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Abstract

We propose three novel consistent specification tests for quantile regression models
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quantile functions by appropriate basis functions, rather than parametrically. We
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tested with a Cramér-von Mises type test statistic for which we derive the theoretical
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income distributions in Germany indicates that there are not only still significant
differences between East and West but also across the quantiles of the conditional
income distributions, when conditioning on age and year. The second application to
data from the Australian national electricity market reveals the importance of using
interaction effects for modelling the highly skewed and heavy-tailed distributions of
energy prices conditional on day, time of day and demand.
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1 Introduction

Hypothesis testing plays a central role in many research areas. A necessary prerequisite

for the statistical validity of the decisions to be made is the correct specification of the

underlying model. Specification tests can be used to validate the correctness of theoretical

assumptions. For linear regression, a whole range of specification tests are available for

both, parametric and non-parametric approaches. In general, testing misspecification in

linear ordinary least squares (OLS) models is well understood and developed.

In parametric models, e.g. , Bierens (1990) showed that any conditional moment test of

functional form of non-linear regression models can be converted into a consistent chi-

squared test that is consistent against all deviations from the null hypothesis. Härdle and

Mammen (1993) suggested a wild bootstrap procedure for regression fits in order to de-

cide whether a parametric model could be justified, while Stute (1997) proposed a more

general method for testing the goodness of fit of a parametric regression model. For the

non-parametric case, amongst others, Gozalo (1993) proposed a general framework for

specification testing of the regression function in a non-parametric smoothing estimation

context and Stute et al. (1998) suggested a goodness of fit test using a wild bootstrap

procedure that checks whether a function belongs to a certain class.

However, OLS estimates are sensitive to outliers and draw only a part of the whole picture

since they only model the mean. In contrast, quantile regression provides more robust

estimates and allows a more comprehensive picture of the entire conditional distribution.

Due to these advantages, quantile regression has become increasingly popular since the

seminal article by Koenker and Bassett Jr (1978). However, post-estimation inference pro-

cedures for quantile regression models essentially depend on the validity of the underlying

parametric functional form for the quantiles considered (Angrist et al., 2006). For exam-

ple, assuming the same fixed linear relationship between covariates for all quantiles is the
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connecting element of the Machado-Mata (M-M) decomposition in order to describe wage

inequalities (Machado and Mata, 2005) and the Khmaladze transformation (Koenker and

Xiao, 2002). Thus, testing the validity of the imposed structure remains one of the key

taks associated with challenges for valid posterior inference.

In a parametric framework, one of the first specification tests for linear location shift and

location-scale shift quantile models with i.i.d. data is the test by Koenker and Xiao (2002).

Shortly thereafter, Chernozhukov (2002) proposes a resampling test procedure that avoids

the estimation of additional objects, such as the score function, while building on the prin-

ciples stated in Koenker and Xiao (2002). However, these two tests do not test the validity

of the quantile regression model itself, they only test for restrictions on the parameters.

Escanciano and Velasco (2010) and Escanciano and Goh (2014) both tested the validity of

the null hypothesis that a conditional quantile restriction is valid over a range of quantiles.

Rothe and Wied (2013) proposed a specification test for a larger class of models, including

quantile regression models. They consider classes of conditional distribution functions with

function-valued parameters and test whether the underlying cdf of the sample lies in one

of theses classes. This principle was extended to dynamic models by Troster and Wied

(2021).

In case of non-parametric instrumental quantile regression, Breunig (2019) develops a

methodology for testing the hypothesis whether the instrumental quantile regression model

is correctly specified. Hallin et al. (2009) suggests an estimator for local linear spatial quan-

tile regression and Guerre and Sabbah (2012) investigating the Bahadur representation of

a local polynomial estimator of the conditional quantile function (qf) and its derivatives.

Li and Racine (2008) propose a non-parametric conditional cumulative distribution func-

tion (cdf) kernel estimator along with an associated non-parametric conditional quantile

estimator. Belloni et al. (2019a) develop non-parametric quantile regression for performing

inference on the entire conditional qf and its linear functionals and Qu and Yoon (2015)
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presented estimators for non-parametrically specified conditional quantile processes that

are based on local linear regressions. Li et al. (2020) investigated the problem of non-

parametrically estimating a conditional qf with discrete and continuous covariates suggest-

ing a kernel based approach.

But regardless of whether parametric or non-parametric approaches are chosen, the theory

concerning the validity of the correct model choice seems to keep up with the rapid de-

velopment of new estimation methods only to a limited extent. For example, to the best

of our knowledge, there does not exist a testing procedure that allows to test for general

quantile-specific functional (such as non-linear) covariate effects. While non-linear regres-

sors can be considered in a standard paraemtric quantile regression framework, testing for

presence of such non-linear effects at certain quantiles usually requires estimating them for

all quantiles. We propose a method that does not require this. Moreover, we incorporate

spline-based estimation approaches in order to allow for more flexible non-linear effects

than in a parametric setting. On the one hand, we are able to test if a particular spline

approximation is appropriate, on the other hand, we show that the spline approach can be

used to obtain more powerful tests.

Our contributions are as follows. First, we suggest a general procedure for quantile regres-

sion models, where the regressors can explicitly depend on quantiles. This allows to test for

the correct specification of large number of parametric models. Second, due to our general

model set-up, our proposed methodology also allows to test for finite semi-parametric mod-

els. One of such examples are B-splines for quantile regressions, where the finite number of

covariates have a general functional form depending on the quantile (Cardot et al., 2005).

Additionally, our second test allows to test for the order and the correct number of knots

of the B-spline specifications. Third, a test is developed in the framework of quantile re-

gression models with an increasing number of knots. This third test can also be applied to

(semi-)parametric quantile regression models which turns out to be a more powerful testing
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procedure. Last, we derive a valid bootstrap procedure is a practical easy-to-implement

algorithm to calculate critical values of the limiting distributions. Overall, our framework

therefore extends the literature on quantile regression specification tests to situations where

specific regressors may have a complex functional impact and/or the respective effects may

vary over quantiles.

The key idea of our framework is based on the principle characterized by Rothe and Wied

(2013): We compare an unrestricted estimate of the joint distribution function of the ran-

dom variable Y and the vector X with a restricted estimate that imposes the structure

implied by the null hypothesis model. Based on a Cramér-von Mises type measure of dis-

tances, the restricted estimate of the joint distribution can then be compared with the

unrestricted one. We derive the non-pivotal limiting distribution of our test statistic and

show the validity of our suggested parametric bootstrap procedure for the approximation

of the critical values. To increase the power of our test, we replace the unrestricted model

estimate with a quadratic B-spline. Due to the generality of our test procedure we can sub-

sume previous specification tests for quantile regression models with i.i.d. data as special

cases of our procedure. Our extensive Monte Carlo (MC) simulation study in the Supple-

ment shows that our testing procedures are consistent and have superior power properties

than existing benchmark methods, where comparisons are possible.

Finally, to illustrate the power and potential of our tests, we consider two real data ap-

plications. First, the case of income inequality is treated, with a focus on differences in

the conditional income quantiles between East and West Germany in a balanced panel

data set. Such disparities have received considerable attention in the economic literature

(e.g. Biewen, 2000), and also consistently played a major role in the domestic political

debate. Our empirical analysis uses the German Socio-Economic Panel (SOEP) and shows

that age has a predominant linear influence on income development in Germany, but for

the upper 90% quantile the influence of age is solely quadratic. Importantly, and in line
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with other studies on this topic, we find through an initial M-M decomposition that there

are still income differences between East and West Germany, which can be confirmed by

our proposed testing procedure. The second application arises from energy economics. Fol-

lowing recent work in Smith and Klein (2020), we consider spot prices from the Australian

national electricity market from 2019 and analyze in which sense its conditional quantiles

can be explained by different covariates. These authors have shown that the distribution

is heavily skewed and far from Gaussian with complex interactions of the three covariates

day of the year, the time of day and the demand. We statistically confirm that interaction

effects have a substantial impact on the electricity price, especially for the lower quantiles.

The paper is organized as follows. Sec. 2 formulates the test problem for the finite-

dimensional parametric and semi-parametric models. In Sec. 3, we provide the theoretical

properties of the testing procedures and derive their limiting distributions. Sec. 4 describes

a practical and easy-to-implement bootstrap procedure, which provides valid coverage. In

Sec. 6 we present the two empirical applications. The last Sec. 7 concludes. Supplement

contains all proofs of our theoretical results, as well as an extensive MC study including

comparisons to existing tests and further results on the second application.

2 Quantile Regression Testing

In this section, we introduce three specification tests for (semi-)parametric quantile regres-

sion models comparing the empirical conditional cumulative distribution function (ecdf)

with the (semi-)parametric joint cdf that is based on the estimated conditional qf. We de-

note these tests by SCMn , SCM,S
n and SCM

∗
n . In Sec. 2.1 we derive the general test principle

along the lines of parametric models. In contrast to existing approaches, the test for para-

metric quantile regression models SCMn allows the covariates X to be quantile-dependent.

This feature is important in many applications as we illustrate in our first application where
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the effect of age has distinct functional forms depending on the quantile of interest of the

conditional income distribution. For the case of quantile-independent covariates, the test

reduces to the test statistic from Rothe and Wied (2013). Sec. 2.2 applies the general test

principle to finite-dimensional semi-parametric models with the specification test denoted

by SCM,S
n . As an illustrative example, we consider B-splines, where the degree of the spline

and the dimension of the vector of knots is known and finite. We choose the wording

“semi-parametric” because we consider a (possibly penalized) spline with a fixed dimen-

sion, whereas the total number of parameters is (possibly much) higher than in the first

test of Sec. 2.1. Similar to the first test, it is of high relevance in practice, as we show in our

second application on electricity price distributions. It should be stated, however, that the

computational complexity increases in the degree of the spline and in the dimension of the

vector of knots, compare Toraichi et al. (1987) for precise results for splines. In Sec. 2.3, we

introduce a more powerful model specification testing procedure SCM
∗

n , which is illustrated

on the class of parametric quantile regression models. To do so, we replace the empirical

conditional cdf in the test statistic SCMn with an appropriate spline representation that

approximates the true joint cdf faster. The price of the higher power is that the class of

true cdfs is restricted more strongly. For the approach, we need (in contrast to the case

in Sec. 2.2) splines whose dimension grows as a function of the number of observations,

i.e., the degree of the spline is fixed while the dimension of the knot vector (and that the

dimension of the vector of regression coefficients) diverges at an appropriate rate. This of

course increases the computational complexity even more. Finally, we note that it would in

principle also be possible to do this extension for SCM,S
n with some additional assumptions

but doing so in detail is beyond the scope of this paper.
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2.1 Quantile Regression and the General Test Principle

Let Yi ∈ R denote the outcome variable and Xi ∈ RK the vector of explanatory variables

of i.i.d. data points for i = 1, . . . , n and K ∈ N. Our aim is to test the validity of certain

model specifications for quantile regression. Specifically, we consider models of the form

F−1
Y |X(τ | x) = P (x, τ)>θ(τ), (2.1)

where F−1
Y |X(τ | x) denotes the qf of Y conditional on X = x ∈ RK at quantile τ ,

P (x, τ) ∈ Rpτ is a transformation vector of x with pτ ∈ N and θ(τ) ∈ Rpτ is the pa-

rameter vector depending on τ for all τ ∈ T ⊂ (0, 1). Naturally, models in which the

vector of transformations does not depend on τ are captured by our approach as a special

case (P (x, τ) ≡ x is the familiar case of linear quantile regression). As noted by Belloni

et al. (2019b) for P (x, τ) ≡ P (x), the above framework incorporates a variety of models

such as parametric (Koenker, 2005) and semi-parametric (He and Shi, 1997) ones. However,

since we allow the transformation vector P (x, τ) to depend on the quantile τ , models of the

form (2.1) are generalizations. In parametric quantile regression models, P (x, τ) could for

instance represent a linear covariate in the lower 50% quantile and a highly non-linear func-

tional form in the upper 50% quantile, e.g. P (x, τ) = x if τ ≤ 0.5 and P (x, τ) = sin(x)x2

otherwise. In semi-parametric models, P (x, τ) could represent the knot vector for cubic

B-splines that differs for distinct quantiles as in our second application in Sec. 6.2. For

ease of notation and without loss of generality, we assume pτ =: p ∈ N for all τ ∈ T . In

the remainder of this subsection we assume the qf according to (2.1) to be specified by a

parametric model, while generalizations are treated thereafter.

