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Abstract We propose a new non-parametric test for detecting relevant breaks in copula functions. We
assume that the data is driven by two non-equal copulas C1 and C2. Under the null hypothesis, the
copula difference within an appropriate norm is smaller than a certain positive adjustable threshold ∆.
Within the alternative hypothesis, the copula difference exceeds the fixed value ∆. The test is based on
a cumulative sum approach of the empirical copula with sequentially estimated marginals. We propose
a bootstrap procedure to compute critical values. The Monte Carlo simulation indicates that the test
results in a reasonable sized and powered testing procedure. A real data application of the DAX30 up to
cross sectional dimension N = 30 shows the test’ ability to detect relevant break points.
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A Assumptions

For the theoretical justification we need some slightly adjusted assumptions following [Dette and Wied(2016)]:

A1) The marginals Fi(·) and its inverse F−1
i (·) are assumed to be known for all i ∈ {1, ..., N}.

A2) Let {XT,1, ...,XT,T }T∈N denote a triangular array of strong mixing random vectors and {UT,1, ...,UT,T }T∈N its
corresponding probability transform such that

UT,1, ...,UT,bsTc ∼ C1(u) ; UT,bsTc+1, ...,UT,T ∼ C2(u).

A3) Consider the triangular array {UT,j | j = 1, ..., T}T∈N and define for 1 ≤ s ≤ t the corresponding σ-field Fts(T ) :=
σ({XT,j | s ≤ j ≤ t}) generate by the random variable {UT,j | s ≤ j ≤ t}. We denote by

α(m) := sup
T∈N

sup
1≤k≤T−m

sup{|P (A ∩B)− P (A)P (B)| |A ∈ FTm+k(T ), B ∈ Fk1 (T )}, m ∈ N

the strong mixing coefficients of the triangular array {UT,1, ...,UT,T } and assume that for some η > 0

α(T ) = O(T−(1+η))

as T →∞.
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A4) For l = 1, 2 let {Wt(l)}t∈Z denote sequences of strictly stationary processes, such that for each T ∈ N

(UT,1, ...,UT,bsTc)
d= (W1(1), ...,WbsTc(1))

(UT,bsTc+1, ...,UT,T ) d= (W1(2), ...,WT−bsTc, (2))

where d= means equality in distribution. That means, there are two regimes {Wt(1)}t∈Z and {Wt(2)}t∈Z and the
considered process switches from one regime to the other.

B Derivation and Asymptotic Distribution of the Test Statistic

We impose the Assumptions given in Appendix A to be valid. Then, the testing problem of no relevant change in the copula
can be defined as follow:

H0 : ‖C1(u)− C2(u)‖L2 ≤ ∆

versus the alternative

H1 : ‖C1(u)− C2(u)‖L2 > ∆,

where ‖.‖L2 is the L2-norm and ∆ > 0 fixed. For every u := (u1, ..., uN ) ∈ [0, 1]N and t ∈ (0, 1) the CUSUM approach for
detecting changes in the copula is then

ÛT (t,u) := t(1− t)

 1
btT c

btTc∑
i=1

Zi(u)−
1

T − btT c

T∑
i=btTc+1

Zi(u)

 , (1)

where Zi(u) := 1{F1(Xi1) ≤ u1, ..., FN (XiN ) ≤ uN}, i = 1, ..., T is the vector of marginal distributions at time i where
Fj(·) is the known j-th marginal cumulative distribution function for all j = 1, ..., N . Before we start the calculation we
compute the expected value of some showing up sums. Since Zi is Bernoulli distributed for i = 1, ..., N we have

E[Zi(u)] = P (F1(Xi1) ≤ u1, ..., FN (XiN ) ≤ uN )

= P (Xi1 ≤ F−1
1 (u1), ..., XiN ≤ F−1

N (uN ))
= C(u1, .., uN ),

E[Zi(u)Zi(u)] =
C(u1, .., uN )[1− C(u1, .., uN )]

T
+ C(u1, .., uN )2.

Furthermore, we obtain from A3) and A4) E[Zi(u)Zj(u)] = Ci(u)Cj(u) + o(1) ∀i 6= j. Due to readability we introduce
the following abbreviations Ci := Ci(u) and Zi := Zi(u) for i = 1, 2. For fixed s ∈ (0, 1), we compute lim

T→∞
E[ÛT (t,u)]. We

first consider the case t > s

E[ÛT (t,u)] = t(1− t)E

 s
t

1
bsT c

bsTc∑
i=1

Zi +
1
btT c

btTc∑
i=bsTc+1

Zi −
1

T − btT c

T∑
i=btTc+1

Zi


= t(1− t)

 s

t
C1 + E

 btT c − (bsT c)
btT c

1
btT c − (bsT c)

btTc∑
i=bsTc+1

Zi

− C2


= t(1− t)

(
s

t
C1 +

t− s
t

C2 − C2

)
= s(1− t) (C1 − C2) .

