,...,T —I; — 1, where I7 is a

! Note that we compare successively calculated correlation coefficients in the spirit of fluctuation tests
like Ploberger et al (1989) here. The weighting factor % downweights imprecise estimations at the be-

ginning of the sample and serves for obtaining weak convergence to a Brownian bridge.
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block length, such that Oy = (Xj,..., X}, ), 02 = (X2,...,Xj,11),. .. Then, for some
large B, we sample {%} times with replacement one of the 7 — I — 1 blocks and
stick the blocks together, obtaining B p-dimensional time series with length {%} 7.

Now, we calculate the vector v, := /T (ﬁ;’ \T , where p;;’: |7 is the sample

) 1<i<j<p
correlation of the bootstrapped time series b = 1,. .., B. Finally, the estimator E7 7 is
the empirical covariance matrix of these B vectors, i.e.,

1 B
5 2 =) =) 3)

b=1

Eyr=

where v 1= %z’,f:l Vp.
To show the validity of the procedure, we will need several assumptions.

Assumption 1. For0 </} <, <1,

X 12,t - E (X lz,t )
Xit o E(Xg,r)
X, -  EXuy)
U[ =
Xp:  —  EXpr)
XX, — EX1Xoy)
Xl ,tXS,t - E(X] ,tX3,t)

Xp—14Xps — E(prlA,tX ,t)

and §; =} U;, the probability limit as 7 — oo of

1
( (12 _ ZI)TS[lzT]SElzT])

is a finite and positive definite matrix with dimension (2p+ 2lp 271) 2p+ 1L @ > 1)),
denoted by Dj.

J
t=1V[T]

Assumption 2. For some r > 2, the r-th absolute moments of the components of U,
are uniformly bounded, that means, sup, .y E||U;||, < oo.

Assumption 3. For the r from Assumption 2, the vector (Xi,...,X,,) is L,-NED

(near-epoch dependent) with size —% and constants (¢;),t € Z, on a sequence

(Vi),t € Z, which is a-mixing of size ¢* := — 55, i.e.

||(X1,t, e 7Xp,t) - ((Xl,t,---7Xp,r) |G(Vt—l7---7Vt+l))||2 <cwy

with lim;_,. w; = 0. The constants (¢;),t € Z fulfill ¢, < 2||U;||, with U; from As-
sumption 1.
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Assumption 4. (Xi,,...,X,,),t € Z, has constant expectation and variances, that
means, E(X;,) and E(Xf,) >0,fori=1,...,p, donot depend on .

Assumption 5. For T — oo, [y — oo and Iy ~ T* for a € (0, 1).

Assumptions 1, 2 and 3 concern moments and serial dependencies of the com-
ponents of X;. In particular, Assumption 1 is a regularity condition which rules out
trending random variables. This situation is however not relevant, for instance, in the
case of financial returns. Assumption 2 requires finite (4 4+ ¥)-th moments of X; with
Y > 0 arbitrary. Assumption 3 is a very general serial dependence assumption which
holds, for instance, in most relevant econometric models such as GARCH models
under certain conditions (cf. Carrasco and Chen, 2002). More precisely, Assumption
3 guarantees that the vector

2 2
(Xl,t’ X

pJ?Xl,f) s 7Xp,t)Xl,tX2,t7X1,tX3Ja e 7Xp—l7tXp,t)

is Lp-NED (near-epoch dependent) with size —%, cf. Davidson (1994), p. 273. As-
sumption 4 consider that the first and second moments are constant which is a con-
dition in line with Aue et al (2009) and can be slightly relaxed to allow for some
fluctuations in the first and second moments. However, we do not consider this situa-
tion for ease of exposition and because the algorithm would not change. Nevertheless,
with the observation that standard GARCH models are covered by this assumption,
we investigate in our simulation study in Section 4 how the procedure behaves in
finite samples in the presence of GARCH effects (volatility clustering). Finally, As-
sumption 5 is similar as in Calhoun (2016), Theorem 1, and guarantees that the block
length becomes large but not too large compared to 7T'.

According to Wied (2015), Corollary 1, under Hy and assumptions 1, 2, 3, 4 and
5, it holds

St

k
A7 = max Nii ||Perrl|, —a sup -

2<k<T 0<s<1
This implies the statistic Aj 7 can be approximated by the supremum of the sum
of the absolute value of independent Brownian Bridges for large B and 7. More
precisely, Hy is rejected whenever Aj 7 is larger than the 1 — a quantile of A :=

SUPg<s<1 ’
ulations by approximating the path of Brownian Bridges on fine grids, as seen in
Section 4.

