Supplementary material of "Dating multiple change points in the correlation matrix"

Pedro Galeano • Dominik Wied

Received: date / Accepted: date

1 Proofs

Proof of Theorem 1

The proof is similar to the proof of Theorem 1 in Galeano and Wied (2014). Denote $P_{l_{1}, l_{2}}^{* *}(z):=P_{l_{1}, l_{2}}^{* *, j}(z)_{1 \leq i<j \leq p}$. Consider a fixed pair $(i, j), 1 \leq i<j \leq p$ and the process

$$
\begin{aligned}
B_{\eta\left(l_{1}\right), \tau\left(l_{2}\right)}^{i, j}(z) & :=\frac{\tau(z)-\eta\left(l_{1}\right)+1}{\tau\left(l_{2}\right)-\eta\left(l_{1}\right)+1} P_{\tau(z), \eta\left(l_{1}\right), \tau\left(l_{2}\right)}^{i j} \\
& :=\frac{\tau(z)-\eta\left(l_{1}\right)+1}{\tau\left(l_{2}\right)-\eta\left(l_{1}\right)+1}\left(\hat{\rho}_{\eta\left(l_{1}\right), \tau(z)}^{i j}-\rho_{i, j}\right)-\frac{\tau(z)-\eta\left(l_{1}\right)+1}{\tau\left(l_{2}\right)-\eta\left(l_{1}\right)+1}\left(\hat{\rho}_{\eta\left(l_{1}\right), \tau\left(l_{2}\right)}^{i j}-\rho_{i, j}\right)
\end{aligned}
$$

with $\rho_{i, j}:=\frac{\left(m_{X X^{\prime}}\right)_{i, j}-\mu_{i} \mu_{j}}{\sqrt{\sigma_{i}^{\sigma_{j}^{2}}}}$. Then, by arguments based on the strong law of large numbers, one can show that, uniformly for $z \in\left[l_{1}+\varepsilon, l_{2}\right]$ (for a small $0<\varepsilon<l_{2}-l_{1}$) $B_{\eta\left(l_{1}\right), \tau\left(l_{2}\right)}^{i, j}(z) \Rightarrow_{d} P_{l_{1}, l_{2}}^{* *, j}(z)$. By means of arguments based on Theorem 4.2 in Billingsley (1968) one gets convergence uniformly in $\left[l_{1}, l_{2}\right]$. Then, uniformly in $\left[l_{1}, l_{2}\right]$,

$$
B_{\eta\left(l_{1}\right), \tau\left(l_{2}\right)}(z) \rightarrow_{\text {a.s. }} P_{l_{1}, l_{2}}(z) .
$$

Financial support by Ministerio de Economía y Competitividad grant ECO2015-66593-P and Deutsche Forschungsgemeinschaft (SFB 823, project A1) is gratefully acknowledged.
P. Galeano

Universidad Carlos III de Madrid, Department of Statistics and UC3M-BS Institute of Financial Big Data, 28903 Getafe, Madrid, Spain
Tel.: +34 916248901
Fax: +34 916249848
E-mail: pedro.galeano@uc3m.es
D. Wied

University of Cologne, Institute for Econometrics and Statistics, 50923 Köln, Germany / TU Dortmund, Fakultät Statistik, 44221 Dortmund, Germany

The theorem follows by applying the argmax continuous mapping theorem (Kim and Pollard, 1990, Theorem 2.7).

Proof of Theorem 2

We assume without loss of generality that there is only one change point in $k_{0}=\left[T z_{0}\right]$ and that $\left[l_{1}, l_{2}\right]=[0,1]$. Denote $P_{0,1}(z)=: P(z)$. Then $P(z)$ has a unique maximum in z_{0}. Similarly as in the proof of Proposition 2 in Bai (1997), we show that

$$
\mathrm{P}_{M, T}:=\mathrm{P}\left(\max _{\left|k-k_{0}\right|>M} B_{1, T}\left(\frac{k}{T}\right)-B_{1, T}\left(\frac{k_{0}}{T}\right) \geq 0\right)
$$

becomes small for large M and T. That means that, for every $\varepsilon>0$, there is a $M>0$ and a $T_{0}>0$ such that, for all $T>T_{0}, \mathrm{P}_{M, T}<\varepsilon$.

Now, $B_{1, T}\left(\frac{k}{T}\right)-B_{1, T}\left(\frac{k_{0}}{T}\right) \geq 0$ is equivalent to

$$
\left(B_{1, T}\left(\frac{k}{T}\right)-P\left(\frac{k}{T}\right)\right)-\left(B_{1, T}\left(\frac{k_{0}}{T}\right)-P\left(\frac{k_{0}}{T}\right)\right)+\left(P\left(\frac{k}{T}\right)-P\left(\frac{k_{0}}{T}\right)\right) \geq 0
$$