Our test principle is designed for the comparison of the non-parametric with the parametric

joint cdf, where the latter can be expressed by means of the parametric conditional cdf. In

general, the conditional cdf F of Y conditioned on X, denoted as FY |X , in turn is induced
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by its corresponding (generalized) conditional qf F−1
Y |X through the following equation

FY |X(y | x) =

∫ 1

0

1{
F−1
Y |X(τ |x)≤y

}dτ ∀ y ∈ R. (2.2)

In the following, we consider the set of all conditional distribution functions satisfying (2.2)

given the model specification (2.1), which we denote by F , i.e.

F := {FY |X(y | x, θ) | F−1
Y |X(τ | x) = P (x, τ)>θ(τ) for some θ ∈ B(T ,Θ), (y, x) ∈ S}, (2.3)

where S denotes the support of (y, x) ∈ RK+1 and B(T ,Θ) the class of functions τ 7→

θ(τ) ∈ Θ ⊂ Rp. The specification testing problem of whether our model (2.1) is correctly

specified for all τ ∈ T transfers by means of (2.3) to hypotheses of the form

H0 : FY |X ∈ F vs. H1 : FY |X /∈ F . (2.4)

Thus, we want to test if the conditional cdf FY |X coincides with an element of F from (2.3).

For this testing problem, we assume a unique θ0 ∈ B(T ,Θ) under the null hypothesis, such

that θ(τ) = θ0(τ) for all τ ∈ T . This yields F0 := {FY |X(y | x, θ0) | F−1
Y |X(τ | x) =

P (x, τ)>θ0(τ) for some θ0 ∈ B(T ,Θ)∀(y, x) ∈ S}. Hence, we can reformulate (2.4) as

H0 : FY |X(y | x) = FY |X(y | x, θ0) for some θ0 ∈ B(T ,Θ) for all (y, x) ∈ S

vs. H1 : FY |X(y | x) 6= FY |X(y | x, θ) for all θ ∈ B(T ,Θ) for some (y, x) ∈ S.
(2.5)

Additionally we assume that θ0 is identified under the null hypothesis through a moment

condition. Specifically, let g : S × Θ × T → Rp be a uniformly integrable function whose

exact form depends on F0, and suppose that for every τ ∈ T

G(θ, τ) := E[g(Y,X, θ, τ)] = 0 ∈ Rp (2.6)

has a unique solution θ0(τ). Furthermore, under the alternative H1, we assume θ0(τ) to be

uniquely defined as the solution to infθ∈Θ ‖G(θ, τ)‖ from (2.6) for all τ ∈ T and thus can

be regarded as a pseudo-true value of the functional parameter in this case. Incorporating
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the moment condition, we can now rewrite the null hypothesis of (2.4) as

FY |X(y | x) = FY |X(y | x, θ0) for all (y, x) ∈ RK+1,

with θ0(τ) as the unique solution to (2.6) for all τ ∈ T . This holds true since F0 is a

singleton containing F·|·(· | ·, θ0). Since FY |X(y | X) = E[1{Y≤y} | X], we can write the

joint cdf F of Y and X as

F (y, x) =

∫
RK

FY |X(y | x∗)1{x∗≤x}dFX(x∗)

F (y, x, θ0) =

∫
RK

FY |X(y | x∗, θ0)1{x∗≤x}dFX(x∗),

where FX denotes the marginal cdf of X. From Theorem 16.10 (iii) of Billingsley (1995) it

follows that the testing problem (2.5) can be restated as

H0 : F (y, x) = F (y, x, θ0) for all (y, x) ∈ RK+1

vs. H1 : F (y, x) 6= F (y, x, θ0) for some (y, x) ∈ RK+1.

(2.7)

Further, let S : RK+1 × Θ → R be a function that measures the difference of the non-

parametric F (y, x) and the parametrized cdf F (y, x, θ) defined as

S(y, x, θ) := F (y, x)− F (y, x, θ). (2.8)

The null hypothesis is true if S(y, x, θ0) = 0 for all (y, x) ∈ S, whereas S(y, x, θ) 6= 0 for all

θ 6= θ0 ∈ B(T ,Θ) and for some (y, x) ∈ S. The sample analog is

Sn(y, x, θ̂n) := F̂n(y, x)− F̂n(y, x, θ̂n), (2.9)

where F̂n(y, x) is the empirical cdf and F̂n(y, x, θ̂) a parametric estimate of F based on

a consistent estimate θ̂n(τ) of θ0(τ) for all τ ∈ T corresponding to the underlying model

assumption (2.1). Under the null hypothesis, F̂n(y, x, θ̂n) is a consistent estimator for

F (y, x, θ0), whereas F̂n(y, x) consistently estimates F (y, x). In that case, Sn(y, x, θ̂n) should

be close to zero for all (y, x) ∈ S. If, however, the alternative holds true, then there is a
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vector (y, x) ∈ S for each θ ∈ B(T ,Θ) such that the absolute value of the function Sn from

(2.9) is greater than zero.

To obtain an estimate for the parametrized empirical cdf F̂n(y, x, θ̂n) we follow Cher-

nozhukov et al. (2013) and take the function θ̂n to be an approximate Z-estimator satisfying

∥∥∥Ĝn(θ̂n, τ)
∥∥∥ = inf

θ∈Θ

∥∥∥Ĝn(θ, τ)
∥∥∥+ ηn, (2.10)

where the function Ĝn(θ̂n, τ) := n−1
n∑
i=1

g(Yi, Xi, θ, τ) is the sample analogue of the moment

condition (2.6) for every τ ∈ T and for some possibly random variable ηn = op(n
−1/2). For

every τ ∈ T and every (y, x) ∈ S, the estimator based on the testing problem (2.5) is

F̂n(y | x, θ̂n) =

∫
T
1{P (x,τ)>θ̂n(τ)≤y}dτ +

∫
(0,1)\T

1{F̂−1
Y |X(τ |X)≤y}dτ,

θ̂n(τ) = argmin
θ∈Θ

n∑
i=1

(
τ − 1{yi≤P (xi,τ)>θ}

) (
yi − P (xi, τ)>θ

)
.

(2.11)

For τ /∈ T , the conditional qf F̂−1
Y |X(τ | X) is some estimator for the conditional qf which is

consistent both under the null and the alternative hypothesis (e.g. Takeuchi et al., 2006;

Soni et al., 2012). If T = [ε, 1−ε] for a small ε > 0, this term is negligible in practice. The in-

tegral in (2.11) can be computed by means of standard numerical integration techniques (i.e.

averaging over a fine equidistant grid of τ with 49 supporting points starting at 0.02 using

the trapezoidal rule) and corresponds to the canonical quantile regression approach, i.e. the

loss function g from (2.6) is given by g(Y,X, θ, τ) = (τ − 1{Y ≤ P (X, τ)>θ(τ)})P (X, τ)

(compare Lemma 14 of Chernozhukov et al., 2013). Additionally, (2.11) and other typical

estimation methods fit the estimated conditional qf F̂−1
n (τ | x) pointwise in τ ∈ T , which

might induce the problem that the estimated quantile curve τ 7→ F̂−1
n (τ | x) violates the

monotonicity constraint. This in turn may cause crossing quantile curves. However, a vio-

lation of the monotonicity constraint does not affect the validity of the test statistic, since

it is based on transformations of F̂n(y | x, θ̂n) which is monotone in y by construction for

every x. Hence, a valid test statistic can be based on the differences of the non-parametric
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and parametric ecdfs F̂n(y, x) and F̂n(y, x, θ̂n) and thus expressed as

Sn(y, x, θ̂n) = F̂n(y, x)− F̂n(y, x, θ̂n)

=
1

n

n∑
i=1

(
1{Yi≤y}1{Xi≤x}

)
−
∫
RK

1{x∗≤x}F̂n(y | x, θ̂n) dF̂X(x∗)

=
1

n

n∑
i=1

(
1{Yi≤y}1{Xi≤x} − 1{Xi≤x}F̂n(y | x, θ̂n)

)
,

(2.12)

where the third line exploits the definition of the integral with respect to the ecdf F̂X . We

propose a Cramér-von Mises type (CM) test statistic SCMn defined as

SCMn :=

∫ (√
nSn(y, x, θ̂n)

)2

dF̂n(y, x), (2.13)

which is due to the quantile dependence of the covariates a generalization of existing quan-

tile regression tests. However, if the vector of transformations P (x, τ) in (2.1) is indepen-

dent of τ then the test statistic coincides with test statistic proposed in Rothe and Wied

(2013). It is also possible to consider a Kolmogorov-Smirnov-type test statistic

SKSn :=
√
n sup

(y,x)∈S

∣∣∣Sn(y, x, θ̂n)
∣∣∣ ,

but the CM test yields better (power) results (Rothe and Wied, 2013; Chernozhukov, 2002).

2.2 Specification Test for Semi-Parametric Quantile Regression

Since we introduced the general testing principle of (2.1) by means of the parametric model,

this subsection briefly demonstrates that the general test principle is also applicable to finite

dimensional semi-parametric models. This particularly addresses the fact that parametric

models are often too restrictive and implausible from an applied perspective, since, amongst

others, the constantly increasing complexity of data sets also makes modeling by simple

functional relationships more difficult.