The proposed procedure sequentially employs the test statistic in (1) to estimate
the timings and the number of multiple change points. In particular, we assume that
there is a finite number of change points. However, the number, location and size
of the change points are unknown. In Assumption 4 we assume that expectations and

p(p—1) . . . .
B2 (s) ‘ ’1. Quantiles of A can be easily estimated by Monte Carlo sim-

2 Given the similarity of the null hypotheses in Aue et al (2009) and Wied (2015) under Assumption 4,
one could think about replacing test statistic (1) with the ones from Aue et al (2009) and work with their
different assumption regarding serial dependencies. Aue et al (2009) do not use a bootstrap approximation
so that such a procedure would be faster. However, we would not directly measure correlations in this case
and finite sample simulations indicate that the Wied (2015)-test is more powerful in the case of multiple
change points in both correlation and covariance.
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variances are constant. Additionally, we assume that, under the alternative hypothesis,
we have a piecewise constant second-order cross moment matrix E (X, X/ ). The formal
assumption is:

Assumption 6. Under the (fixed) alternative, expectations and variances of Xi ;,...,Xp;

are constant and equal to finite numbers, u; and Gl-z, respectively, for i = 1,...,p.
Moreover, the vector of covariances changes from (E(X; ;X )i j)1<i< j<p = ((mxx')i j)1<i<j<p
to

(E (X)) )i rsieiep = (Omxx)ihsicsen+ 8 (7). 0

. p(p—1) . . . .
The function g(z) € R™ ,z2€0,1], is a step function with a finite number of steps

¢, i.e. there is a partition 0 = zg < z; < ... < zy < zg+1 = 1 and there are second cross
moment level vectors ay, .. .,ay such that

l
8(2) =Y ailjepy )y
i=0

and g(1) = a;. The quantities ¢, zj,...,z; and ao, . .. ,ay do not depend on 7.

The function g specifies the timing and the size of the changes in the correlation
matrix. Since this is a step function, we consider sudden changes in the correlation
and do not consider smooth changes. The setting allows for a change in only a subset
of the dimensions. Therefore, different change points can affect different components
of the sequence.

Next, we present the proposed procedure with the goal of estimating ¢, z;,...,z¢
and ag, . .., ay. To establish the asymptotic results, it is more convenient to present the
procedure in terms of the estimator of the change point fraction. To that purpose, we
rewrite the test statistic (1) as

-1/2

7(2) | A
A7 := sup —HE Py, 1.T‘
T oy VT IV TR

1 )

with 7(z) = [2+z(T — 2)] (where [-] is the floor function) and

T T, rlp=1)
PT(Z)vl-,T:(pij,r(z)_p;{T) ceR77.

1<i<j<p

Then, we estimate the timing of the break by 2 := 7(£*) /T with £* := argmax_B1 r(2)
and By 7(z) := @ | |PT(Z)71’T | | ,- Note that we do not consider the bootstrap estimator
from the argmax estimator as it would disturb the information about the location of
the change points given by the correlation differences. In fact, we will see later on
that B) r(z) converges to a function that essentially depends only on the function g.
Here and in the following, we restrict the values z for which the argmax is calculated
to multiples of 1/7. In case of multiple solutions, we choose the smallest one. Note
that in the first step of the procedure, B; 7(z) is calculated from all observations. In
subsequent iterations, if needed, we just consider the observations in the relevant part
of the sample and call the corresponding “target function”

T(Z)*ﬂ(11)+1

Annei (@)= rS=

A—1/2
n()e(n)Pr@m ) o)

; (&)

!
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where, z € [I},h] for0<1; <l <1,n(z) =1(z) — 1, En(ll),r(lz) denotes the bootstrap
estimate of E in (2) using data from 71(/;) to 7(l2) and

[ Alj Aif rlp=1)
Pe()n(an),eln) = (pn(h),r(d —Pnul),mz)) ticjep EROT
Then the timing of break is estimated by
A== T(271,12)/T (6)

with 271 b= argmaxllézélzBﬂ(h)ﬂ'(lz)(z) and

() =) +1
Buineun (@) = gy —pay 1 Prommamll

Basically, this means that we always look for the time point at which the test
statistic (5) (calculated from data in a particular interval) takes its maximum and
divide by T'.

Under the null hypothesis of no correlation change, it can be shown by Markov’s
inequality EALT converges to a positive definite matrix with respect to the product
measure P* which combines randomness from the data as well from the bootstrap.
So, it is reasonable to assume that the matrix En(h),r(lz) is invertible. It is an inter-
esting task for further research to prove what happens with this matrix under fixed
alternatives as considered below. In order to ensure consistency of the test statistic,
we impose the convention that En(ll)ﬁf(lz) if not invertible is perturbed slightly such
that it becomes invertible. This does not affect the asymptotic properties neither under
the null hypothesis nor under alternatives. The only potential drawback is that there
might be some overrejections in finite samples if p is large compared to 7. Never-
theless, in the following, we always assume without loss of generality that E; (111/ )2 ()
exists.