Assume for the moment $k>k_{0}$ and that the standard deviations of all random variables are equal to 1 . (Divide each component of $P(\cdot)$ by the standard deviations if the latter assumption is not fulfilled.) We multiply the whole equation with $T /\left(k-k_{0}\right)$ and denote

$$
\begin{aligned}
& A_{1}\left(k, k_{0}, T\right)=\frac{T}{k-k_{0}}\left(\left(B_{1, T}\left(\frac{k}{T}\right)-P\left(\frac{k}{T}\right)\right)-\left(B_{1, T}\left(\frac{k_{0}}{T}\right)-P\left(\frac{k_{0}}{T}\right)\right)\right) \\
& A_{2}\left(k, k_{0}, T\right)=\frac{T}{k-k_{0}}\left(P\left(\frac{k}{T}\right)-P\left(\frac{k_{0}}{T}\right)\right) .
\end{aligned}
$$

Now, we use several observations in order to argue that the asymptotic behavior of $A_{1}\left(k, k_{0}, T\right)$ can be reduced to the behavior of

$$
\sum_{1 \leq i<j \leq p} \frac{1}{k-k_{0}} \sum_{t=k_{0}}^{k}\left(X_{t, i} X_{t, j}-\mathrm{E}\left(X_{t, i} X_{t, j}\right)\right) .
$$

This quantity is then arbitrarily small by the law of large numbers for sufficiently large M. The observations are the following:

1. $A_{1}\left(k, k_{0}, T\right)$ can be regarded as the sum of $p(p-1) / 2$ components and each component can be treated separately.
2. For large T, with high probability and uniformly in $z \in\left\{k_{0} / T, k / T\right\}$, all components of $T P_{\tau(z), 1, T}$ and $T P_{0,1}^{*}(z)$ have the same sign so that we consider the values without having applied the absolute value function.
3. For large T, with high probability and uniformly in $z \in\left\{k_{0} / T, k / T\right\}$, the successive variances in the denominators of the components of $A_{1}\left(k, k_{0}, T\right)$ are equal to their theoretical counterparts which are the same for $z=k / T$ and $z=k_{0} / T$, respectively.
4. In the numerators of the components of $A_{1}\left(k, k_{0}, T\right)$, we have expressions like

$$
\begin{aligned}
& \frac{1}{k-k_{0}}\left(\left(\sum_{t=k_{0}}^{k} X_{t, i} X_{t, j}\right)-T\left(P_{i, j}\left(\frac{k}{T}\right)-P_{i, j}\left(\frac{k_{0}}{T}\right)\right)\right. \\
& \left.-\left(\frac{1}{k} \sum_{t=1}^{k} X_{t, i} \sum_{t=1}^{k} X_{t, j}-\frac{1}{k_{0}} \sum_{t=1}^{k_{0}} X_{t, i} \sum_{t=1}^{k_{0}} X_{t, j}-\left(k-k_{0}\right) \frac{1}{T} \sum_{t=1}^{T} X_{t, i} \frac{1}{T} \sum_{t=1}^{T} X_{t, j}\right)\right)
\end{aligned}
$$

Here, $P_{i, j}(\cdot)$ are the components of $P(\cdot)$.
5. It holds

$$
T\left(P_{i, j}\left(\frac{k}{T}\right)-P_{i, j}\left(\frac{k_{0}}{T}\right)\right)=\left(k-k_{0}\right) \mathrm{E}\left(X_{k, i} X_{k, j}\right)
$$

Then, after some tedious calculations, one sees that $A_{1}\left(k, k_{0}, T\right)$ is a random variable such that, for all $\varepsilon>0$ and all $\eta>0$, there is a $M>0$ such that $\mathrm{P}\left(\left|A_{1}\left(k, k_{0}, T\right)\right|>\right.$ $\varepsilon)<\eta$ for $k>k_{0}+M$ and $T>T_{0}$. This means that $A_{1}\left(k, k_{0}, T\right)$ is arbitrarily small whenever T and M are large. On the other hand, $A_{2}\left(k, k_{0}, T\right)$ does not converge to zero: $P\left(\frac{k}{T}\right)-P\left(\frac{k_{0}}{T}\right)$ is a finite sum of linear functions in k with negative slope (see Figure 1 in Galeano and Wied (2014)) so that it is equal to $C\left(\frac{k}{T}-\frac{k_{0}}{T}\right)$ for a $C<0$ by Taylor's formula. Multiplied with $T /\left(k-k_{0}\right)$, the expression is equal to C. Then, with large probability, $A_{1}\left(k, k_{0}, T\right)+A_{2}\left(k, k_{0}, T\right)$ is strictly negative. For $k<k_{0}$, the argument is similar and the theorem is proven.