In the following, we identify the vector of transformations P (x, τ) as basis functions (often

referred to as series terms; Chao et al., 2017; Belloni et al., 2019b; Chernozhukov et al.,
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2013). To distinguish such basis functions from the vector of transformations in the previous

subsection, we use the notation B· instead. Due to their widespread use, we will derive

the semi-parametric test for B-splines bases, although our general test principle also allows

for other semi-parametric forms such as penalized splines, Fourier series or compactly

supported wavelets (Chao et al., 2017). For ease of well-defined expression and readability,

we assume w.l.o.g. that the vector of covariates X ∈ RK is properly scaled and centered

and that M ∈ N uniformly spaced knots 0 = t1 < . . . < tM = 1 in the interval [0, 1]

are given. For x = (x1, . . . , xK)> ∈ [0, 1]K with K ∈ N, we identify the B-spline quantile

regression model in the spirit of (2.1) as

F−1
Y |X(τ | X = x) =

K∑
j=1

B(xj | dτ )>θj(τ) (2.14)

with B(xj | dτ ) := (B1(xj | dτ ), . . . , BM+dτ−1(xj | dτ ))> being the vector of M + dτ − 1

basis functions of degree dτ that are defined recursively on the vector of knots on [0, 1] and

evaluated at xj for j = 1, . . . , K (cf. De Boor, 1978, for the recursive Definition). For every

τ ∈ T and j = 1, . . . , K, θj(τ) = (θj,1(τ), . . . , θj,M+dτ−1(τ))> defines the corresponding

functional coefficient vectors. Although both M and dτ can be conceived to depend on j

for j = 1, . . . , K and additionally M on τ , we suppress these dependencies at this point due

to readability and clearness. Note that for distinct quantiles τ the degree of the B-spline

might differ. If dτ ≡ d ∈ N we refer to (2.14) as B-spline quantile regression model of degree

d. Since our general quantile regression model in (2.1) conceptually allows for multivariate

covariates, we make (2.14) more flexible by adding q∗ ∈ N arbitrary product interaction

effects of the form πi(x) =
∏
j∈Ji

fj(xj), where Ji is an arbitrary subset of {1, . . . , K} for

i = 1, . . . , q∗ and fj an arbitrary continuous function for j ∈ Ji. Thus, (2.14) generalizes to

F−1
Y |X(τ | X = x) =

q∑
j=1

B(πj(x) | dτ )>θj(τ) (2.15)
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with q = K + q∗. For πj(x) = xj and Ji singletons for j = 1, . . . , q with q = K we receive

our initial B-spline model (2.14). The estimator for models of the form (2.15) is given by

θ̂n(τ) = argmin
θ∈Rq·M

{
n∑
i=1

ρτ

(
yi −

q∑
j=1

B(πj(x) | dτ )>θj

)}
(2.16)

where ρτ (u) = u(τ − 1(u < 0)) is the check function (Koenker and Bassett Jr, 1978)

for τ ∈ T , u ∈ R. In case of no misspecification, Bondell et al. (2010) have shown

that the unconstrained estimator (2.16) has the same limiting distribution as the classical

constrained quantile regression estimator. Hence, in accordance with the discussion on

monotonicity in Sec. 2.1, θ0 can be estimated consistently based on unconstrained methods,

noting that possible quantile curves crossing of the conditional qf estimator does not affect

the validity of the CM test statistic. In our MC simulation II.1 and empirical application

6.2, we will also consider penalized splines, which can be captured by (2.14) with an

additional penalty term, but are omitted at this point for ease of notation (compare the

discussion after Corollary 1). Besides the well-known estimation method (2.16), there are

other consistent approaches. A prominent and easy to implement algorithm is the divide

and conquer algorithm at fixed τ . The quantile projection algorithm, in contrast, is used

to construct an estimator for the quantile process (cf. Volgushev et al., 2019, for further

details).

To develop a CM test for null hypotheses of the form (2.5), we replace the estimator

of the conditional qf in (2.11) with our estimator (2.16). This yields a new conditional

distribution function F̂ S
n (y | x, θ̂n). Integrating over x leads to the function SSn (y, x, θ̂n) :=

F̂n(y, x) − F̂ S
n (y, x, θ̂n), where F̂ S

n (y, x, θ̂n) is the spline based estimate of the cdf in the

spirit of (2.12) for fixed and finite q and M . We then define the CM test statistic for

finite-dimensional semi-parametric quantile regression models

SCM,S
n :=

∫ (√
nSSn (y, x, θ̂n)

)2

dF̂n(y, x). (2.17)
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The second test SCM,S
n is thus able to test, for instance, whether a spline is correctly

specified with respect to its predefined fixed degree d. In contrast to SCMn , the semi-

parametric test SCM,S
n also allows for possible penalization. Consequently, questions of the

form whether linear splines characterize a data set similarly well as cubic splines (with

possible penalization) can be addressed by means of SCM,S
n .

2.3 A More Powerful Testing Procedure Using Splines

The underlying principle of the test SCMn is to compare the parametric cdf induced by (2.5)

with the non-parametric cdf. As the class of alternative hypotheses in (2.4) gets smaller,

the power of SCMn can be improved if a spline is used for the non-parametric part of the

test, i.e., modeling the conditional qf with an appropriate spline function used to estimate

the ecdf F̂n. Xue and Wang (2010) have shown, for instance, that the estimate of the cdf

with a smooth monotone polynomial spline has better finite sample properties than the

empirical distributional estimate. Cardot et al. (2005) have generalized limiting results for

quantile regression models with quantile-dependent covariates. However, the goodness and

convergence rate of the spline approximation depends, in general, in a complex fashion on

the degree of the spline, the number of knots and the position of the knots which may

change for increasing n. For a quantile regression model with quantile-independent covari-

ates He and Shi (1997) have pointed out that if the number of knots kn ∼ (n/ log n)2/5 and

under some mild assumptions (cf. He and Shi, 1997, assumptions C1− C3), the order of

approximation of a quadratic monotone B-spline is (log n/n)2/5.

However, in order to approximate the theoretical cdf sufficiently well, it is necessary that M

grows as a function of n, i.e. M diverges at a proper rate. This is known as non-parametric

quantile regression, i.e. a linear model with increasing dimension in the regression coeffi-

cients. Note that in this framework the true functional parameter vector θ0 also depends

on n (Belloni et al., 2019b). Consequently, for non-parametric quantile regression, (2.1)
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expands to

F−1
Y |X(τ | x) = Pn(xn, τ)>θ0n(τ). (2.18)

We discuss the theoretical framework of (2.18) in Sec. 3.2. Let F̂ SM
n be the spline based

estimate of the cdf via the non-parametric conditional qf according to (2.18). Thus in

these models, the test statistic that is based on the difference of the parametric and semi-

parametric ecdf reads

S∗n(y, x, θ̂n) =
1

a∗n
F̂ SM
n (y, x, θ̂n)− 1

an
F̂n(y, x, θ̂n),

where an, a
∗
n are scaling factors defined in Sec. 3.2. This yields the new test statistic

SCM
∗

n :=

∫ (√
nS∗n(y, x, θ̂n)

)2

dF̂n(y, x). (2.19)

In comparison to SCMn , the test statistic SCM
∗

n replaces the estimate of the ecdf F̂n(y, x)

in (2.12) by an appropriate spline estimate of the conditional qf via (2.18), which is then

transformed to estimate F̂ SM
n (y, x, θ̂n). Note that finite-dimensional parametric models can

also be tested with SCM
∗

n . In our MC simulation study, we will therefore compare the two

tests SCMn and SCM
∗

n , as they address questions of similar kind. It turns out that SCM
∗

n is

a more powerful testing procedure than SCMn , particularly in small samples.

3 Asymptotics

In this section, we first derive theoretical properties of the parametric test statistic SCMn in

3.1 before generalizing the statements to the semi-parametric test statistic SCM,S
n and the

more powerful test statistic SCM
∗

n in Sec. 3.2.
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3.1 Theoretical Properties for Testing (Semi-)Parametric Quan-

tile Regression Models

In Theorem 1 below we show that the test statistic SCMn has correct asymptotic size. To

be able to derive large sample properties of SCMn , we make and discuss the following mild

assumptions. Since our proposed test statistic is a generalization of existing tests, these

assumptions modify those previously made (Chernozhukov et al., 2013; Rothe and Wied,

2013). For this purpose, we restate the assumptions on compact subsets on T . Let Θ be

an arbitrary subset of Rp and T := [ε, 1− ε] with ε ∈ (0, 0.5).

Assumption 1.

i.) P (X, τ) is L2-bounded in [0, 1] and continuous in X.

ii.) Let
L⋃
l=1

Il = T , L ∈ N, Il compact for l = 1, . . . , L and Il1 ∩ Il2 a singleton for l1 6= l2.

iii.) For each τ ∈ Il with l = 1, . . . , L, G(·, τ) : Θ → Rp possesses a unique zero at θ0 ∈

interior(Θ) such that G(θ0, τ) = 0 for all τ ∈ T and for some δ > 0, B :=
⋃
τ∈Il

Bδ(θ0)

is a compact subset of Rp contained in Θ for l = 1, . . . , L.

iv.) Further, G(·, τ) has an inverse G−1(x, τ) := {θ ∈ Θ | G(θ, τ) = x} that is continuous

at x = 0 uniformly in τ ∈ Il for all l = 1, . . . , L with respect to the Hausdorff distance.

v.) The mapping (θ, τ) 7→ g(·, θ, τ) is continuous at each (θ(τ), τ) ∈ Θ × Il for all l =

1, . . . , L with probability one and (θ, τ) 7→ G(θ, τ) is continuously differentiable at

(θ0(τ), τ) with uniformly bounded derivative on T .

vi.) The function Ġ(θ, τ) := ∂θG(θ, τ) is non-singular at θ0(·) uniformly over τ ∈ Il with

l = 1, . . . , L.

vii.) The function set Gl = {g(Y,X, θ, τ) | (θ, τ) ∈ Θ × Il)} is FY X-Donsker for all l =

1, . . . , L with a square integrable envelope G̃ for
L⋃
l=1

Gl.
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viii.) The mapping θ 7→ F (· | ·, θ) is Hadamard differentiable for all θ ∈ B(T ,Θ) with

derivative h 7→ Ḟ (· | ·, θ)[h]

Due to quantile dependence of the regressorsX, we further require continuity of the function

P (X, τ) in X, which is provided by Assumption 1i. Assumption 1ii ensures that there is a

finite and compact decomposition of the unit interval. This is required since we consider

Donsker classes in the proof of Theorem 1. We are using the fact that the union of Donsker

classes is also Donsker (see Dudley, 2014, Sec. 3.8). Assumptions 1ii–vii guarantee the

regularity of our estimator θ̂n and ensure that a functional central limit theorem can be

applied to Z-estimator processes (see Corollary 2 in Supplement I.1). Assumption 1 viii

is a smoothness condition. Together with the functional delta method it implies that the

restricted cdf estimator process

(y, x) 7→
√
n
(
F̂n(y, x, θ̂n)− F (y, x, θ)

)
(3.1)

is FY X-Donsker. This convergence can be shown to be jointly with that of the ecdf process

(y, x) 7→
√
n
(
F̂n(y, x)− F (y, x)

)
to a Brownian bridge by some standard arguments given

in Lemma 2 in Supplement I.1. Applying the continuous mapping theorem yields the

following proposition.

Theorem 1. If Assumption 1 is satisfied, then the following statements hold:

i.) Under the null hypothesis H0 in (2.7),

SCMn
d→
∫

(G1(y, x)−G2(y, x))2 dFY X(y, x),

where (G1,G2) is a bivariate zero mean Gaussian processes with

G2(y, x) :=

∫
G+

2 (y, x∗)1{x∗≤x}dFX(x∗) +

∫
F (y | x∗)1{x∗≤x}dG1(∞, x∗),

where G+
2 (y, x) is the limiting Gaussian process of

√
n
(
F̂n(y | x, θ̂n)− F (y | x, θ)

)
∈

`∞(S) defined in Lemma 2. Moreover,

Cov(G1(y1, x1),G2(y2, x2)) = lim
n→∞

n Cov
(
F̂n(y1, x1)− F (y1, x1), F̂n(y2, x2, θ̂n)− F (y2, x2, θ)

)
.