Formally, the algorithm proceeds as follows:

1. Let X{,...,X7 be the observed series. Obtain the test statistic Aj 7. There are two
possibilities:

(a) If the test statistic is statistically significant, i.e., if A1 7 > cr o, Where c7 o is
the asymptotic critical value for a given upper tail probability, then a change
in the correlation matrix is announced. Let z; be the break point estimator
from (6) and go to Step 2.

(b) If the test statistic is not statistically significant, the algorithm stops, and no
change points are detected.

2. Letzy,...,z¢ be the ¢ change points in increasing order already found in previous
iterations. If

max {Ay oo K= Lo 1] > e,

where An ( is the value of the statistic calculated from the data from

o1+ 7),7(2%)
N(zk—1+ %) to t(z), fork=1,...,£+ 1, taking zo = 0 and zy,; = 1, then a new
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change point is detected at the point fraction at which the value A T S

is attained, where:

kmax = argznax {An(“iﬁ%)_r(m,k =1,... ,é} .
Repeat this step until no more change points are found.

3. Let (z; < ... < z¢) be the detected change points. If £ > 1, refine the estimates of
the change point locations by calculating the statistic from the data from 1 (zx—; +
%) to T(zx41), for k =1,...,¢, where zo = 0 and z¢,; = 1. If any of the change
points is not statistically significant, delete it from the list, and repeat this step.

4. Finally, estimate the correlation matrix of Xy, ..., X7 in each segment separately
with the usual sample correlation matrix where individual correlations are com-
puted using the Bravais-Pearson correlation coefficient.

As shown in Section 3, the proposed procedure consistently detects the true change
points. Steps 1 and 2 are, essentially, the steps performed within the usual binary seg-
mentation procedure. Step 3 is meant to refine the estimation of the change points as
in this step the algorithm computes the value of the statistic in intervals only affected
by the presence of one single change point, which is not guaranteed in Step 2. The fi-
nal step computes the correlation matrix in subintervals with constant (unconditional)
correlation.

A key issue in applying the procedure to real data is the selection of the critical
value used in the algorithm. A possibility is to use always the same critical value in
each step of the procedure. However, this may lead to over-estimation of the number
of change points due to the fact that, the larger the number of detected change points,
the larger the accumulation of type I errors. Although we later prove that we can
consistently estimate the correct number of change points even if this is the selected
strategy, in practice, we require that the type I errors used depend on the number of
change points already detected by the algorithm. More precisely, let ¢ be the type I
error for Step 1. Then, we use the critical value cr o, after detecting the k-th change

point, where ¢ is such that 1 — ag = (1 — o )**!. This leads to oy = 1 — (1 — Oco)ﬁ
and the overall significance level (the probability of at least one false detection) is
bounded by o for all tests. For instance, if oy = 0.05, a; ~ 0.025, o ~ 0.017 and
so on.?

For consistently estimating the number of break points the initial type I error in
the asymptotic result concerning the number of break points (Theorem 3) would have
to converge to zero with a certain restriction on the convergence rate, see Assump-
tion 8. The Bonferroni-type correction outlined in the paragraph above fits into this
framework if ¢ is constant for all k larger than a threshold kq. In finite samples it is
not necessary to fix such a threshold and it is acceptable to set 0 constantly equal
to 0.05. Then, one can expect that the probability of an over-estimated number of

3 This way, the significance level becomes very small for larger k, but one should keep in mind that a
piecewise constant model might in general not be appropriate in the case of many change points. Under
such circumstances, a model with continuously changing correlations could be better.
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change points is bounded by 5%. Indeed, the simulations in Section 4 clearly sug-
gest that this is the case. As noted before, we use the quantiles of the distribution
of the supremum of the sum of the absolute value of independent Brownian Bridges
estimated by Monte Carlo simulations that can be approximated numerically as ex-
plained in Section 4.

The proposed procedure works reasonably well even in small samples in terms of
detection of the true number of changes, as shown in the Monte Carlo experiments
of Section 4. However, note that, if the number of change points detected is large
compared to the sample size, then a piecewise constant correlation matrix may not be
a good description of the true correlation of the series.

3 Analytic results

In this section, we derive analytic results for the change point estimators and detec-
tion algorithm. In order to do this, we assume that all change-points that exist are
“dominating” ones.

Assumption 7. For any 0 <[; < I, <1, define the vector

" Z Z_ll I
P = [ aar— =k [ st

Moreover, let C be a diagonal matrix with the diagonal vector given by ( (71-2(72

J ) 1<i<j<p
and define P;;le (Z) — CPZTJQ (Z) Then Pll A (Z) — ‘ ’Plj:klz (Z) ’ ’ | is either constant or has
a unique maximum for a z € [, /).