For t ≤ s we obtain

E[ÛT (t,u)] = t(1− t)E

 1
btT c

btTc∑
i=1

Zi −
1

T − btT c

bsTc∑
i=btTc+1

Zi −
1

T − btT c

T∑
i=bsTc+1

Zi


= t(1− t)

C1 − E

 bsT c − (btT c)
T − btT c

1
bsT c − (btT c)

btTc∑
i=bsTc+1

Zi

− 1− s
1− t


= t(1− t)

(1− s
1− t

C1 −
1− s
1− t

C2

)
= t(1− s) (C1 − C2) .
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Considering both cases yields:

E[ÛT (t,u)] =
{
s(1− t) (C1 − C2) for t > s

t(1− s) (C1 − C2) for t ≤ s.
(2)

The aim is to lose the quantile and time dimension u and t, respectively. As an intermediate step we consider
E[(ÛT (t,u))2] that can be decomposed into three partial sums A,B,C with

A : =

(
1
btT c

btTc∑
i=1

Zi

)2

(3)

B : =
1
btT c

1
T − btT c

btTc∑
i=1

Zi

T∑
j=btTc+1

Zj (4)

C : =

 1
T − btT c

T∑
i=btTc+1

Zi

2

. (5)

We first consider the case where t > s and subscript this accordingly.

At>s : E

( 1
btT c

btTc∑
i=1

Zi

)2 = E

 1
btT c

bsTc∑
i=1

Zi +
1
btT c

btTc∑
i=bsTc+1

Zi

2
= E

( 1
btT c

bsTc∑
i=1

Zi

)2+ 2E

 1
btT c

btTc∑
i=bsTc+1

Zi

( 1
btT c

bsTc∑
i=1

Zi

)+ E

 1
btT c

btTc∑
i=bsTc+1

Zi

2
=

1
btT c2

[
bsT c(

C1(1− C1)
bsT c

) + (bsT cC1)2
]

+ 2
s(t− s)
t2

C1C2

+
1
btT c2

[ btT c − bsT c
btT c − bsT c

C2(1− C2 + (btT c − bsT c)2C2
2

]
+ o(1)

=
s2

t2

[
C1(1− C1)

T 2 + C2
1

]
+ 2

s(t− s)
t2

C1C2 +
C2(1− C2)
btT c2

+
(t− s)2

t2
C2

2 + o(1)

=
s2

t2
C2

1 + 2
s

t2
C1(t− s)C2 +

(t− s)2

t2
C2

2 + o(1)

Bt>s : E

 1
btT c

1
T − btT c

btTc∑
i=1

Zi

T∑
j=btTc+1

Zj


= E

 1
btT c

1
T − btT c

bsTc∑
i=1

Zi

T∑
j=btTc+1

Zj

+ E

 1
btT c

1
T − btT c

btTc∑
i=bsTc+1

Zi

T∑
j=btTc+1

Zj


=
s

t
C1C2 +

t− s
t

C2
2 + o(1)

Ct>s : E

 1
T − btT c

T∑
i=btTc+1

Zi

2 =
( 1
T − btT c

)2 [T − btT c
T − btT c

C2(1− C2) + [(T − btT c)C2]2
]

= C2
2 + o(1).
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Hence, we have

1
t2(1− t)2 E[ÛT (t,u)2] = E


(

1
btT c

btTc∑
i=1

Zi

)2

︸ ︷︷ ︸
At>s

−2
1
btT c

1
T − btT c

btTc∑
i=1

Zi

T∑
j=btTc+1

Zj︸ ︷︷ ︸
Bt>s

+

 1
T − btT c

T∑
i=btTc+1

Zi

2

︸ ︷︷ ︸
Ct>s


=
s2

t2
C2

1 + 2
s

t2
C1(t− s)C2 +

(t− s)2

t2
C2

2 − 2
[
s

t
C1 +

t− s
t

C2

]
C2

2 + C2
2 + o(1)

=
s2

t2
(C1 − C2)2 + o(1)

