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1 Proofs

Proof of Theorem 1
The proof is similar to the proof of Theorem 1 in Galeano and Wied (2014). Denote
P∗∗l1,l2

(z) := P∗∗,i, jl1,l2
(z)1≤i< j≤p. Consider a fixed pair (i, j),1≤ i< j≤ p and the process

Bi, j
η(l1),τ(l2)

(z) :=
τ(z)−η(l1)+1
τ(l2)−η(l1)+1

Pi j
τ(z),η(l1),τ(l2)

:=
τ(z)−η(l1)+1
τ(l2)−η(l1)+1

(
ρ̂

i j
η(l1),τ(z)

−ρi, j

)
− τ(z)−η(l1)+1

τ(l2)−η(l1)+1

(
ρ̂

i j
η(l1),τ(l2)

−ρi, j

)
with ρi, j := (mXX ′ )i, j−µiµ j√

σ2
i σ2

j

. Then, by arguments based on the strong law of large num-

bers, one can show that, uniformly for z ∈ [l1 + ε, l2] (for a small 0 < ε < l2− l1)
Bi, j

η(l1),τ(l2)
(z)⇒d P∗∗,i, jl1,l2

(z). By means of arguments based on Theorem 4.2 in Billings-
ley (1968) one gets convergence uniformly in [l1, l2]. Then, uniformly in [l1, l2],

Bη(l1),τ(l2)(z)→a.s. Pl1,l2(z).
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The theorem follows by applying the argmax continuous mapping theorem (Kim and
Pollard, 1990, Theorem 2.7). �

Proof of Theorem 2
We assume without loss of generality that there is only one change point in k0 = [T z0]
and that [l1, l2] = [0,1]. Denote P0,1(z) =: P(z). Then P(z) has a unique maximum in
z0. Similarly as in the proof of Proposition 2 in Bai (1997), we show that

PM,T := P

(
max|k−k0|>MB1,T

(
k
T

)
−B1,T

(
k0

T

)
≥ 0
)

becomes small for large M and T . That means that, for every ε > 0, there is a M > 0
and a T0 > 0 such that, for all T > T0, PM,T < ε .

Now, B1,T
( k

T

)
−B1,T (

k0
T )≥ 0 is equivalent to(

B1,T

(
k
T

)
−P

(
k
T

))
−
(

B1,T

(
k0

T

)
−P

(
k0

T

))
+

(
P
(

k
T

)
−P

(
k0

T

))
≥ 0.

Assume for the moment k > k0 and that the standard deviations of all random vari-
ables are equal to 1. (Divide each component of P(·) by the standard deviations if the
latter assumption is not fulfilled.) We multiply the whole equation with T/(k− k0)
and denote

A1(k,k0,T ) =
T

k− k0

((
B1,T

(
k
T

)
−P

(
k
T

))
−
(

B1,T

(
k0

T

)
−P

(
k0

T

)))
A2(k,k0,T ) =

T
k− k0

(
P
(

k
T

)
−P

(
k0

T

))
.

Now, we use several observations in order to argue that the asymptotic behavior of
A1(k,k0,T ) can be reduced to the behavior of

∑
1≤i< j≤p

1
k− k0

k

∑
t=k0

(Xt,iXt, j−E(Xt,iXt, j)).

This quantity is then arbitrarily small by the law of large numbers for sufficiently
large M. The observations are the following:

1. A1(k,k0,T ) can be regarded as the sum of p(p−1)/2 components and each com-
ponent can be treated separately.

2. For large T , with high probability and uniformly in z ∈ {k0/T,k/T}, all compo-
nents of T Pτ(z),1,T and T P∗0,1(z) have the same sign so that we consider the values
without having applied the absolute value function.

3. For large T , with high probability and uniformly in z ∈ {k0/T,k/T}, the succes-
sive variances in the denominators of the components of A1(k,k0,T ) are equal
to their theoretical counterparts which are the same for z = k/T and z = k0/T ,
respectively.
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4. In the numerators of the components of A1(k,k0,T ), we have expressions like

1
k− k0

((
k

∑
t=k0

Xt,iXt, j

)
−T

(
Pi, j

(
k
T

)
−Pi, j

(
k0

T

))

−

(
1
k

k

∑
t=1

Xt,i

k

∑
t=1

Xt, j−
1
k0

k0

∑
t=1

Xt,i

k0

∑
t=1

Xt, j− (k− k0)
1
T

T

∑
t=1

Xt,i
1
T

T

∑
t=1

Xt, j

))
.