This is fulfilled for example if there is one dominating break in one component,
whereas the correlations in the other components stay constant. The condition is also
fulfilled if there is a dominating break in all components at the same time point. A
detailed discussion on dominating change points including examples in which As-
sumption 7 holds or not (in the case of p = 2) can be found in Galeano and Wied
(2014), p. 265.

Based on this assumption, we can show consistency of the estimator, validity of
the algorithm (in the sense that the number of change points is detected correctly
asymptotically) and a local power result.

Theorem 1 Let Assumptions 2, 3, 4, 6 and 7 be true and let there be at least one
break point in a given interval [l1,l,] C [0,1] with I} < . Then the change point
estimator (6) is consistent for the dominating change point.

Note that, for Theorem 1, we need not apply a functional central limit theorem so
that we do not need Assumption 1. Moreover, one could relax Assumption 2 by only
assuming the existence of finite g-th moments for a ¢ > 1. Finally, we do not need
Assumption 5 on a block length as the bootstrap estimator does not appear within the
argmax estimator.

In addition to a consistency result, a statistician is also interested in the conver-
gence rate of the change point estimator. Such a result is given in Theorem 2.
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Theorem 2 Let the assumptions from Theorem 1 be true. Then, for everyi=1,... ¢
and € > 0, there is a M > 0 and a Ty > 0 such that

P(T(&i—z)| >M) <e.
forall T > Ty.

Interestingly, the convergence rate is not /7', which would hold within e.g. the
central limit theorem, see also Diimbgen (1991).

The preceding theorem is of potential own interest, but is also needed in order
to ensure that the asymptotic behavior of the test statistic calculated from 7(2;) to
T(Zi41) is similar to that calculated from 7(z;) to T(zi41). This will be important in
the proof of Theorem 2, especially for the fact that the number of change points is
not overestimated asymptotically.

While the convergence results above are important, our main interest lies in con-
sistently estimating the number of change points. For this, we need the assumptions
for applying a functional central limit theorem and an additional assumption on the
critical values which goes back to Bai (1997). Compare also the discussion in the end
of Section 2 regarding the choice of the critical values and see also the comments
in Section 2 in Galeano and Wied (2014) about the choice of cr,q, in finite sample
settings.

Assumption 8. The critical values cr ¢, used in the algorithm obey the condition
lim7 e c7,0, = o0 and c7,, = 0(\/T) for k € N.

Moreover, we need an assumption regarding the bootstrap estimator.

Assumption 9. Consider0</; <l <1.

a) If there is no correlation change in the interval [/1, ], En(11)77(12) consistently
estimates the matrix E, uniformly over /; and /,.

b) The eigenvalues of En(ll)’f(lz) are stochastically bounded, uniformly over /;
and /.

Assumption 9.a) ensures that the bootstrap approximation works. A sufficient
condition would be to assume, for some 6 > 0 and b = 1,...,B, that the random
variable

y NT 240
Cr=E (‘ﬁ(f’bﬁmum =P i) |X1""’XT>

is stochastically bounded uniformly over /; and /5. In particular, this means that the
bootstrap correlation coefficients are sufficiently close to the correlation coefficients
obtained from the data. With such an assumption, we can infer moment from dis-
tribution convergence based on arguments given in Cheng (2015) and Kato (2011).
It remains an open research question if there are sharp low-level assumptions which
guarantee that this assumption holds.

Theorem 3 Let Assumptions 1, 2, 3, 4, 5, 6, 7, 8 and 9 be true. Let 0 the estimated
number of change points from the algorithm proposed in Section 2. Then, for any
BeN, lﬁ—>p€, Zi—pzifori=1,...,0and &; —, a; fori=0,...,L. Here, =, means
convergence in probability with respect to the product measure P*.
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Note that we need the product measure P* in the previous theorem as the es-
timators £,3;,i = 1,...,0,4;,i =0,....0 always depend on the randomness from the
original data as well as from the outcomes from the bootstrap repetitions.

Moreover, note that Theorem 3 holds for any value of B. The requirement B — oo
is only needed for obtaining an asymptotic level-c-test in the case of no change point.

Finally, in this section, we want to address the case in which the correlation shifts
tend to zero with rate % as the sample size increases such that in Assumption 6 we

replace (4) by

, 1/t
(E(X:X)))ijr<icj<p = ((mxxr)i 1<icj<p + Wi (f) : (7

In this setting, we do not have consistency to the true break point any more, but the
change point estimator converges to a non-degenerated random variable as the next
theorem shows.