Now we consider the case where t ≤ s

A
t≤s : E

[(
1
T

btTc∑
i=1

Zi

)2]
=

1
btTc2

(
btTc
btTc

[C1(1− C1)] + (btTcC1)2
)

= C
2
1 + o(1)

B
t≤s : E

[
1
btTc

1
T − btTc

btTc∑
i=1

Zi

T∑
j=btTc+1

Zj

]

=E

[
1
btTc

1
T − btTc

btTc∑
i=1

Zi

bsTc∑
j=btTc+1

Zj

]
+ E

[
1
btTc

1
T − btTc

btTc∑
i=1

Zi

T∑
j=bsTc+1

Zj

]
=
[

s− t

1− t
C1 +

1− s

1− t
C2

]
C1 + o(1)

C
t≤s : E

[(
1

T − btTc

T∑
i=btTc

Zi

)2]
= E

[(
1

T − btTc

bsTc∑
i=btTc

Zi +
1

T − btTc

T∑
i=bsTc+1

Zi

)2]

=E

[(
1

T − btTc

bsTc∑
i=btTc

Zi

)2]
+ 2E

[(
1

T − btTc

bsTc∑
i=btTc

Zi

)(
1

T − btTc

T∑
i=bsTc+1

Zi

)]
+ E

[(
1

T − btTc

T∑
i=bsTc+1

Zi

)2]
=

1
(T − btTc)2

(
bsTc − btTc
bsTc − btTc

[C1(1− C1)] + [(bsTc − btTc)C1]2
)

+ 2
s− t

1− t
C1

1− s

1− t
C2

+
1

(T − btTc)2

(
T − bsTc
T − bsTc

[C2(1− C2)] + [(T − bsTc)C2]2
)

+ o(1)

=
(s− t)2

(1− t)2 C
2
1 + +2

s− t

1− t
C1

1− s

1− t
C2 +

(1− s)2

(1− t)2 C
2
2 + o(1)

This yields for the expression E[ÛT (t,u)2]

1
t2(1− t)2 E[ÛT (t,u)2] = E


(

1
btT c

btTc∑
i=1

Zi

)2

︸ ︷︷ ︸
At≤s

−2
1
btT c

1
T − btT c

btTc∑
i=1

Zi

T∑
j=btTc+1

Zj︸ ︷︷ ︸
Bt≤s

+

 1
T − btT c

T∑
i=btTc+1

Zi

2

︸ ︷︷ ︸
Ct≤s


=

(s− t)2

(1− t)2C
2
1 + 2

s− t
1− t

C1
1− s
1− t

C2 +
(1− s)2

(1− t)2 C
2
2 − 2

[
s− t
1− t

C1 +
1− s
1− t

C2

]
C1 + C2

1 + o(1)

=
(1− s)2

(1− t)2 (C1 − C2)2 + o(1)

Combining the previous calculations for t > s, t ≤ s and with the help of Fubini we obtain

L(t) := lim
T→∞

E[‖ÛT (t,u)‖2
L2 ] =

{
s2(1− t)2‖C1(u)− C2(u)‖2

L2 , t > s

(1− s)2t2‖C1(u)− C2(u)‖2
L2 , t ≤ s.

By integrating out t a straightforward calculation yields∫ 1

0
L(t)dt =

s2(1− s)2

3
‖C1(u)− C2(u)‖2

L2 . (6)

The next theorem provides the limiting distribution of the empirical centred counterpart L̂T (t) := ‖ÛT (t,u)‖2
L2
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Theorem 1 Under Assumptions A1)-A4)

√
T

 1∫
0

L̂T (t)dt−
1
3
s2(1− s)2||C1(u)− C2(u)||2

L2

 d−→ N(0, σ2
C1,C2,s

), (7)

with σ2
C1,C2,s

= 4
∫ 1

0

∫ 1
0 E [< U(t1,u), A(t1,u) >L2< U(t2,u), A(t2,u) >L2 ] dt1dt2 and < ·, · >L2 the L2 inner product.

Proof See Appendix C

Due to the high computational effort in high dimensions using the L2-norm it could be reasonable to only test for
specific quantiles (points) q in the copula. So similar to the L2-norm testing we can test on fixed points q = (q1, . . . , qN )′
in the copula, using the previous notation and considering a constant functions g := C(q), where C(q) is the copula value
at some fixed quantile q.