17



ii.) Under any fixed alternative, i.e., when the data are distributed according to some F

that satisfies the alternative hypothesis H1 in (2.7),

lim
n→∞

P (SCMn > ε) = 1 for all constants ε > 0.

Theorem 1 ensures distributional convergence of the test statistic SCMn and further shows

that the non-parametric ecdf F̂n(y, x) and the parametric ecdf F̂n(y, x, θ̂n) differ with prob-

ability one under the alternative hypothesis. Hence in case of misspecification, the power

of the test statistic SCMn converges to one as n approaches infinity. Based on the generality

of Assumption 1 and the proof structure in Supplement I.1, the statements from Theorem

1 can also be extended to semi-parametric quantile regressions models with fixed q, M as

discussed in Sec. 2.2. Thus, we have

Corollary 1. If Assumption 1 is satisfied, then the following statements hold:

i.) Under the null hypothesis H0 in (2.7),

SCM,S
n

d→
∫ (

G1(y, x)−GS
2 (y, x)

)2
dFY X(y, x),

where (G1,GS
2 ) is a bivariate zero mean Gaussian processes with

GS
2 (y, x) :=

∫
GS+

2 (y, x∗)1{x∗≤x}dFX(x∗) +

∫
F (y | x∗)1{x∗≤x}dG1(∞, x∗),

where GS+

2 (y, x) is the limiting Gaussian process of
√
n
(
F̂ S
n (y | x, θ̂n)− F (y | x, θ)

)
∈

`∞(S). Moreover,

Cov(G1(y1, x1),GS
2 (y2, x2)) =

lim
n→∞

n Cov
(
F̂n(y1, x1)− F (y1, x1), F̂ S

n (y2, x2, θ̂n)− F (y2, x2, θ)
)
.

ii.) Under any fixed alternative, i.e., when the data are distributed according to some cdf

F that satisfies the alternative hypothesis H1 in (2.7),

lim
n→∞

P (SCM,S
n > ε) = 1 for all constants ε > 0.
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In empirical applications, however, it is often common to estimate series terms with smooth-

ing penalty parameters λj for j = 1, . . . , p, since this avoids overfitting the data. Imposing

the assumption that the penalty parameters are λj = o(n1/2) for j = 1, . . . , p the penal-

ties can be asymptotically ignored. This indicates that Corollary 1 is also valid in case of

penalized quantile regression (Lian et al., 2015).

3.2 Theoretical Properties for the More Powerful Test

In the context of non-parametric quantile regression, i.e. the number of knots diverges at a

proper rate, we need to introduce some additional notation: Since the dimension K and the

true distribution F of i.i.d. samples (Xi, Yi) ∈ RK+1 for i = 1, . . . , n can depend on n, we

consider triangular arrays. For brevity of notation, we omit the index n in the following and

we write Pi = P (Xi, τ) and P = P (X, τ). Let λmin(A) and λmax(A) be the smallest and

largest eigenvalue of a matrix A. By ‖b‖ we denote the L2-norm of a vector b. Moreover,

we set an :=
√
n/‖P (x)‖ and a∗n :=

√
n/‖B(x)‖, respectively.

Imposing the assumptions from Chao et al. (2017) adapted to quantile regression with

quantile-dependent series terms enables us to replace the conditional qf by an appropriate

(spline) estimator and thus to derive large sample properties for our third test statistic

SCM
∗

n :

Assumption 2.

i.) For p := qM , assume that ‖Pi‖ ≤ ξp = O(na) almost surely with a > 0, and that

1
M∗
≤ λmin(E[PP>]) ≤ λmax(E[PP>]) ≤ M∗ holds uniformly in n and τ ∈ T for

some fixed M∗ > 0.

ii.) The conditional distribution FY |X(y | x) is twice differentiable w.r.t. y.We denote

the corresponding derivatives by fY |X(y | x) and f>Y |X(y | x). Assume that f̄ :=∣∣supy,x fY |X(y | x)
∣∣ <∞ and f̄> := supy,x

∣∣∣f>Y |X(y | x)
∣∣∣ <∞ uniformly in n.
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iii.) Assume there exists a constant fmin > 0 such that inf
τ∈T

inf
x
fY |X(F−1

Y |X(τ | x) | x) ≥ fmin.

iv.) For each x, the basis vector P has zeroes in all but at most r consecutive entries,

where r is fixed. Moreover, supτ,x E[| P>J̃m(τ)−1P |] = O(1), where J̃m(τ) :=

E[PP>fY |X(F−1
Y |X(τ | x) | X)].

v.) Assume that ξ4
p(log n)6 = o(n) and letting cn := supτ,x

∣∣∣F−1
Y |X(τ | X)− P>θ̂n(τ)

∣∣∣ with

c2
n = o(n−1/2).

As mentioned in Chao et al. (2017), Assumption 2 i claims rescaling in case of B-splines and

for linear models with increasing dimension P (X, τ) to be bounded for all τ . Assumptions

2 ii.)–iii.) are fairly standard. Assumptions 2 iv.) and v.) imply that for any sequence

satisfying cn = o(1) and that the smallest eigenvalues of the matrix Jm(τ) are bounded

away from zero uniformly in τ for all n. Using Theorem 2.4 of Chao et al. (2017) showing

that a standardized version of the quantile series terms process converges to a centered

Gaussian process we have

Theorem 2. If Assumptions 1 and 2 are satisfied, then the following statements hold:

i.) Under the null hypothesis H0 in (2.7),

SCM
∗

n
d→
∫ (

G2(y, x)−GSM
2 (y, x)

)2
dFY X(y, x),

where (G2,GSM
2 ) are Gaussian processes with zero mean given in Supplement I.2.

ii.) Under any fixed alternative, i.e., when the data are distributed according to some cdf

F that satisfies the alternative hypothesis H1 in (2.7),

lim
n→∞

P (SCM
∗

n > ε) = 1 for all constants ε > 0.

Theorem 2 ensures that the test SCM
∗

n is asymptotically normal and has power in case of

misspecification. The convergence statements from Corollary 1 and Theorem 2 hold for
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additive univariate series terms, including, for instance, univariate B-splines with prod-

uct interacting covariates. In line with Chao et al. (2017), we further conjecture that such

arguments as those given in the proofs (cf. Supplement I.1) can also be applied to multivari-

ate splines and thus in particular to tensor product B-splines considered later in Sec. 6.2.

Therefore, convergence statements from Corollary 1 and Theorem 2 can be extended to a

more general class of (multivariate) splines. Inspired by this observation and our second

application, we show empirically that the test statistic SCM
∗

n based on tensor product B-

splines also yields a reasonable sized testing procedure with large power (cf. Tables I and

II, Supplement II). However, a detailed theoretical investigation of this interesting topic is

beyond the scope of this paper and left for future research.

4 Bootstrap

To obtain critical values for our test SCMn , we therefore propose a semi-parametric bootstrap

procedure. This procedure is reasonable from a practical point of view, since it avoids to

estimate the null distribution directly, including a complex covariance structure.

4.1 Semi-Parametric Bootstrap Procedure

The idea of our semi-parametric bootstrap is to generate synthetic data that is consistent

with the assumptions under the null hypothesis. Since the conditional qf is already known

according to our null hypothesis, our bootstrap procedure is based on the principle of inverse

sampling transformation, which provides a method to generate samples from arbitrary

distributions. Thus, the bootstrap mimics the distribution of the data under the null

hypothesis, even though the data might be generated by an alternative distribution. The

procedure works as follows. Let B be the number of bootstrap samples. Then

i.) Draw B independent bootstrap samples of covariates {Xb,i | 1 ≤ i ≤ n}b=1,...,B of size
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n with replacement from {Xi | 1 ≤ i ≤ n}.

ii.) For every i = 1, . . . , n put Yb,i = F̂−1
n (Ub,i | Xb,i, θ̂n), where {Ub,i | 1 ≤ i ≤ n} is a

simulated i.i.d. sequence of standard uniformly distributed random variables.

iii.) Use the bootstrap data {(Yb,i, Xb,i) | 1 ≤ i ≤ n}b=1,...,B to calculate B bootstrap

versions of the test statistic SCMn from (2.13), i.e. for b = 1, . . . , B compute

SCMn,b :=

∫ (√
nSn,b(yb, xb, θ̂n)

)2

dF̂n(yb, xb).

iv.) For q ∈ (0, 1), determine the critical value ĉn(q) such that

1

B

B∑
b=1

1{SCMn,b >ĉn(q)} = q.

With the bootstrap procedure described above, we can calculate critical values ĉn(q) for

(2.13) and the null hypothesis is rejected on the level of significance q if SCMn > ĉn(q).

Critical values for (2.17) and (2.19) can be obtained in the same manner if the test statistic

SCMn,B is replaced by its counterparts, i.e. SCM,S
n,B or SCM

∗
n,B .

4.2 Validity of the Bootstrap Procedure

Finally, according to Rothe and Wied (2013), we show that the proposed bootstrap proce-

dure computes the correct critical value for our test statistic (2.13). This does not require

any further assumptions. Assumption 1 ensures that the bootstrap consistently estimates

the limiting distribution for (2.13). Under the null hypothesis and any fixed alternative

(2.5), the bootstrap critical values can be shown to be bounded in probability. Thus,

Theorem 3. Under Assumption 1, the following statements hold true for every α ∈ (0, 1):

i.) Under the null hypothesis H0 in (2.7), we have that

lim
n→∞

P (SCMn > ĉn(α)) = α
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ii.) Under any fixed alternative H1 in (2.7), we have that

lim
n→∞

P (SCMn > ĉn(α)) = 1.

In order to study the behavior of the Cramér-von Mises type test statistics SCMn , SCM,S
n and

SCM
∗

n in finite samples, we conducted an extensive MC study, whose results are reported in

Supplement II. Overall, the MC study has shown that our proposed testing procedures are

also consistent based on critical values obtained via the bootstrap procedure described in

Sec. 4.1 and have superior power properties compared with three benchmark tests (cf. Sup-

plement 5.1), even in small samples. The testing procedures works for both, univariate

and multivariate DGPs (including product interacting or more complex tensor product

covariates) and can also test models with quantile-dependent regressors. Even weakly mis-

specified models are detected in sufficiently large sample sizes.

5 Monte Carlo Simulation Study

This contains a comprehensive MC simulation study for the test statistics SCMn and SCM
∗

n ,

where the spline part in the latter test statistic is modelled by a penalized B-spline. Wher-

ever it is possible, we also compare our results with existing benchmark tests, for instance,

those given in Koenker and Xiao (2002) (KX), Chernozhukov (2002) (CH) and Rothe

and Wied (2013) (RW ). Note, in case of quantile-independent covariates, RW is a spe-

cial case of our proposed test SCMn . In Sec. II.1 in the Appendix, we examine power and

size properties for the semi-parametric model specification test SCM,S
n where possible in-

teracting covariates are modelled by a tensor product. In Sec. II.2 in the Appendix, we

examine power and size properties for the semi-parametric model specification test SCM,S
n

with univariate product interacting covariates.
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5.1 MC Simulation Study for SCM
∗

n

In this subsection, we show that our test SCM
∗

n holds the size level and has superior power

properties compared with SCMn by means of the twelve different data generating processes

(DGPs) based on i.i.d. data {(yi, xi) | 1 ≤ i ≤ n} for n ∈ {30, 50, 100, 300, 500, 1000, 2000}.