Theorem 4 Let Assumptions 2, 3, 4, 6 (with (4) replaced by (7)) and 7 be true and
let there be at least one break point in a given interval [l,1;] C [0,1] with [} < I,.
Then it holds for the change point estimator (6) that

(p—1) (p=1)
% —4 argmax EV2w (2) o (I)
[1§Z§lz
_l n(p—1) (p—1)
_XTH g (Wi‘ 5 (12)_W7p 5 (ll)) +P7 (9] ,
12 _ ll 1562

. . . p(p—1) . — . .
where P, (z) is from Assumption 7, E is from (2) and W (z)isa w-dtmenszonal

standard Brownian motion.

Note that we use the convergence rate 7—'/2 for local power analysis that has
been previously used in other papers, see Wied et al (2012) and Wied (2015), among
others, and that are confirmed by results in Diimbgen (1991). If we choose a different
convergence rate for the local alternatives, as done in Csorgé and Horvath (1997), for
instance, one would get a different rate for the change point estimator.

4 Simulation evidence

In this section, we present several Monte Carlo experiments to illustrate the per-
formance of the proposed algorithm in finite samples. We focus on three important
aspects: first, the empirical size of the procedure, second, its power in correct detec-
tion of changes, and third, its ability to accurately identify the location of the change
points. In all the Monte Carlo experiments in this section and the real data example
in Section 5, the critical values used are the estimated quantiles of the distribution of
the supremum of the sum of the absolute value of independent Brownian Bridges. In
particular, as the dimension of the series in the simulations and the real data example
in Section 5 is p = 4, we obtain the estimated quantiles by generating 100000 sets
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Fig. 1 Histogram of 100000 generated values from the asymptotic distribution of the A 7 statistic with a
kernel density estimate

of 6 independent Brownian Bridges in a fine grid of 1000 points in the interval [0, 1].
Then, for each set, we take the absolute values of the observed Brownian Bridges, add
the six of them and obtain the maximum of the sums over the generated 1000 points.
In this way, we obtain a sample of 100000 random values of the required distribution,
from which we can estimate the quantiles. For instance, the first five quantiles used
in Steps 1 and 2 of the procedure, if needed, are 4.4366, 4.6890, 4.8298, 4.9230 and
4.9907, respectively. An histogram of the 100000 random values and a kernel esti-
mate of their density function are shown in Figure 1 that suggests that the asymptotic
distribution is slightly positive skewed.

In the simulations, we consider several variants of the scalar BEKK model pro-
posed by Ding and Engle (2001) for two main reasons. First, our main fields of ap-
plication are financial returns and BEKK models are ones of the most widely used
models to analyze these kind of time series. Second, unlike many other multivariate
GARCH models, it is possible to derive the unconditional covariance and correlation
matrices of the series that allow us to simulate series with a changing unconditional
correlation matrix.

We initially focus on the size of the procedure, i.e., the accuracy of the proce-
dure in estimating the number of change points if the true value is zero. For that, we
consider the scalar BEKK model given by:

X, = H/’E,
H =(1- o’ — [32) H+o?X, 1 X]_, +B*H,_

where H; is the conditional covariance matrix of X;, E; are iid random vectors with
mean 04 and covariance matrix I4, and o and B are positive numbers such that
a®+ B? < 1, to ensure covariance stationary. Under these assumptions, it is not dif-
ficult to show that H is the unconditional covariance matrix of X;. Therefore, the
unconditional correlation matrix of X; can be written as R = D~ !/2ZHD -/ 2 where
D is a diagonal matrix with elements the unconditional variances of the components
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Table 1 Relative frequency detection of 0 and more than 0 change points given by the procedure based on
500 generated time series and an initial nominal significant level of o = 0.05.

Gaussian Student-z5
T 0 > 1 0 >1
500 938 .062 .896 .104
1000 .940 .060 918 .082
2000 .938 .062 930 .070
3000 942 .058 938 .062
4000 948 .052 944 056

of X;, that are the elements in the main diagonal of H. In particular, we take a = 0.1
and § = 0.8, and D = L, so that H = R, with:

105 06 07
05 1 05 06
R=1 06 05 1 o5 | ®

07 06 05 1

The random errors, E;, are assumed to be, first, a four dimensional standard Gaussian
distribution, and, second, a four dimensional standardized Student-t with 5 degrees of
freedom. The latter distribution represents an extreme situation that can be realistic
in financial applications. The sample sizes considered are T = 500, 1000, 2000, 3000
and 4000, which are usual sample sizes of financial returns, while the block lengths
are lT = [T1/4] . i.e., 1500 = 4, 11000 = 5, lzg()() = 6, 13()()() =7 and 14()()0 = 7, respectively.
The number of bootstrap replications is B = 1000. Table 1 gives the relative frequency
detection of 0 and more than 0 change points given by the procedure based on 500
generated series and an initial nominal significant level of oy = 0.05. From this table,
it seems that the type I error of the proposed procedure is very close to the initial
nominal level for the Gaussian even with the smallest sample size, while there are
some small size distortions for the standardized Student-t with 5 degrees of freedom,
although the level seems to converge to the initial nominal significant level of oy =
0.05 for higher T. Therefore, overestimation does not appear to be an issue for the
proposed procedure if there are no changes in the correlation.