Corollary 1 Under Assumptions A1)-A4)

√
T

 1∫
0

L̂q
T (t)dt−

1
3
s2(1− s)2|C1(q)− C2(q)|2

 d−→ N(0, σ2
C1,C2,s,q), (8)

with L̂q
T (t) := (ÛT (t,q))2 and σ2

C1,C2,s,q := 4
∫ 1

0

∫ 1
0 E [U(t1,q) ·A(t1,q) · U(t2,q) ·A(t2,q)] dt1dt2 for fixed q ∈ [0, 1]N .

L̂q
T (t) and σ2

C1,C2,s,q are called the quantile version of L̂T (t) and σ2
C1,C2,s

, respectively. The next Lemma shows that
the test holds the size level and has considerable power.

Lemma 1 The test

κ̂T ≥
1
3
s2(1− s)2∆2 +

k1−α(s)
√
T

(9)

is a consistent asymptotic α test for all s > 0, where k1−α(s) is the (1− α)-quantile of the limiting normal distribution

given in (7) and κ̂T =
1∫

0
L̂T (t)dt.

Proof Suppose δ := ‖C1(u)− C2(u)‖L2 ≤ ∆. Then

Pδ(κ̂T ≥
1
3
s2(1− s)2∆2 +

k1−α(s)
√
T

) = P (
√
T (κ̂T −

1
3
s2(1− s)2δ2) ≥

√
T

1
3
s2(1− s)2(∆2 − δ2) + k1−α(s))

≤ P (
√
T (κ̂T −

1
3
s2(1− s)2δ2) ≥ k1−α(s))

−→
T→∞

1− (1− α) = α.

Otherwise, if δ > ∆

Pδ(κ̂T ≥
1
3
s2(1− s)2∆2 +

k1−α(s)
√
T

) = P (
√
T ((κ̂T −

1
3
s2(1− s)2δ2) ≥

√
T

1
3
s2(1− s)2(∆2 − δ2)︸ ︷︷ ︸

<0

+k1−α(s))

= 1− P (
√
T (κ̂T −

1
3
s2(1− s)2δ2) <

√
T

1
3
s2(1− s)2(∆2 − δ2) + k1−α(s))

−→
T→∞

1− 0 = 1.

The test given in equation (9) is an exact level α test if ∆ is chosen as the copula difference δ = ||C1(u)− C2(u)||L2 .
Otherwise the size is smaller than α.
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C Proof of Theorem 1

We execute the proof of Theorem 1 stepwise. First, we start to consider only one partial sum of the process ÛT (·, ·), i.e.

ĈT (t,u) : =
1
T

btTc∑
i=1

Zi(u). (10)

Second, by means of the continuous mapping theorem we obtain the limiting distribution of the process ÛT (·, ·) and can
then finally derive the limiting distribution given in Theorem 1. Again, for the computation of the expectation of ĈT (·, ·)
we have to distinguish two cases, i.e. either t ≤ s or t > s. If t ≤ s, we have limT→∞ E[ĈT (t,u)] = tC1(u). For t > s a
straightforward calculation yields

E[ĈT (t,u)] = E

 1
T

bsTc∑
i=1

Zi(u) +
1
T

btTc∑
i=bsTc+1

Zi(u)


= sC1(u) +

btT c − bsT c
T

C2(u) = sC1(u) + (t− s)C2(u) + o(1).

Thus, the expectation of the partial sum ĈT (·, ·) is given by

EC1,C2,s(t,u) := lim
T→∞

E[ĈT (t,u)] = (s ∧ t)C1(u) + (t− s)+C2(u). (11)

With the expectation (11) we derive the asymptotic distribution of the centred partial sum process (10), which leads to the
following theorem.

Theorem 2 Let Assumptions A1)-A4) hold. Then, a standardized version of the process {ĈT (t,u)}t∈(0,1),u∈[0,1]N con-
verges weakly in `∞((0, 1)× [0, 1]N ), i.e.

√
T
{
ĈT (t,u)− EC1,C2,s(t,u)

}
t∈(0,1),u∈[0,1]N

d⇒
{
GC1,C2,s(t,u)

}
t∈(0,1),u∈[0,1]N

.