The different DGPs cover location shift models (LS) and location-scale shift models (LSS)

including heteroscedastic errors, both, in a univariate and multivariate setting. In order

to assess the quality and validity of our proposed test against existing procedures, we

benchmark against the tests of Koenker and Xiao (2002), Chernozhukov (2002) and Rothe

and Wied (2013) where comparisons are possible (DGPs 1–9). Finally, we also consider

linear models and show that our test detects even weakly misspecified models well.

For the definition of the twelve DGPs we introduce the following variables: Let x0 ∈

U(0, 2π), x1 ∼ Bin(1, 0.5), x2 ∼ N(0, 1), x3 ∈ U(0, 1) , x4 ∈ χ2(1), u ∼ N(0, 1), w ∼

N(0, 0.1), v = (1− 2x1) · v∗2 · 8−0.5 with v∗2 ∼ χ2(2), where Bin(·, ·), N(·, ·), U(·, ·) and χ2(·)

are Binomial, Gaussian, uniform and chi-square distributions, respectively.

Data Generating Processes DGPs 1–3 represent the univariate case with one covariate

and additive noise. Hereby, DGP 1 describes a simple LS model, DGP 2 a more complex

LSS model with a linear regressor and, finally, DPG 3 generates a quadratic LSS model.

The multivariate case is specified by the DGPs 4–8 that are from Rothe and Wied (2013)

and DGP 9 from Chernozhukov (2002). Here, DGP 4 is a simple multivariate LS model

with normally distributed errors. DGP 2 is again a simple LS model, but now the errors

follow a mixture of a “positive” and “negative” χ2 distribution with two degrees of freedom

(normalized to have unit variance). DGPs 6–8 are multivariate LSS models where the level

of heteroscedasticity increases. DGP 9 is considered in order to compare our proposed

testing procedure with those provided in Chernozhukov (2002) and Koenker and Xiao

(2002). When γ1 = 0 DGP 9 is a LS model, otherwise it is a LSS model. DGPs 10–12
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are processes in which the functional form appears predominantly non-linear. DGP 10

is implemented by modeling different functional forms for quantiles below and and above

the 0.5 threshold. Due to the quantile dependence of the regressors, DGP 10 cannot

be correctly tested with previous tests but with our test SCM
∗

n it can. DGPs 11–12 are

appearing mainly linear in the interval [0, 1] and exhibit non-linear growth only at values

close to 1. Both DGPs require flexible modelling beyond the parametric framework of

simple polynomials. Assuming a linear model, DGPs of the form 10–12 often impede the

detection of misspecification.

Estimation and Further Settings Computations have been carried out using the R

package cobs (Ng and Maechler, 2020, 2007). In what follows, F̂ S
n is modeled by a B-spline

of second order with penalty term λ = 1 and
√
n knots evaluated for τ ∈ {0.1, 0.2, . . . , 0.9},

meeting monotonicity assumptions. The number of MC repetitions is equal to 701 with

500 bootstrap replications. The significance level is 0.05.

DGP 1: y1(x0) :=
x0

4
+ 1 + u, DGP 2: y2(x0) :=

x0

4
+ 1 + u · x0

DGP 3: y3(x0) :=
x2

0

4
+ 1 + u · x2

0, DGP 4: y4(x1, x2) := x1 + x2 + u

DGP 5: y5(x1, x2) := x1 + x2 + v, DGP 6: y6(x1, x2) := x1 + x2 + (
1

2
+ x1)u

DGP 7: y7(x1, x2) := x1 + x2 + (
1

2
+ x1 + x2

2)0.5u (5.1)

DGP 8: y8(x1, x2) := x1 + x2 +
1

5
(
1

2
+ x1 + x2

2)1.5u

DGP 9: y9(x3) := x3 + (1 + γ1 · x2)u

DGP 10: y10(x3) :=


x23
4

+ 1 +
u·x23

2
, if τ ≥ 0.5

−x23
4

+ 1 + u · x3, otherwise

DGP 11: y11(x3) := sin
(
−π

2
+ x3

3

)
+ w, DGP 12: y12(x3) := ey5(x3)
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Benchmark Tests In order to illustrate the performance of our test, we draw compar-

isons to common test procedures in the scope of quantile regression. The test proposed in

Koenker and Xiao (2002) (KX), which is based on the Khmaladze transformation, which

in turn refers to the Doob-Mayer decomposition of martingales, provides the starting point

for quantile regression specification tests. We also consider the enhancement proposed in

Chernozhukov (2002) (CH) and compare our test with RW . The aforementioned tests are

characterized as follows:

• The KX-test models the conditional qf parametrically by assuming a LS or a LSS

model. The regressors are fixed for all quantiles considered and the estimation of

non-parameteric sparsity and score functions are required (Chernozhukov, 2002).

• In order to avoid the latter, CH employs a resampling testing procedure based on KX

that results in better power and accurate size. However, this tests still assumes a fully

parametrized model under the null hypothesis with quantile-independent regressors.

• RW propose a testing procedure for a wide range of parametric models that is based

on a Cramér-von Mises distance between an unrestricted estimate of the joint cdf and

the estimate of the joint cdf under the null hypothesis. However, the regressors are

assumed to be constant for all quantiles. Thus, the RW test approach equals SCMn

in case that the vector of transformations P (X, τ) is constant for all τ .

Results Tab. 1 shows the comparison with RW for all n in the univariate DGPs 1–3 in

terms of size and power of the statistics at 10%, 5% levels and a 5% level, respectively. We

make three observations. First, compared with RW/SCMn our proposed testing procedure

SCM
∗

n consistently has better size properties. For example, in DGP 3, RW/SCMn is way too

conservative, which is not true for SCM
∗

n . Second, the test SCM
∗

n manages to maintain the

size level when the structure of the error terms is highly heteroscedastic (cf. 5% column
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Table 1. Size and power for RW/SCMn and SCM
∗

n

DGP 1 DGP 2 DGP 3

RW/SCMn 10% 5% 10% 5% 5% Power

n = 30 0.077 0.019 0.093 0.039 0.005 0.032

n = 50 0.061 0.016 0.095 0.038 0.016 0.045

n = 100 0.056 0.024 0.087 0.033 0.024 0.075

n = 300 0.055 0.028 0.078 0.032 0.026 0.312

n = 500 0.056 0.016 0.069 0.029 0.010 0.486

n = 1000 0.043 0.016 0.069 0.030 0.014 0.883

n = 2000 0.064 0.020 0.066 0.030 0.014 1.000

SCM
∗

n 10% 5% 10% 5% 5% Power

n = 30 0.101 0.035 0.089 0.037 0.028 0.095

n = 50 0.103 0.046 0.074 0.027 0.037 0.147

n = 100 0.094 0.043 0.112 0.061 0.064 0.407

n = 300 0.090 0.043 0.159 0.084 0.047 0.988

n = 500 0.086 0.043 0.111 0.058 0.050 1.000

n = 1000 0.095 0.048 0.095 0.038 0.056 1.000

n = 2000 0.098 0.049 0.092 0.042 0.044 1.000

MC Study. The table compares the test statistics SCM∗

n and SCM
n in terms of size (significance levels 10%

and 5%) and power (at a 5% level), where the latter coincides with test statistic of Rothe and Wied (2013)

(RW ) in case of quantile-independent covariates. The last column named Power shows the power analysis

while the qf is assumed to follow a linear LSS model under the null hypothesis.
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of DGP 3 in Tab. 1). Last, the rejection rate for misspecified models (for DGP 3 we are

assuming a linear LSS model in the last column of Tab. 1) in small samples (n ≤ 300) is

approximately three times higher than for the RW test.

Tab. 2 illustrates the comparison with KX for the DGPs 4–8 for n = 100, 300, whereby a LS

model is assumed under the null hypothesis. Thus, the results of DGPs 4 and 5 reflect size

properties, while DGPs 6–8 illustrate the power of SCM
∗

n compared with the benchmark

tests RW/SCMn and KX at significance levels 10% and 5% each. We again make three

observations. First, our test SCM
∗

n holds the size for multivariate models (cf. DGPs 4 and 5

in Tab. 2). Second, KX has difficulties to detect misspecification when heteroscedasticity

is present (cf. DGP 6 − 8 in Tab. 2). Third, RW/SCMn usually detects misspecification.

However, the rejection rates of the test SCM
∗

n are clearly higher compared with those from

RW even in small samples (cf. n = 100 DGP 7 of Tab. 2). Tab. 3 provides a comparison with

the standard testing procedure proposed in Koenker and Xiao (2002) and the enhancement

from Chernozhukov (2002) using n = 100, 200, 300 and DGP 9. Results of Tab. 3 of the

benchmark tests KX and CH are taken from Chernozhukov (2002). This table indicates

that the test SCM
∗

n has consistently better size and power properties compared with the

benchmarks KX and CH for small sample sizes. Finally, Tab. 4 examines size and power

properties for the DGPSs 10−−12. Here, in each of the DGPs 10–12, the test SCM
∗

n holds

the significance level. Assuming a linear model, misspecification is detected even in small

sample sizes. DGP 10 cannot be tested with previous approaches due to the quantile-

dependent regressors. The slightly lower power for DGP 10 is due to the fact that half

of the observations actually follow a linear relationship and are thus in line with the null

hypothesis.

28



Table 2. Size and power for DGPs 4–8

RW/SCMn KX SCM
∗

n

n = 100 10% 5% 10% 5% 10% 5%

DGP 4 0.093 0.048 0.067 0.035 0.122 0.068

DGP 5 0.085 0.033 0.069 0.037 0.114 0.065

DGP 6 0.829 0.669 0.082 0.047 0.870 0.838

DGP 7 0.404 0.239 0.097 0.049 0.669 0.565

DGP 8 0.874 0.746 0.055 0.027 0.970 0.944

n = 300 10% 5% 10% 5% 10% 5%

DGP 4 0.109 0.056 0.107 0.039 0.125 0.068

DGP 5 0.096 0.043 0.066 0.024 0.120 0.056

DGP 6 1.000 0.997 0.336 0.231 1.000 1.000

DGP 7 0.847 0.679 0.147 0.076 0.950 0.908

DGP 8 1.000 0.997 0.099 0.050 1.000 1.000

MC Study. The table compares size and power (at significance level 5%) of the test statistics RW/SCM
n ,

KX and SCM∗

n . All results are one-to-one transferred from Rothe and Wied (2013). The results of DGPs

4 and 5 reflect size properties, while DGPs 6–8 illustrate the power of SCM∗

n compared with the benchmark

tests RW/SCM
n and KX at significance levels 10% and 5% each.