Next, we analyze the power of our procedure when there is a single change point
in the series. The Monte Carlo setup is similar to the one described above, but the
series are generated with a single change point in the unconditional correlation ma-
trix. Three locations of the change point are considered, z; = 0.25, 0.50 and 0.75,
respectively. The change is such that R is initially as in (8) and then changes at z; to:

1 07 06 05
07 1 07 06
Ri=1 06 07 1 o7 | ®)

05 06 07 1

Then, the largest correlation change is of magnitude .2, while two of the correla-
tions do not change at all. This setting seems quite reasonable in practice. Indeed, in
the real data example shown in Section 5, we found a correlation change in a sys-
tem with 4 time series in which the largest correlation change found is of magnitude
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Table 2 Relative frequency detection of 0, 1 and more than 1 change points given by the procedure based
on 500 generated time series and an initial nominal significant level of oy = 0.05.

z1=.25 z1 =.50 z1=.75

T 0 1 >2 0 1 >2 0 1 >2

500  0.034 0910 0.056 0.000 0.930 0.070 0.048 0.892 0.060
1000  0.004 0940 0.056 0.000 0928 0.072 0.000 0952 0.048
Gaussian 2000 0.006 0.934 0.060 0.000 0942 0.058 0.002 0922 0.076
3000 0.000 0948 0.052 0.000 0946 0.054 0.000 0.938 0.062
4000 0.000 0946 0.054 0.000 0946 0.054 0.002 0942 0.056

T 0 1 >2 0 1 >2 0 1 >2

500 0452 0518 0.030 0328 0.620 0.052 0.618 0.370 0.012
1000 0.276  0.694 0.030 0.156 0.800 0.044 0304 0.658 0.038
Student-rs 2000 0.130 0.808 0.062 0.042 0.894 0.064 0.100 0.852  0.048
3000 0.080 0.870 0.050 0.014 0924 0.062 0.048 0.908 0.044
4000 0.028 0928 0.044 0.000 0942 0.058 0.010 0936 0.054

0.3644, while others have magnitudes 0.2673, 0.2343, or 0.1873. Table 2 shows the
relative frequency detection of zero, one and more than one change points given by
the procedure based on 500 generated time series and an initial nominal significant
level of oy = 0.05. First, it seems that the procedure performs quite well in detect-
ing a single change point, with many cases over 90% correct detection. Second, as
expected, as the sample size increases the procedure works better. Third, when the
sample size is small, the probability of under-detection may be large only if the er-
rors are Student-t with 5 degrees of freedom. A reason for the poor behavior with
this distribution might be that the kurtosis of the marginal distributions is very high.
However, in practice, one does not expect to have many change points if the length
of the series is small. Fourth, the location of the change point does not strongly affect
the behavior of the procedure unless the sample size is small. In this latter case, the
power of the procedure is higher if the change point lies in the middle of the series.
This is in coincidence with other procedures relying on CUSUM statistics as the one
used here. Finally, in most cases, the percentage of false detection is always quite
close to the nominal 5%, especially in the Gaussian case. Specifically, the frequency
of over-detection is small. Regarding estimation of the location of the change point,
Table 3 shows the median and mean absolute deviation of the change point estima-
tors when the number of change points detected is equal to 1. The table shows that
the medians of the estimates are reasonable close to the true change point locations.
Indeed, the larger the sample size, the smaller the empirical mean absolute deviation.
In particular, the bias appear to be smaller in the Gaussian case.

Next, we conduct another Monte Carlo experiment to study the power of the
proposed procedure for detecting two change points. In this case, the location of the
change points are z; = 0.35 and z; = 0.7, respectively. The changes are such that the
correlation matrix of the series before the first change point is the correlation matrix
in (8), then changes to the correlation matrix in (9), and, finally, changes again to
the correlation matrix in (8) at the second change point. Note that in this scenario
there is no dominant change point but we prefer to consider this situation to show
that the procedure works well also in this case if the sample size is sufficiently large.
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Table 3 Median and MAD of the change point estimators when the number of change points detected is
equal to 1.