Here, GC1,C2,s denotes a centred Gaussian process with covariance kernel

E[GC1,C2,s(t1,u1)GC1,C2,s(t2,u2)] = (t1 ∧ t2 ∧ s)k1(u1,u2) + (t1 ∧ t2 − s)+k2(u1,u2), (12)

and the kernels k1 and k2 are defined by

kl(u1,u2) =
∑
i∈Z

Cov[1{W0(l) ≤ u1},1{Wi(l) ≤ u2}], l = 1, 2. (13)

Proof Consider

ĈT (t, u)− EC1,C2,s[t,u] =
1
T

btTc∑
i=1

Zi(u)− [(t ∧ s)C1(u) + (t− s)+C2(u)] + oP (
1
√
T

)

=
1
T

bT (s∧t)c∑
i=1

[Zi(u)− C1(u)]︸ ︷︷ ︸
X(1)

T
(t,u):=

bT (s∧t)c∑
i=1

YT,i(u)

+1{t > s}
1
T

btTc∑
i=bT (s∧t)c+1

[Zi(u)− C2(u)

︸ ︷︷ ︸
X(2)

T
(t,u):=1{t>s}

btTc∑
i=bT (s∧t)c+1

YT,i(u)

] + oP (
1
√
T

)

with YT,i(u) := 1{i ≤ bsT c}
Zi(u)− C1(u)

T
+ 1{i > bsT c}

Zi(u)− C2(u)
T

Then it follows by [Bücher et al.(2014)Bücher, Kojadinovic, Rohmer, and Segers] for T →∞

1. {
√
TX(1)

T (t,u)}t∈[0,1],u∈[0,1]n
d=⇒ G(t ∧ s,u)

2. {
√
TX(2)

T (t,u)}t∈[0,1],u∈[0,1]n
d=⇒ G(t,u)− G(t ∧ s,u)

where G(·, ·) are tight centred Gaussian processes with covariance function

Cov[G(t1 ∧ s,u1),G(t2 ∧ s,u2)] = (t1 ∧ t2 ∧ s)k1(u1,u2) (14)
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and

Cov[G(t1,u1)− G(t1 ∧ s,u1),G(t2,u2)− G(t2 ∧ s,u2)]
= Cov[G(t1,u1,G(t2,u2)]− Cov[Z(t1,u1),G(t2 ∧ s,u2)]−

Cov[G(t1 ∧ s,u1),G(t2,u2)] + Cov[G(t1 ∧ s,u1),G(t2 ∧ s,u2)]
= (t1 ∧ t2)k2(u1,u2)− (t1 ∧ t2 ∧ s)k2(u1,u2)− (t1 ∧ t2 ∧ s)k2(u1,u2) + (t1 ∧ t2 ∧ s)k2(u1,u2)
= (t1 ∧ t2 − t1 ∧ t2 ∧ s)k2(u1,u2)
= (t1 ∧ t2 − s)+k2(u1,u2).

Thus, the composition
√
TXT :=

√
T

(
X(1)
T + X(2)

T

)
is asymptotically tight [cf. Section 1.5 [van der Vaart and Wellner(1996)]].

In order to prove convergence in distribution of
√
TXT it remains to establish the weak convergence of the finite dimensional

distributions. Therefore, we use the Cramér-Wold-device and show for all sequences (t1,u1), ..., (tn,un) ∈ [0, 1]× [0, 1]n

√
T{

k∑
i=1

ajXT (tj ,uj)}
d=⇒

k∑
j=1

ajGC1,C2,s(tj ,uj) (15)

with α1, ..., αk ∈ R and GC1,C2,s is the Gaussian process defined in Theorem 2. Now, we restrict ourselves to the case k = 2
and begin with the calculation of the covariance of X(1)

T (t1, u1) and X(2)
T (t2, u2). Therefore, we consider four different cases.

t1 ≤ t2 ≤ s:

TCov[X(l)
T (t1,u1),X(l)

T (t2,u2)] T→∞→
{

(t1 ∧ t2 ∧ s)k1(u1,u2) if l = 1
0 if l = 2.

s ≤ t1 ≤ t2:

TCov[X(l)
T (t1,u1),X(l)

T (t2,u2)] T→∞→
{
tk1(u1,u2) if l = 1
(t1 ∧ t2 − s)+k2(u1,u2) if l = 2

t1 < s ≤ t2:

T |Cov[X(l)
T (t1,u1),X(l)

T (t2,u2)]| = T |Cov[
bt1Tc∑
j=1

YT,i(t2,u2),
bt2Tc∑

j=bsTc+1

YT,i(t2,u2)]|

= O(
1

T η+1 ) = O(
1
T η

) = o(1)

for all η > 0.
In the case where t1 = s ≤ t2 we use a sequence εT such that εTT →∞ and ε2TT → 0 and obtain by the same argument of
strong mixing

T |Cov[X(l)
T (t1,u1),X(l)