Table 3. Size and power for DGP 9

KX CH SCM
∗

n

Size Power Size Power Size Power

γ1 = 0 0.2 0.5 0 0.2 0.5 0 0.2 0.5

n = 100 0.101 0.264 0.898 0.014 0.348 0.980 0.050 0.396 0.99

n = 200 0.070 0.480 0.988 0.052 0.752 1.000 0.063 0.772 1.000

n = 300 0.062 0.622 0.998 0.058 0.910 1.000 0.068 0.930 1.000

MC Study. The table compares size and power (at significance level 5%) of the test statistics KX, CH and

SCM∗

n . KX refers to the specification test suggested by Koenker and Xiao (2002). The more powerful test

of Chernozhukov (2002) is abbreviated by CH. All results are one-to-one transferred from Chernozhukov

(2002). The null hypothesis assumes a LS quantile regression model, i.e. γ1 = 0.
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Table 4. Size and power for DGPs 10–12

DGP 10 DGP 11 DGP 12

SCM
∗

n 5% Power 5% Power 5% Power

n = 30 0.068 0.177 0.014 0.055 0.009 0.069

n = 50 0.057 0.189 0.018 0.285 0.013 0.318

n = 100 0.051 0.192 0.033 0.979 0.023 0.989

n = 300 0.039 0.469 0.040 1.000 0.031 1.000

n = 500 0.042 0.519 0.039 1.000 0.029 1.000

n = 1000 0.046 0.658 0.034 1.000 0.035 1.000

n = 2000 0.042 0.743 0.041 1.000 0.049 1.000

MC Study. The table reports size and power of the test statistic SCM∗

n at a significance level 5%.

6 Empirical Illustrations

6.1 Income Disparities Between East and West Germany

In this section, we apply the bootstrap version of the specification test SCM
∗

n to conditional

income distributions in Germany. We utilize information from the German Socio-Economic

Panel (SOEP, Wagner et al., 2007). More specifically, we consider real gross annual per-

sonal labor income in Germany as defined in Bach et al. (2009) from 2001 to 2010 as our

response Y . We deflate the incomes by the consumer price index (Statistisches Bundesamt,

2012), setting 2010 as our base year. Thus, all incomes are expressed in real-valued 2010

Euros from here on. Following the standard literature, we focus on incomes of males in

full-time employment (see, among others, Dustmann et al., 2009; Card et al., 2013) in the

age range 20–60. This yielded 7220 individuals and is the data set that was also used in

Klein et al. (2015). The variables age, origin (dummy for East/West Germany) and year

are available as covariates, see Tab. 5 for a full description of the data.

To obtain an estimate of the qf, we first regress income on the dummy coded variable
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year and then performed a linear quantile regression using the variables age or age2 on the

residuals. We consider this approach justified since four out of six tests did not reject the

null hypothesis that there is no correlation between age and year dummies and age2 and

year dummies, respectively. This approach takes into account that income increases at

the beginning of employment, peaks in middle age and finally decreases (Creedy and Hart,

1979; Luong and Hébert, 2009; Klein et al., 2015) . We next conduct a M-M decomposition

(Machado and Mata, 2005; Landmesser et al., 2016), of the year-adjusted dataset condi-

tional on origin. For the decomposition we assume that the conditional qf of the income Y

Table 5. Description of the German labor income data from 2001 to 2010

Description

Y gross market labor income (in e),

(continuous 1257 ≤ Y ≤ 280092, average = 46641)

origin indicator for East or West (binary, -1=West (73.8%), 1=East (26.2%))

age age of the male in year (continuous, 20 ≤ age ≤ 60, average = 38)

years time in years (categorical, 2001 ≤ year ≤ 2010, 10 years)

Sample Description average (std.) income observations

Ger complete sample 51026e (30569e) n = 7220

West sub-sample (origin = −1) 55141e (31494e) n = 5325

East sub-sample (origin = 1) 39463e (24336e) n = 1895

Incomes. The table summarizes the descriptive statistics of the German labor income data.

can be represented as a function of the form F−1
Y |X(τ | X) = P (X, τ)>θ(τ) with X consisting

of the variables age or age2. Specifically, we consider here three different linear quantile

regression models: The first model describes an entirely linear effect of the regressor age on

income for all quantiles τ ∈ (0, 1), i.e. P (X, τ) = age for all τ ∈ (0, 1). The second models

a quadratic influence of age on income for all quantiles τ ∈ (0, 1), i.e. P (X, τ) = age2

for all τ ∈ (0, 1). And finally, the third model considers the sum of the regressors age

and age2 that are constant for all quantiles τ ∈ (0, 1), i.e. P (X, τ) = age + age2 for all

τ ∈ (0, 1). Due to the probability integral transform theorem the sequence P (X, τi)
>θ̂n(τi)
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for τi
i.i.d.∼ U(0, 1), i = 1, . . . , n constitutes a random sample from the estimated conditional

distribution of Y given the covariates X (Machado and Mata, 2005). In order to obtain the

difference between East and West, first, the coefficients for East (θ̂E(τ)) and West (θ̂W (τ))

for τ ∈ {0.1, 0.2, . . . , 0.9} are estimated on the basis of the disjoint subsets of the covari-

ates for East (XE) and West (XW ) and the corresponding income in the East (YE) and

West (YW ). Second, we draw B ∈ N random samples X i
E and X i

W for i = 1, . . . , B with

replacement from the corresponding covariate subsets XE and XW , respectively to obtain

a random sample via the probability integral transform for the distribution of the income

Y i
l , i = 1, . . . , B, l = E,W . Thus, the estimated income difference ∆̂y for incomes in the

East YE/West YW can be decomposed according to M-M into

∆̂Y =
1

B

B∑
b=1

((
P (Xb

E, τ)− P (Xb
W , τ)

)
θ̂E(τ) +

(
θ̂E(τ)− θ̂W (τ)

)
P (Xb

W , τ)
)

≈ F−1
YE |XE(τ | XE)− F−1

YW |XW (τ | XW ), (6.1)

where the first summand of (6.1) is the explained, while the second summand depicts the

unexplained difference.

Tab. 6 summarizes results from the counterfactual analysis described above. The covariates

used for the quantile regressions are age (rows 4–9), age2 (rows 11–16) and the sum of

these two variables (rows 18–23). The results suggest that there is a significant income

gap between East and West Germany over the period considered, which is particularly

striking in the first line, where the observed income differences ranges from 26.21% to

35.49%. However, the income difference between the smallest quantile τ = 0.1 and the

largest τ = 0.9 decreases by about eight percent. It cannot be assumed that the model

is sufficiently well specified by a single covariate age or age2 for all quantiles due to high

residuals (4.37 for τ = 0.1 and 7.33 for τ = 0.9), indicating misspecification. However,

the covariate age2 seems to be appropriate for the smallest quantile 0.1 (residual of 0.92 in

Tab. 6), while a linear effect of age to income seems to prevail in higher quantiles (−1.49
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Table 6. Decomposition of the West/East income differential

quantile τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

raw gap -35.49 -32.4 -33.28 -29.06 -28.38 -26.44 -26.21 -26.93 -27.38

age

M-M gap -39.87 -36.64 -33.52 -31.62 -31.45 -29.37 -29.68 -28.83 -25.89

Explained -1.84 -3.65 -2.06 -2.99 -2.35 -2.19 -0.85 -0.31 -0.1

Unexplained -38.02 -32.98 -31.47 -28.63 -29.1 -27.18 -28.83 -28.52 -25.8

%Explained 4.63 9.97 6.13 9.45 7.46 7.46 2.87 1.07 0.38

%Unexplained 95.37 90.03 93.87 90.55 92.54 92.54 97.13 98.93 99.62

Residuals 4.37 4.23 0.24 2.56 3.07 2.93 3.46 1.9 −1.49
age2

M-M gap -36.41 -38.13 -37.52 -35.49 -31.21 -31.96 -32.26 -31.55 -34.72

Explained -3.07 -6.08 -4.49 -6.43 -2.81 -2.6 -3.92 -4.35 -8.82

Unexplained -33.35 -32.05 -33.04 -29.06 -28.4 -29.36 -28.34 -27.2 -25.89

%Explained 8.42 15.94 11.96 18.12 8.99 8.13 12.15 13.8 25.41

%Unexplained 91.58 84.06 88.04 81.88 91.01 91.87 87.85 86.2 74.59

Residuals 0.92 5.73 4.24 6.44 2.83 5.51 6.05 4.62 7.33

age+age2

M-M gap -33.39 -31.80 -33.16 -30.28 -28.49 -28.90 -27.61 -28.25 -25.69

Explained 2.03 1.55 -1.44 -1.5 0.13 0.31 0.33 -3.09 1.67

Unexplained -35.42 -33.35 -31.72 -28.78 -28.62 -29.21 -27.94 -25.16 -27.36

%Explained 6.09 4.89 4.34 4.94 0.45 1.09 1.19 10.95 6.49

%Unexplained 93.91 95.11 95.66 95.06 99.55 98.91 98.81 89.05 93.51

Residuals −2.10 −0.61 −0.12 1.22 0.11 2.45 1.40 1.32 −1.69

Incomes. The covariates used for the quantile regressions are age (rows 4-9), age2 (rows 11-16) and the
sum of these two variables (rows 18-23). The second row raw gap depicts the observed income gap between
East and West. Remaining rows show three different M-M decompositions using age, age2 and age+ age2

as covariates for the quantile regression models. The rows M-M gap are the estimated gap of the income
difference. The quantiles τ range from 0.1 to 0.9. The number of bootstrap replications is equal to 2500.
All numbers are in percent. Totals may not sum exactly to 100% due to rounding.

in Tab. 6). In contrast, the additive model age + age2 seems to capture the income effect

for all quantiles quite well due to moderate residuals (cf. last row Residuals in Tab. 6).

For all decompositions it holds, that age and age2 contribute a maximum of 16% to the

explanation of the income difference between East and West Germany (except highest

quantile in age2, i.e. 25.41). Due to the different residuals and the different explanatory

power of the income gap between East and West for the quantile regressions based on age

or age2, it seems reasonable to assume that age and age2 have different effects for different
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quantiles. For example, the residual of the 30% quantile of age (0.24 in Tab. 6) is about

18 times smaller than the residual of the corresponding quantile regression using age2 as

explanatory variable (4.24 in Tab. 6) . It is therefore reasonable that the a linear effect of

age dominates in the τ = 0.3 quantile. The emerging, more general question is at which

quantiles age has a linear or quadratic effect on incomes. This can be answered with the

help of our proposed test SCM
∗

n .

S1 : F−1
Y |X(τ | x) =


x>θ0 , if 0.1 ≤ τ ≤ 0.9

(x2)>θ0, otherwise

S2 : F−1
Y |X(τ | x) =


(x2)>θ0, if 0 ≤ τ ≤ 0.1

x>θ0 , otherwise

S3 : F−1
Y |X(τ | x) =


x>θ0 , if 0 ≤ τ ≤ 0.9

(x2)>θ0, otherwise

S4 : F−1
Y |X(τ | x) = x>θ0

S5 : F−1
Y |X(τ | x) = (x2)>θ0

For this purpose, we have defined five different model specifications S1–S5, which should

take into account the observations made in Tab. 6. Specifications S1–S3 describe quadratic

dependencies in the upper or lower quantiles. Specification S4 and S5 model a completely

linear and quadratic dependence structure in the covariate, respectively.