71 =.25 71 =.50 z1=.75
Gaussian ~ Student-t5  Gaussian  Student-ts ~ Gaussian  Student-ts
T Median Median Median Median Median Median

(Mad) (Mad) (Mad) (Mad) (Mad) (Mad)
500 0.2760 0.3660 0.5040 0.5160 0.7340 0.6860
(0.0622) (0.1690) (0.0444) (0.1275) (0.0593) (0.1482)
1000 0.2610 0.3010 0.5040 0.5140 0.7470 0.7025
(0.0252) (0.1186) (0.0192) (0.0874) (0.0281) (0.1230)
2000 0.2560 0.2665 0.5015 0.5005 0.7490 0.7382
(0.0155) (0.0489) (0.0103) (0.0555) (0.0111) (0.0685)
3000 0.2533 0.2600 0.5006 0.5036 0.7493 0.7420
(0.0098) (0.0434) (0.0079) (0.0311) (0.0079) (0.0365)
4000 0.2527 0.2525 0.5007 0.5027 0.7497 0.7465
(0.0063) (0.0363) (0.0055) (0.0303) (0.0066) (0.0303)

Table 4 Relative frequency detection of 0, 1, 2 and more than 2 change points given by the procedure
based on 500 generated time series and an initial nominal significant level of g = 0.05.

(e1,22) = (35,.7)
Gaussian Student-z5
T 0 1 2 >3 0 1 2 >3
500 0.586 0.084 0310 0.020 0.754 0.134 0.108 0.004
1000  0.116 0.006 0.804 0.074 0482 0.096 0.386 0.036
2000 0.000 0.000 0938 0.062 0.086 0.010 0.824 0.080
3000 0.000 0.000 0.932 0.068 0.004 0.004 0914 0.078
4000 0.000 0.000 0940 0.060 0.004 0.002 0925 0.069

Table 4 shows the relative frequency detection of zero, one, two and more than two
change points given by the procedure based on 500 generated time series and an
initial nominal significant level of 0 = 0.05. As in the case of a single change point,
the proposed procedure works reasonably well, especially when the sample size gets
larger. However, there are problems for 7 = 500 and the procedure underestimates the
number of change points in the case of Student-r errors. On the other hand, Table 5
shows the median and mean absolute deviation of the estimates of the two change
point locations when the number of change points detected is equal to 2. As expected
in view of the results in Section 3, the medians of the estimates are reasonable close
to the true ones. Again, it appears that the larger is the sample size, the better are the
locations estimated.

Finally, note that these simulations are carried out for p = 4. When the dimension
of the system is higher, the size and power properties become slightly worse, unless
the sizes of the changes are large.

5 Empirical application

In this section, we illustrate the performance of the proposed procedure with empir-
ical financial time series. For this, we look for changes in the correlation structure
of the daily simple return series of four stocks. Specifically, we consider four Euro-
pean companies, Total, Sanofi, Siemens and BASF from January 1, 2007 to June 1,
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Table 5 Median and MAD of the change point estimators when the number of change points detected is
equal to 2.

(z1,22) = (.35,.7)

Gaussian Student-z5
T Median (z;) Median (z;) Median (z;) Median (22)
(Mad) (Mad) (Mad) (Mad)

500 0.3540 0.7060 0.3570 0.699
(0.0415) (0.0296) (0.0415) (0.0415)
1000 0.3535 0.7010 0.3530 0.704
(0.0222) (0.0192) (0.0326) (0.0415)
2000 0.3515 0.7005 0.3525 0.700
(0.0111) (0.0111) (0.0229) (0.0207)
3000 0.3510 0.7006 0.3510 0.701
(0.0079) (0.0069) (0.0168) (0.0153)
4000 0.3510 0.7005 0.3521 0.700
(0.0055) (0.0044) (0.0109) (0.0090)

Total Sanofi

Siemens BASF

005 015

000 005 010

Returns
-0.05
Returns

-010

-015
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Time Time

Fig. 2 Daily simple returns of Total, Sanofi, Siemens and BASF

2012 consisting of T = 1414 data points. The data was obtained from the database
Datastream. The four return series are plotted in Figure 2, which shows very similar
patterns. The autocorrelation functions of the simple returns show some minor serial
dependence, while the autocorrelation functions of the squared simple returns reveal
considerable serial dependence, as usual in stock market returns.

The empirical full sample correlation matrix is given by:

1 0.5483 0.6460 0.6734
0.5483 1 0.4821 0.4998
0.6460 0.4821 1 0.7208
0.6734 0.4998 0.7208 1

R =

Figure 3 shows rolling windows for the six pairwise correlations of the simple return
series with window length 120 that roughly corresponds to a trading time of about
half a year. The plots show time-varying correlations. It is interesting to see several
correlation-ups and -downs.