T (t2,u2)]|

= T |Cov[
bT (s−εT )c∑

i=1

YT,i(t1,u1) +
bsTc∑

i=bT (s−εT )c+1

YT,i(t1,u1),
bT (s+εT )c∑
i=bsTc+1

YT,i(t2,u2) +
bt2Tc∑

i=bT (s+εT )c+1

YT,i(t2,u2)]|

= O(
1

(εT )T η
) +O(Tε2T ) = o(1)

7



σ2 = lim
T→∞

V[
√
T

2∑
j=1

αjXT (tj ,uj)]

= lim
T→∞

V[α1(X(1)
T (t1,u1) + X(2)

T (t1,u1)) + α2(X(1)
T (t2,u2) + X(2)

T (t2,u2))]

= lim
T→∞

T{α2
1Cov[X(1)

T (t1,u1),X(1)
T (t1,u1)] + 2α1α2Cov[X(1)

T (t1,u1),X(1)
T (t2,u2)]

+ α2
1Cov[X(2)

T (t1,u1),X(2)
T (t1,u1)] + 2α1α2Cov[X(2)

T (t1,u1),X(2)
T (t2,u2)]

+ α2
2Cov[X(1)

T (t2,u2),X(1)
T (t2,u2)] + α2

2Cov[X(2)
T (t2,u2),X(2)

T (t2,u2)]}

= α2
1 ((t1 ∧ s)k1(u1,u1) + (t1 − s)+k2(u1,u1))

+ a2
2 ((t2 ∧ s)k2(u2,u2) + (t2 − s)+k2(u2,u2))

+ 2α1α2 ((t1 ∧ t2 ∧ s)k1(u1,u2) + (t1 ∧ t2 − s)+k2(u1,u2))
= V[α1GC1,C2,s(t1,u1) + α2GC1,C2,s(t2,u2)]

(16)

with E[GC1,C2,s(t1,u1)GC1,C2,s(t2,u2)] = (t1∧ t2∧s)k1(u1,u2)+(t1∧ t2−s)+k2(u1,u2) where the kernels for i = 1, 2
are given by

ki(u1,u2) =
∑
k∈Z

Cov[1{W0(i) ≤ u1},1{Wk(i) ≤ u2}]

In order to prove asymptotic normality of
√
T

2∑
j=1

αjXT (tj ,uj) we introduce the notation

TT :=
√
T

σ

2∑
j=1

αjXT (tj ,uj) =
T∑
j=1

ST,j + oP (1)

with

ST,j =
α11{j ≤ bt1T c}

σ
√
T

(
1{Uj ≤ u1} − EC1,C2,t(t1,u1)

)
+
α21{j ≤ bt2T c}

σ
√
T

(
1{Uj ≤ u2} − EC1,C2,t(t2,u2)

)
and we use a central limit theorem for triangular arrays of strong mixing random variables [see Theorem 2.1 in [Liebscher(1996)],
with p =∞.] From the previous discussion it follows that limT→∞ E[T2

T ] = 1 and thus, we have

lim
T→∞

T∑
j=1

(ess sup
ω∈Ω

[ |ST,j |1{|ST,j | > ε}])2 = 0 a.s..

Similarly, it follows that the condition

lim
T→∞

T∑
j=1

(ess sup
ω∈Ω

|ST,j | )2 ≤ const a.s..

of Theorem 2.1 in [Liebscher(1996)] is also satisfied. Therefore this result shows that

√
T

2∑
j=1

αjXn(tj ,uj) =
σTT√
E[T2

T ]
D=⇒ N(0, σ2)

where the asymptotic variance σ2 is defined in (16). This proves the convergence of the finite dimensional distributions and
completes the proof of the theorem.

Now, we can follow the asymptotic distribution of the centered ÛT (t,u), by using the continuous mapping theorem
with ÛT (t,u) = ĈT (t,u)− tĈT (1,u).

Corollary 2 Under assumptions A1)-A4) we receive for t ∈ (0, 1) and u ∈ [0, 1]N

√
T
(
ÛT (t,u)− U(t,u)

) d=⇒ {A(t,u)}t∈(0,1),u∈[0,1]N , (17)
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where ÛT (t,u) = ĈT (t,u)−tĈT (1,u), U(t,u) = EC1,C2,s(t,u)−tEC1,C2,s(1,u) and A(t,u) = GC1,C2,s(t,u)−tGC1,C2,s(1,u)
with covariance kernel

aC1,C2,s(t1,u1, t2,u2) = E [A(t1,u1)A(t2,u2)] . (18)

Now, we can complete the proof for Theorem 1. By Corollary 2 we have for t ∈ (0, 1) and u ∈ [0, 1]N

√
T
(
ÛT (t,u)− U(t,u)

) d=⇒ A(t,u).