Proof of Theorem 3

Denote $Q_{T}^{l_{1}, l_{2}}:=\sup _{z \in\left[l_{1}, l_{2}\right]} A_{\eta\left(l_{1}\right), \tau\left(l_{2}\right)}(z)$ the test statistic calculated from data from $\eta\left(l_{1}\right)$ to $\tau\left(l_{2}\right)$. Moreover, let $B \in \mathbb{N}$ a fixed number of bootstrap repetitions. Now, by Theorem 1, it holds

$$
\frac{1}{a_{T}^{k}} B_{\eta\left(l_{1}\right), \tau\left(l_{2}\right)}(z) \rightarrow_{p} \infty
$$

for any sequence $a_{T}^{k}=o(\sqrt{T})$ if there is a change point in the interval $\left[l_{1}, l_{2}\right]$. Moreover, due to Assumption 9.b, the eigenvalues of $\hat{E}_{\eta\left(l_{1}\right), \tau\left(l_{2}\right)}$ are stochastically bounded. Consequently, the eigenvalues of $\hat{E}_{\eta\left(l_{1}\right), \tau\left(l_{2}\right)}^{-1 / 2}$ (remember that we assume its existence) are bounded away from zero and the matrix is positive definite. Therefore,

$$
\frac{1}{a_{T}^{k}} Q_{T}^{l_{1}, l_{2}} \rightarrow_{p} \infty
$$

(with respect to the measure P^{\times}) for any sequence $a_{T}^{k}=o(\sqrt{T})$ if there is a change point in the interval $\left[l_{1}, l_{2}\right]$. By Theorem 2, we moreover have

$$
\begin{equation*}
\frac{1}{a_{T}^{k}} Q_{T}^{\hat{z}_{i}, \hat{z}_{i+1}} \rightarrow_{p} \infty \tag{1}
\end{equation*}
$$

(with respect to the measure P^{\times}), where \hat{z}_{i} and \hat{z}_{i+1} for $i \in \mathbb{N}_{0}$ are two estimated change points in one of the iterations of the algorithms, as long as there is a change point in the interval $\left[z_{i}, z_{i+1}\right]$. This follows from the fact, that, by Theorem 2,

$$
Q_{T}^{\hat{z}_{i}, \hat{z}_{i+1}}-Q_{T}^{z_{i}, z_{i+1}}=o_{\mathrm{P}^{\times}}\left(\frac{1}{\sqrt{T}}\right) .
$$

Moreover, with the same argument and with the results under the null hypothesis from Wied (2015),

$$
\begin{equation*}
Q_{T}^{\hat{z}_{i}, \hat{z}_{i+1}}=O_{\mathrm{P}^{\times}}(1) \tag{2}
\end{equation*}
$$

if there is no change point in the interval $\left[z_{i}, z_{i+1}\right]$.
Then, due to (1), it holds $\lim _{T \rightarrow \infty} P^{\times}(\hat{\ell}<\ell) \rightarrow 0$ and due to (2), it holds $\lim _{T \rightarrow \infty} P^{\times}(\hat{\ell}>$ $\ell) \rightarrow 0$, which proves the theorem (compare the proof of Proposition 11 in Bai, 1997).

Proof of Theorem 4

In this proof, we combine ideas of the proof of Theorem 3 in Galeano and Wied (2014) and of Theorem 3 in Wied (2015). Note that $\hat{z}^{*}=\operatorname{argmax}_{l_{1} \leq z \leq l_{2}} B_{\eta\left(l_{1}\right), \tau\left(l_{2}\right)}^{*}(z)$ with

$$
B_{\eta\left(l_{1}\right), \tau\left(l_{2}\right)}(z):=\frac{\tau(z)-\eta\left(l_{1}\right)+1}{\sqrt{\tau\left(l_{2}\right)-\eta\left(l_{1}\right)+1}}\left\|P_{\tau(z), \eta\left(l_{1}\right), \tau\left(l_{2}\right)}\right\|_{1}
$$

Then, one can show by means of the extended functional delta method from Wied et al (2012) that the process $\frac{\tau(z)-\eta\left(l_{1}\right)+1}{\sqrt{\tau\left(l_{2}\right)-\eta\left(l_{1}\right)+1}} P_{\tau(z), \eta\left(l_{1}\right), \tau\left(l_{2}\right)}$ converges to the process
$E^{1 / 2} W^{\frac{p(p-1)}{2}}(z)-E^{1 / 2} W^{\frac{p(p-1)}{2}}\left(l_{1}\right)-\frac{z-l_{1}}{l_{2}-l_{1}} E^{1 / 2}\left(W^{\frac{p(p-1)}{2}}\left(l_{2}\right)-W^{\frac{p(p-1)}{2}}\left(l_{1}\right)\right)+P_{l_{1}, l_{2}}^{* *}(z)$.
This limit process has a unique maximum P-almost surely (Kim and Pollard, 1990, Lemma 2.6) and then the theorem follows by the argmax continuous mapping theorem (Kim and Pollard, 1990, Theorem 2.7).

References

Bai J (1997) Estimating multiple breaks one at a time. Econometric Theory 13(3):315-352
Billingsley P (1968) Convergence of probability measures. Wiley, New York
Galeano P, Wied D (2014) Multiple break detection in the correlation structure of random variables. Computational Statistics and Data Analysis 76:262-282
Kim J, Pollard D (1990) Cube root asymptotics. Annals of Statistics 18(1):191-219
Wied D (2015) A nonparametric test for a constant correlation matrix. Econometric Reviews, forthcoming, doi: 101080/074749382014998152
Wied D, Krämer W, Dehling H (2012) Testing for a change in correlation at an unknown point in time using an extended functional delta method. Econometric Theory 68(3):570-589