Next, we apply the proposed segmentation procedure of Section 2 to detect cor-
relation changes for the simple returns of the Total, Sanofi, Siemens and BASF stock
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Fig. 3 Rolling correlations for the daily simple returns of Total, Sanofi, Siemens and BASF

assets. Table 6 shows the iterations taken by the procedure. In the first step, we start
with the asymptotic critical value at the 5% significance level and the procedure de-
tects a change in the correlation at time point ¢ = 443 (September 11, 2008). The
value of the test statistic (1) is 6.3280 which is statistically significant at the 5% level.
Then, we split the series into two subperiods and look for changes in the subintervals
[1,443] and [444,1414], respectively. In the first subinterval, the procedure detects a
change point at time point + = 134 (July 6, 2007). The value of the test statistic is
4.8159. Afterwards, we split the subinterval [1,443] into two subintervals, [1,134]
and [135,443], respectively, and look again for new change points. No more changes
are found in the three subintervals [1,134], [135,443], and [444, 1414]. Next, we pass
to Step 3 (the refinement step) and compute the statistic in the subintervals [1,443],
and [135,1414], respectively. In the first subinterval, the procedure detects a change
point at time point # = 134 (July 6, 2007) and the value of the test statistic is 4.7438.
In the second subinterval, the procedure detects a change point at time point ¢ = 443
(September 11, 2008) and the value of the test statistic is 5.5399. As the detected
change points are the same as in the previous iterations, the algorithm stops and the
time points located at = 134 (July 6, 2007) and 443 (September 11, 2008) are the
final detected change points.

It is interesting to see that the dates of the detected change points fare well with
well known financial facts. The first estimated change point corresponds to the be-
ginning of the Global Financial Crisis around the middle of 2007. The reduction of
interest rates leads to several consequent issues starting with the easiness of obtaining
credit, leading to sub-prime lending, so that an increased debt burden arised. Finally,
there was a liquidity shortfall in the banking system that resulted in the collapse of
important financial institutions such as Lehman Brothers and Merrill Lynch, among
others, and the bailout of banks by national governments such as Bear Stearns, Bank
of America and Bankia, among others. Specifically, the bankruptcy of Lehman Broth-
ers was formally announced at on September 15, 2008, after a week of rumours. This
date is very close to the second estimated change point.
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Table 6 Iterations taken by the procedure in the real data example, (*) means statistically significant
change point. The initial nominal significant level is oy = 0.05.

Step 1
Interval A Change point  Time point Date
[1,1414] 6.3280 (*) 0.3132 443 September 11, 2008
Step 2
Interval A Change point  Time point Date
[1,443] 4.8159 (¥) 0.0947 134 July 6, 2007
[444,1414] 2.1415 0.8437 1193 July 28, 2011
[1,134] 4.2863 0.0827 117 July 13, 2007
[135,443] 3.6897 0.2220 314 March 4, 2008
[444,1414] 2.1415 0.8437 1193 July 28, 2011
Step 3
Interval A Change point  Time point Date
[1,443] 4.7438 (*) 0.0947 134 July 6, 2007
[135,1414]  5.5399 (*) 0.3132 443 September 11, 2008
Table 7 Correlation matrices in each period.
Period Empirical correlation matrix
1 0.1564  0.3275 0.4917
First 0.1564 1 0.0708  0.2261
0.3275  0.0708 1 0.3604
0.4917  0.2261  0.3604 1
1 0.3907  0.5148  0.5677
Second 0.3907 1 0.4352  0.4924
0.5148  0.4352 1 0.5110
0.5677  0.4924 0.5110 1
1 0.5990  0.6924  0.6986
Third 0.5990 1 0.5159  0.5168
0.6924  0.5159 1 0.7857
0.6986 0.5168  0.7857 1

Next, Table 7 shows the correlation matrices of the three simple returns of the To-
tal, Sanofi, Siemens and BASF stock assets for the three periods of constant uncondi-
tional correlation provided by the procedure. Note how all the pairwise correlations
increase after each detected change point. For instance, the correlation between Total
and Sanofi pass from 0.1564 to 0.3907 at the first change point and then from 0.3907
to 0.5990 at the second change point. This is in accordance with the phenomenon
kwown as “Diversification Meltdown” according to which correlations between fi-
nancial returns often increase in times of crises.

6 Conclusions

This paper proposes a procedure for detecting change points in the correlation matrix
of a sequence of multiple random variables. The procedure is based on a recently pro-
posed CUSUM test statistic. Under certain assumptions, the procedure consistently
detects the true number and location of the change points. The finite sample behavior
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of the procedure is analyzed via several simulation studies and illustrated by means
of the analysis of a four dimensional time series of simple returns of four European
companies. In this real data example, the procedure detects changes at points that fare
well with external events affecting the financial markets. Regarding future research,
it might be interesting to consider a more sophisticated algorithm that includes mod-
ifications of the standard binary segmentation procedure to increase the power of the
procedure in small samples. Moreover, one could consider robust dependence mea-
sures as alternatives to the usual correlation matrix.
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