Here, Pi, j(·) are the components of P(·).
5. It holds

T
(

Pi, j

(
k
T

)
−Pi, j

(
k0

T

))
= (k− k0)E(Xk,iXk, j).

Then, after some tedious calculations, one sees that A1(k,k0,T ) is a random variable
such that, for all ε > 0 and all η > 0, there is a M > 0 such that P(|A1(k,k0,T )| >
ε) < η for k > k0 +M and T > T0. This means that A1(k,k0,T ) is arbitrarily small
whenever T and M are large. On the other hand, A2(k,k0,T ) does not converge to
zero: P

( k
T

)
−P

(
k0
T

)
is a finite sum of linear functions in k with negative slope (see

Figure 1 in Galeano and Wied (2014)) so that it is equal to C
(

k
T −

k0
T

)
for a C < 0

by Taylor’s formula. Multiplied with T/(k− k0), the expression is equal to C. Then,
with large probability, A1(k,k0,T )+A2(k,k0,T ) is strictly negative. For k < k0, the
argument is similar and the theorem is proven. �

Proof of Theorem 3
Denote Ql1,l2

T := supz∈[l1,l2] Aη(l1),τ(l2)(z) the test statistic calculated from data from
η(l1) to τ(l2). Moreover, let B ∈ N a fixed number of bootstrap repetitions. Now, by
Theorem 1, it holds

1
ak

T
Bη(l1),τ(l2)(z)→p ∞

for any sequence ak
T = o

(√
T
)

if there is a change point in the interval [l1, l2]. More-
over, due to Assumption 9.b, the eigenvalues of Êη(l1),τ(l2) are stochastically bounded.

Consequently, the eigenvalues of Ê−1/2
η(l1),τ(l2)

(remember that we assume its existence)
are bounded away from zero and the matrix is positive definite. Therefore,

1
ak

T
Ql1,l2

T →p ∞

(with respect to the measure P×) for any sequence ak
T = o

(√
T
)

if there is a change
point in the interval [l1, l2]. By Theorem 2, we moreover have

1
ak

T
Qẑi,ẑi+1

T →p ∞ (1)



4 Pedro Galeano, Dominik Wied

(with respect to the measure P×), where ẑi and ẑi+1 for i ∈ N0 are two estimated
change points in one of the iterations of the algorithms, as long as there is a change
point in the interval [zi,zi+1]. This follows from the fact, that, by Theorem 2,

Qẑi,ẑi+1
T −Qzi,zi+1

T = oP×

(
1√
T

)
.

Moreover, with the same argument and with the results under the null hypothesis
from Wied (2015),

Qẑi,ẑi+1
T = OP×(1) (2)

if there is no change point in the interval [zi,zi+1].
Then, due to (1), it holds limT→∞ P×( ˆ̀<`)→ 0 and due to (2), it holds limT→∞ P×( ˆ̀>

`)→ 0, which proves the theorem (compare the proof of Proposition 11 in Bai, 1997).
�

Proof of Theorem 4
In this proof, we combine ideas of the proof of Theorem 3 in Galeano and Wied
(2014) and of Theorem 3 in Wied (2015). Note that ẑ∗ = argmaxl1≤z≤l2B∗

η(l1),τ(l2)
(z)

with

Bη(l1),τ(l2)(z) :=
τ(z)−η(l1)+1√
τ(l2)−η(l1)+1

∣∣∣∣Pτ(z),η(l1),τ(l2)
∣∣∣∣

1 .

Then, one can show by means of the extended functional delta method from Wied
et al (2012) that the process τ(z)−η(l1)+1√

τ(l2)−η(l1)+1
Pτ(z),η(l1),τ(l2) converges to the process

E1/2W
p(p−1)

2 (z)−E1/2W
p(p−1)

2 (l1)−
z− l1
l2− l1

E1/2
(

W
p(p−1)

2 (l2)−W
p(p−1)

2 (l1)
)
+P∗∗l1,l2(z).

This limit process has a unique maximum P-almost surely (Kim and Pollard, 1990,
Lemma 2.6) and then the theorem follows by the argmax continuous mapping theo-
rem (Kim and Pollard, 1990, Theorem 2.7). �
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Wied D, Krämer W, Dehling H (2012) Testing for a change in correlation at an un-

known point in time using an extended functional delta method. Econometric The-
ory 68(3):570–589