The testing procedure is applied to the sub-samples East and West as well as to the com-

plete data set. We estimate the function F̂ S
n (y, x, θ) in (2.19) by a cubic spline with second

order difference penalty, setting the basis dimension to 20 using the R package qgam. The

smoothing parameter λ is estimated using the restricted maximum likelihood (REML)

procedure within the package. We then re-estimate the models with optimized smoothing

parameter and compute our test statistic SCM
∗

n for τ ∈ {0.1, 0.2, . . . , 0.9}. Since the sample

sizes for East, West and All differ and in order to make the results comparable, we com-

puted the rejection rates of sub-samples of East, West and All of size n = 500, 1000, 1500.

The reason for considering different samples is, similarly to Rothe and Wied (2013), that

consistent specification tests detect also small deviations from the null hypothesis in large

samples, so that smaller samples are more appropriate for model comparisons. We repeated
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this procedure for every sub-sample a total of 501 times and refer to it as sub-samplings in

the following. Tab. 7 summarizes the resulting rejection rates of the test statistic SCM
∗

n .

Table 7. Rejection frequencies of the test statistic SCM∗

n

n = 500 n = 1000 n = 1500

East West Ger East West Ger East West Ger

S 1 0.034 0.134 0.132 0.038 0.329 0.303 0.026 0.553 0.535

S 2 0.063 0.204 0.164 0.090 0.517 0.479 0.099 0.755 0.673

S 3 0.050 0.136 0.094 0.026 0.353 0.339 0.030 0.551 0.529

S 4 0.092 0.198 0.158 0.086 0.449 0.461 0.104 0.745 0.661

S 5 0.089 0.429 0.387 0.276 0.880 0.775 0.507 0.966 0.948

Incomes. Shown are the rejection rates of size n of the specification S1–S5. The number of sub-samplings
is 501 and the critical values are calculated at a significance level of 5% and for τ ∈ {0.1, 0.2, . . . , 0.9}.

From this table we make two observations: First, it can be observed that the model in

which age has a completely quadratic influence on income (S5) provides the worst fit. Also

the models with either a completely linear influence or a linear influence in the upper quan-

tiles (S2 and S4) are worse than the models in which the influence is quadratic in the upper

quantiles and linear in the lower ones (S1 and S3). Second, the model fits are in general

much better for East Germany than for West Germany and for the whole country, whose

rejection rates can be interpreted as the weighted average of the two rejection rates. For

example, for n = 1500, the rejection rate of S1 and S3 are even lower than 5% for East

Germany, whereas they are larger than 50% for West Germany. This indicates that the

conditional income distributions differ significantly between East and West Germany.

Finally, Fig. 6.1 visualizes the estimated quantiles at τ = 0.1, 0.5, 0.9 (from left to the

right) and provides further indications of when age might have a quadratic or linear effect.

Shown are the results for West (red), East (green) and entire Germany (blue). Overall,

our results are in line with the findings of other studies. Based on the different structure

of the conditional qfs and rejections rates for different specifications significant structural

differences between East and West Germany can still be assumed (Kluge and Weber, 2018).
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Figure 6.1. Income quantiles for East/West and entire Germany as functions of age

Incomes. Figures show the penalized conditional quantile estimates for West (red), East (green) and entire
Germany (blue) at τ = 0.1, 0.5, 0.9. The lines shown in lighter colors represent the 95% confidence intervals.

6.2 Interaction Effects in Modelling Australian Electricity Prices

In this section, we apply the specification test SCM,S
n to electricity data from the Australian

national electricity market (NEM) in 2019. The NEM is a wholesale market, where gen-

erators, distributors and third party participants bid for sale and purchase of electricity

one day ahead of transmission (Ignatieva and Trück, 2016; Shively and Smith, 2018). We

consider hourly market-wide price Pi from January 1, 2019 to December, 31, 2019, which

yields n = 8760 observations. The market-wide price Pi is the demand-weighted average

price across the five regions (www.aemo.com.au). We correct for the three main drivers

of the electricity spot price distribution, namely day of the year x1, time of day x2 and

total market demand x3, which is the sum of demand across the five regions in the NEM.

Following Smith and Klein (2020) we thus choose a regression approach for the electricity

data from the Australian NEM even if the problem could be addressed by a time series

approach. For convenience, we scale each covariate to the unit interval.

Our main purposes are to identify i) potential interactions between the covariates on dif-
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ferent quantiles of the electricity spot price distributions ii) to statistically investigate if

the impact of the covariates x1, x2 and x3 varies for distinct quantiles and iii) to test which

(interaction) effects are statistically significant. In contrast to the previous application

in Sec. 6.1, it is not clear a priori how to optimally determine a functional relationship

between the three covariates x1, x2 and x3 for distinct quantiles τ ∈ (0, 1). Therefore,

the functional relationship for different quantiles is modeled very flexibly by a spline ap-

proach. We employ trivariate P-splines (tensor product B-splines) as proposed by Eilers

et al. (1996) which combine a multivariate B-spline basis, with a discrete penalty on the

basis coefficients.

In order to investigate our main purposes i)–iii), we assume that the data generating process

can be represented by one of the eight different specifications S6–S13. To increase the read-

ability, the notation is geared to the implementation in R, i.e. s(·, τ) models the marginal

P-spline and ti(·, τ) solely the interaction effect at the quantile τ . For example, S6 describes

a P-spline for the three covariates x1, x2, x3 represented by the marginal main effects s(x1, ·),

s(x2, ·), s(x3, ·), their mutual bivariate interactions ti(x1, x2, ·), ti(x1, x3, ·), ti(x2, x3, ·) and

their mutual trivariate interaction ti(x1, x2, x3, ·). In contrast, specification S7 does not

incorporate any interactions between the covariates and thus models the marginals effects

only. Specification S12 describes a P-spline that models the marginals and bivariate inter-

action effects within the 0.25 and 0.75-quantile. Specifically, we define
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S6: F−1
Y |X(τ | x1, x2, x3) := s(x1, τ) + s(x2, τ) + s(x3, τ)

+ ti(x1, x2, τ) + ti(x1, x3, τ) + ti(x2, x3, τ) + ti(x1, x2, x3, τ)

S7: F−1
Y |X(τ | x1, x2, x3) := s(x1, τ) + s(x2, τ) + s(x3, τ)

S8: F−1
Y |X(τ | x1, x2, x3) := s(x1, τ) + s(x2, τ) + s(x3, τ) + ti(x1, x3, τ) + ti(x2, x3, τ)

S9: F−1
Y |X(τ | x1, x2, x3) :=

S6 , if 0.25 < τ < 0.75

S7 , otherwise

S10: F−1
Y |X(τ | x1, x2, x3) :=

S6 , if τ ≤ 0.25

S7 , otherwise

S11: F−1
Y |X(τ | x1, x2, x3) :=

s(x, τ) , if 0.25 < τ

s(x, τ) + ti(x1, x2, τ) + ti(x2, x3, τ) , otherwise

S12: F−1
Y |X(τ | x1, x2, x3) :=

S6− ti(x1, x2, x3, τ) , if 0.25 < τ < 0.75

S7 , otherwise

S13: F−1
Y |X(τ | x1, x2, x3) :=

S6− ti(x1, x2, τ)− ti(x1, x2, x3, τ), if 0.25 < τ < 0.75

S7 , otherwise

Similar to the previous section, all estimations are carried out using the qgam package in

R. As before we use REML to optimize the smoothing parameters. Due to the extreme

skew in electricity prices, we follow previous authors and set Yi = log(Pi + 17). This avoids

a negative dependent variable Yi since the minimum observed price in our data is −$15.78.

For the application of our test, we set n ∈ {500, 1000, 2000} and τ ∈ {0.02, 0.04, . . . , 0.98}.

The number of sub-samples is 501 and the critical values are calculated at a significance

level of 5%. To ensure comparability of rejection rates for different n and since we include

multivariate interaction effects (cf. S6 and S8–S13), we set the number of knots to 5. The

rejection rates of the specification test SCM∗n are listed in Tab. 8. From this table we

make four observations. First, it can be observed that the rejection rates increase as n

increases, which is plausible as our specification test is consistent and also small deviations
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Table 8. Rejection rates of the test statistic SCM∗

n

S6 S7 S8 S9 S10 S11 S12 S13

n=500 0.050 0.115 0.065 0.086 0.043 0.086 0.058 0.079

n=1000 0.089 0.338 0.300 0.178 0.185 0.135 0.218 0.224

n=2000 0.228 0.811 0.748 0.256 0.237 0.445 0.713 0.764

Electricity prices. The table shows the sub-sample rejection rates of size n of the specification S6–S13.

from the null hypothesis are detected for large sample sizes. In addition, an increase in

the rejection rates as n increases could be due to possible structural breaks. Second, based

on the rejection rates for S8–S13 at n = 500, interaction effects seem to have a significant

impact, especially in the lower quantile, i.e. at τ ≤ 0.25. This is particularly reflected in

the comparison of the specifications S9 and S10, which differ in the modeling of the upper

quantile (τ ≥ 0.75) but show similar rejection rates. Third, we can conclude from the

specifications S12 and S13 that the interaction between the day of the year (x1) and the

daytime (x2) has no significant impact to the log electricity prices. Fourth, specification

S7, however, which does not incorporate interaction effects, is rejected at all sample sizes.

Fig. 6.2 shows the decomposition of the main and interaction effects at the 90% quantile at

6:00 p.m. using S6. Since the contour lines in the second and third panel show the presence

of interactions between demand and day, we conclude that the relation between the three

covariates cannot be fully captured by product interactions based on univariate splines. In

addition, different day-demand combinations have a different impact on the market wide

price Pi. A similar graphical analysis additionally reveals this behavior for the 10% quantile

(see Supplement III). This observation is also confirmed by the higher rejection rates of

our specification test when using univariate splines rather than bivariate tensor product B-

splines (cf. Tab. 8 and Tab. IV in Supplement III). Overall, we conclude that for a thorough

specification of the Australien NEM mutual interaction effects are important. Particularly,

there seems to be a complex dependence structure in the lower quantile (τ ≤ 0.25) of
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log electricity prices, which can be captured by means of the mutual interaction effects.

However, the interaction between day of the year and daytime is negligible here. This

might be important for risk management purposes.

Figure 6.2. Estimated main and interaction effects at the 90% quantile at 6:00 p.m.

Electricity prices. Figures depict the estimated effects of the three covariates on the 90% quantile of the
Australian NEM hourly electricity price distribution for 2019, where the time of the day (x2) is set to 06:00
p.m. The estimation is based on the model specification S6. The first panel (upper left) shows the sum
of the univariate main effects of days (x1), x2 and total market demand (x3). The second and third panel
illustrate the bivariate and trivariate interaction effects. The overall effect is depicted in the last panel.

7 Conclusion

In this paper, we derive and test new specification tests for parametric and semi-parametric

quantile regression models, which allow the covariates to vary over quantiles in a flexible
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non-linear way. To improve finite sample properties in the parametric model framework,

we replace the non-parametric ecdf by an estimator based on an estimate of the condi-

tional qf using penalized splines. Our MC study illustrates that the proposed method has

superior test properties compared to several existing benchmarks from the literature. We

illustrate this in two relevant examples on income inequality and electricity spot prices. In

the former, the (non-linear) effect of age on the income distribution is known in the liter-

ature. A detailed investigation of the conditional income distributions between East and

West Germany using the M-M decomposition reveals that still income differences between

the regions in Germany are present, even more than two decades after the reunification.