Thus, for every inner product space we have we can rewrite L̂T (t)− L(t) for t ∈ (0, 1) as

L̂T (t)− L(t) = ||ÛT (t,u)− U(t,u)||2 + 2 < U(t,u), ÛT (t,u)− U(t,u) >L2 .

Then, by Corollary 2 and the consistency of ÛT (·) in (2) we get

√
T
(
L̂T (t)− L(t)

) d=⇒ 2 < U(t,u), A(t,u) >L2 .

Thus, with the help of the continuous mapping theorem we receive

√
T

 1∫
0

L̂T (t)dt−

1∫
0

L(t)dt

 d→

1∫
0

2 < U(t,u), A(t,u) >L2 dt =: Q

⇔
√
T

 1∫
0

L̂T (t)dt−
1
3
s2(1− s)2||C1(u)− C2(u)||2

 d−→ Q,

where the random variable Q is normally distributed N(0, σ2
C1,C2,s

) with variance term

σ2
C1,C2,s

=4
∫ 1

0

∫ 1

0
E [< U(t1,u), A(t1,u) >L2< U(t2,u), A(t2,u) >L2 ] dt1dt2.

D Covariance Bootstrap

Another approach next to the full bootstrap is to estimate the variance term of the limiting normal distribution1. Therefore,
we have to estimate the covariance of the centred Gaussian process dC1,C2,s(t1, t2) = E[DC1,C2,s(t1), DC1,C2,s(t2)] by using
resampling, cf. Theorem 1. We also assume that our sample {Xi}Ti=1 is compounded of {Xi}

bsTc
i=1 and {Xi}Ti=bsTc+1, such

that there is only one breakpoint location in bsT c with s ∈ (0, 1), i.e. {Xi}
bsTc
i=1 ∼ C1(F (X)) and {Xi}Ti=bsTc+1 ∼ C2(F (X)).

Then, the covariance bootstrap procedure suggests the following course of action:
i) Estimate the breakpoint location bsT c with bŝT c, where ŝ is determined by ŝ := argmax

s∈(0,1)
‖ÛT (s,u)‖L2 . Sample separately

with replacement from {Xi}
bŝTc
i=1 and {Xi}Ti=bŝTc+1 to obtain B bootstrap samples {X(b)

i }
T
i=1, for b = 1, . . . , B.

ii) Estimate B versions of the copula difference ∆bC = ‖Ĉ1:ŝT (u) − Ĉ ŝT+1:T (u)‖L2 , using the estimated break point
location ŝT and re-sampled data {X(b)

i }
T
i=1, for b = 1, . . . , B.

iii) For t1, t2 ∈ [0, 1] compute separately

Dbi (ti) :=<
√
T
(
ÛbT (ti,u)− Ub(ti,u)

)
,Ub(ti,u) >L2

for i = 1, 2 using {X(b)
i }

T
i=1 for b = 1, . . . , B, where Ub(ti,u) = (min{ŝ, ti} − ŝti)∆bC .

iv) Estimate the expected value given covariance of Theorem 1 for t1, t2 ∈ (0, 1) by the mean

d̂C1,C2,ŝ(t1, t2) :=
1
B

B∑
b=1

Db1(t1)Db2(t2).

v) Estimate the variance σ2
C1,C2,s

from Theorem 1 by integrating out over t1 and t2, i.e

σ̂2
C1,C2,ŝ

= 4
∫ 1

0

∫ 1

0
d̂C1,C2,ŝ(t1, t2)dt1dt2

and compute the q-quantile zq of N(0, σ̂2
C1,C2,ŝ

) where q ∈ (0, 1) .

1 Since we are only able to derive the limiting distribution in the case of known marginals, there is no theoretical evidence
that the covariance bootstrap is applicable for sequentially estimated case.
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The testing procedure is as follows: We reject the null of no relevant change ‖C1(u)− C2(u)‖L2 ≤ ∆ if

1∫
0

L̂T (t)dt >
ŝ2(1− ŝ)2

3
∆2 +

zq√
T
. (19)

The bootstrap and testing procedure can be easily adapted to the quantile case, i.e. u is fixed, by adapting step i) - iii).
Note, the test given in equation (19) is an exact level α test if ∆ is chosen as the copula difference ||C1(u) − C2(u)||L2

or |C1(q) − C2(q)|2. Otherwise the size is smaller than α. By the continuous mapping theorem we obtain that the left
hand side of (19) converges weakly to a degenerated random variable if the copula difference is equal to zero (no break
point). Consequently, the level of the proposed tests have practically size zero, whereas classical stationarity tests hold
the asymptotic α-level. Thus, the power of the classical tests is usually larger than the power of the relevant change tests
cosndiered here. For practitioners we suggest to run a classical test first, e.g. [Bücher and Ruppert(2013)] for the case of
known marginals and [Bücher et al.(2014)Bücher, Kojadinovic, Rohmer, and Segers] in the case of sequentially estimated
marginals. If the test rejects the null of stationarity, i.e. the copula difference is significantly larger than zero, estimate the
break fraction and apply the proposed relevant change test.

E Simulations for the Covariance Bootstrap

The data generating process (DGP) is similar to the DGP used in the main paper. We recap the description of the DGP
since we want the Supplement Appendix to be autonomous readable. Let

Xt = [X1t, X2t]′ = N2 (0, Σt(ρ)) , (20)

where N2(0, Σt(ρ)) with t = 1, ..., T describes the bivariate normal distribution with expectation vector zero and covariance

matrix Σt(ρ) =
(

1 ρ
ρ 1

)
and ρ ∈ [−1, 1]. We set ρ equal to −0.3 for t = 1, ..., T2 and ρ = 0.8 for t = T

2 + 1, ..., T . Thus, the

breakpoint sT is chosen at T
2 . We restrict the size analysis in this subsection to the two dimensional case N = 2. The

following size study presents both L2-norm based results and an analysis where we consider the specific point u = (0.6, 0.6).
Note, the closer the quantile is to its boundaries, i.e. 0 or 1, the more observations are needed. Critical values of our tests
are computed using the bootstrap algorithms from Sections D with B = 300 bootstrap replications. The tests are performed
at the α = 0.05, 0.1 significance level using 301 Monte Carlo replications. The computations were implemented in Matlab,
parallelized and performed using CHEOPS, a scientific High Performance Computer at the Regional Computing Center of
the University of Cologne (RRZK).
Table 1 presents the results of the relevant change tests under the null with ∆ chosen as the estimated copula difference
|C1(u)− C2(u)|, where C1 and C2 are estimated by the consistent copula estimator

Ĉ(u) =
1

t2 − t1

t2∑
i=t1

1{F1(Xi1) ≤ u1, . . . , FN (XiN ) ≤ uN}, (21)

using realizations {X1, . . .XbŝTc} and {XbŝTc+1, . . .XT }. The breakpoint bŝT c is estimated by

ŝ := argmax
s∈(0,1)

|ÛT (s,u)|. (22)

Table 1 reports the results of the relevant change tests under the null, where the functional difference between the copulas is
determined by the L2-norm. Similar to the quantile case we consider for the size analysis ∆ := ‖C1(u)− C2(u)‖L2 and
accordingly ŝ := argmax

s∈(0,1)
‖ÛT (s,u)‖L2 . Collectively, the tests show good size properties and converges to the predetermined

rejection level α if T gets larger. Overall, the covariance bootstrap shows good size properties for both, the quantile version

Table 1 Size using quantile version for Covariance Bootstrap

Copula with known marginals
T = 300 T = 500 T = 750 T = 1000

q95 0.099 0.083 0.059 0.046
q90 0.142 0.106 0.109 0.109

Table 1 reports the rejection rate of the relevant change test for data generated with the DGP described in (20) for
known marginal distributions and sequential estimated marginals using the two distribution estimation methods, using
B = 300 bootstrap replications. The copula difference is evaluated at u = (0.6, 0.6). In total, we conducted 301 Monte Carlo
replications.

2 For a detailed description of the quantile version of the test statistic we refer to the main paper.
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Table 2 Size using the L2-norm

Copula with known marginals (Covariance Bootstrap)
T = 1000 T = 2000 T = 3000 T = 4000

q95 0.085 0.063 0.046 0.066
q90 0.156 0.122 0.113 0.102

Table 2 reports the rejection rate of the relevant change test for data generated with the DGP described in (20) for known
marginal distributions and sequential estimated marginals using the two distribution estimation methods, using B = 300
bootstrap replications. The copula difference is determined using the L2-norm. In total, we conducted 301 Monte Carlo
replications.

of the test and the test given in (19) by a moderate rate of bootstrap replications.
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