Similarly, modelling and predicting electricity spot prices is a common issue in economics.

We treat the problem in a semi-parametric framework and reveal the importance of inter-

action effects between demand and time variables, particularly for lower quantiles of the

price distributions.

We believe our test statistics make an important contribution in the specification test-

ing literature since non-linear or even more complex functional forms of covariates are

omnipresent in many applications.
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SUPPLEMENTARY MATERIAL

Part I: Proofs and derivations.

Part II: Monte Carlo simulation study for SCMn , SCM
∗

n and SCM,S
n .

Part III: Additional figures and results to the empirical application on electricity prices

of the Australian NEM of the manuscript.

I Proofs

I.1 Proof of Theorem 1

In order to maintain readability we omit the index Y | X for the conditional cdf F . To

prove Theorem 1, we first derive and prove three auxiliary results. Therefore, we define

the following three processes for (y, x) ∈ RK+1 and (θ, τ) ∈ Θ× T :

νn(y, x) :=
√
n
(
F̂n(y, x)− F (y, x)

)
(I.1)

γn(θ, τ) :=
√
n
(
Ĝn(θ, τ)−G(θ, τ)

)
(I.2)

ν0
n(y, x) :=

√
n
(
F̂n(y, x, θ̂n)− F (y, x, θ0)

)
. (I.3)

Let `∞ denote the set of all uniformly bounded real functions.

Lemma 1. Assume Assumption 1 holds. For the processes (I.1) and (I.2) it holds under

the null, that

(νn, γn)⇒ G̃ := (G1, G̃2) in `∞(S ×Θ× T ),

where G̃ is a tight bivariate mean zero Gaussian process.

Proof. First, we notice that the Donsker property is conserved under the union of Donsker

classes. Hence, νn and γn(θ, τ) are FY X- Donsker for all θ ∈ B(T ,Θ) and τ ∈ T with
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limiting processes G1 and G̃2, respectively. Since arbitrary linear combinations of νn and

γn are Lipschitz and thus Donsker (see Vaart, 1998, Example 29.20), we conclude by the

Cramér-Wold theorem that (νn, γn) converge in distribution to G̃.

Before we prove the next lemma we slightly generalize Lemma E.3 from Chernozhukov

et al. (2013) for our purposes. This modification summarized in the following corollary

states conditions under which a Z-estimation process satisfies the functional delta method

for Gaussian processes.

Corollary 2. Let Assumption 1 i.)–iv.) be satisfied and
√
n
(
Ĝn −G

)
⇒ G̃2 in `∞(Θ×Il)

for all l = 1, . . . , L, where G̃2 is a Gaussian process with a.s. uniformly continuous paths

on Θ × Il, l = 1, . . . , L. Further, we assume that the estimator θ̂n(τ) is an approximate

Z-estimator (2.10) for all τ ∈ Il with l = 1, . . . , L. Then

√
n
(
θ̂n(·)− θ0(·)

)
= −Ġ−1

θ0(·),·

[√
n(Ĝn −G)(θ0(·), ·)

]
+ oP (1)

⇒ −Ġ−1
θ0(·),·

[
G̃2(θ0(·), ·)

]
∈ `∞(T ).

If Assumption 1 v.) also holds true, then the paths τ 7→ −Ġ−1
θ0,τ

[
G̃2(θ0, τ)

]
are a.s. uni-

formly continuous on T .

Proof. The intersection of Il1 and Il2 is a singleton by assumption for l1 6= l2. Thus, the

set of possible discontinuities is a null set with respect to the Lebesgue measure. Hence,

the limiting process G̃2 is a.s. continuous on Θ× T with respect to the Euclidean metric.

Further we notice, that by assumption the decomposition of the unit interval is finite.

Consequently, the property of uniformity is also applicable to the finite union of compact

sets. Hence, the conditions of Lemma E.3 in Chernozhukov et al. (2013) are fulfilled.

Lemma 2. Let either the null hypothesis or a fixed alternative and Assumptions 1 be true.

Then

(νn, ν
0
n)⇒ G := (G1,G2) in `∞(S × S),
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where G1 is the limiting tight bivariate mean zero Gaussian process of νn and

G2 :=

∫
F (y | x∗)1{x∗≤x}dG1(∞, x∗) +

∫
G+

2 (y, x∗)1{x∗≤x}dFX(x∗)

with G+
2 := −Ḟ (y | x, θ0)

[[
Ġ(θ0(·), (·)

]−1

G̃2(·)
]

.

Proof. Under either the null hypothesis or a fixed alternative, it follows by standard argu-

ments from Lemma 1 and Corollary 2 that

√
n
(
F̂n(·, ·)− F (·, ·), θ̂n(·)− θ0(·)

)
⇒
(
G1(·, ·),−Ġ−1

θ0(·),·(G̃2(θ0(·), ·)
)

in `∞(S)× `∞(T ).

Next, it follows from the Hadamard differentiability (cf. Assumption 1 vii.)) that

√
n
(
F̂n(y | x, θ̂n)− F (y | x, θ0)

)
⇒ −Ḟ (y | x, θ0)

[
Ġ−1
θ0(·),·(G̃2(θ0(·), ·)

]
=: G+

2 (y, x).

The statement of the lemma then follows directly from the Hadamard derivative φ̇ of the

mapping

φ(A,B)[x∗] :=

∫
A(·, x∗)1{x∗≤·}dB(x∗)

given by

φ̇α,β(A,B)[x∗] =

∫
A(·, x∗)1{x∗≤·}dβ(x∗) +

∫
α(·, x∗)1{x∗≤·}dB(·, x∗)

and the functional delta method. In particular, for the second component G2 of the joint

limiting process, we have

G2(y, x) =

∫
G+

2 (y, x∗)1{x∗≤x}dFX(x∗) +

∫
F (y | x∗)1{x∗≤x}dG1(∞, x∗).

Proof of Theorem 1. We start with the first statement of Theorem 1. Under the null hy-

pothesis it holds that F̂n(y, x) = F (y, x, θ0) + op(1) for all (y, x) ∈ S. By linearity, we

have

SCMn =
√
n

∫ (
F̂n(y, x)− F̂n(y, x, θ̂)

)
dF̂n(y, x)

=

∫ (
νn(y, x)− ν0

n(y, x)
)2
dF (y, x) +

∫ (
νn(y, x)− ν0

n(y, x)
)2
d
(
F̂n(y, x)− F (y, x)

)
.

3



From Lemma 2 we know that (ν, ν0) ⇒ (G1,G2) = G, where G is a tight bivariate mean

zero Gaussian process. Applying the continuous mapping theorem and the Donsker class

property yields

SCMn =

∫
(G1(y, x)−G2(y, x))2 dF (y, x) + op(1)

which claims the statement.

To show part ii.), we use the fact that under any fixed alternative P (F (y, x) 6= F (y, x, θ0) >

0 due to construction of the alternative hypothesis in (2.7). Thus,

SCMn =

∫ (
νn(y, x)− ν0

n(y, x) +
√
n(F (y, x)− F (y, x, θ0)

)2
dF (y, x) + oP (1) = OP (n),

which implies that SCMn is greater than any fixed constant ε > 0 and hence, the probability

that SCMn is greater than any ε > 0 tends to 1.

I.2 Proof of Theorem 2

The proof is shown for P (X, τ) = P (X). In case of quantile dependent regressors, stan-

dard arguments those as given in the proof of Theorem 1 apply. To prove Theorem

2.i), we consider the parametric and the semi-parametric model with increasing dimen-

sion. The steps from the proof of Theorem 1 are applied analogously replacing vn(y, x)

and v0
n(y, x) from (I.1) and (I.3) by v0

n := an

(
F̂n(y, x, θ̂n)− F (y, x, θ0)

)
and v0,S

n :=

a∗n

(
F̂ S
n (y, x, θ̂n)− F (y, x, θ0)

)
with an =

√
n/‖P (x)‖ and a∗n =

√
n/‖B(x)‖, respectively.

By Theorem 1, Corollary 1 in Belloni et al. (2019b) and Theorem 1 we have that

(v0
n, an(θ̂n(·)− θ0(·)))⇒

(
G2(·, ·),−GSM

2

)
,

where GSM
2 := −Ġ−1

θ0(·),·

[
G̃SM

2 (θ0(·), ·)
]
. Together with the Hadamard differentiablity in

Assumption 1 and if

H(τ1, τ2, P (x)) := lim
n→∞
‖P (x)‖−2P (x)>J−1

m (τ1)E[P (x)P (x)>]J−1
m (τ2)P (x)(τ1 ∧ τ2 − τ1τ2)
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exists for any τ1, τ2 ∈ T , we know from Chao et al. (2017) Theorem 2.1 and Corollary 4.1

that for any fixed x and initial estimator F̂−1
n (· | x) the expression a∗n(F̂n(· | x) − FY |X(· |

x))⇒ −fY |X(· | x)G̃SM
2 , where G̃SM

2 is a centered Gaussian process with covariance function

H(τ1, τ2, P (x)).

In order to show that (v0
n, v

0,S
n )⇒ GS := (G2,GSM

2 ) we use the Hadamard differentiability of

the mapping φ(A,B)[x∗] :=
∫
A(·, x∗)1{x∗≤·}dB(x∗) the functional delta method as stated.

The continuous mapping theorem completes the proof. Part ii.) can be proved analogously

to part ii.) of Theorem 2. Moreover,

Cov(G2(y1, x1),GSM
2 (y2, x2)) =

lim
n→∞

n Cov
(
F̂n(y1, x1, θ̂n)− F (y1, x1, θn), F̂ SM

n (y2, x2, θ̂n)− F (y2, x2, θ)
)
,

where the true functional vector θ(τ) depends on n for all τ ∈ T .

I.3 Proof of Theorem 3

In order to prove Theorem 3 we present the bootstrap version of Lemma 1 as an auxiliary

result.

Lemma 3. Let Assumption 1 be true. We define the bootstrap version of the empirical

processes (I.1) and (I.3)

νn,B(y, x) :=
√
n
(
F̂n,B(y, x)− F̂n(y, x, θ̂n)

)
ν0
n,B(y, x) :=

√
n
(
F̂n,B(y, x, θ̂n)− F̂n(y, x, θ̂n)

)
.

(I.4)

Then it holds under either the null or a fixed alternative hypothesis that

(
νn,B, ν

0
n,B

)
⇒ Gb,

where Gb := (Gb1,Gb2) is a tight bivariate mean zero Gaussian process whose distribution

function coincides with that of the process G̃ in Lemma 1.
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Proof. This follows from Lemma 1 and the functional delta method for the bootstrap

(Rothe and Wied, 2013).

Proof of Theorem 3. To prove part i.) of Theorem 3, let c(α) be the true critical value

satisfying P (SCMn > c(α)) = α + oP (1). Then it follows from Lemma 3 that ĉn(α) =

c(α) + oP (1). This implies that SCMn and S̃n := SCMn − (ĉn(α) − c(α)) converge to the

same limiting distribution as n tends to infinity. Hence, P (SCMn > ĉn(α)) = α + oP (1) as

claimed. To prove part ii.), we deduce from Lemma 3 that the bootstrap critical values

are bounded in probability under fixed alternatives. Thus, for any ε > 0, there is an N(ε)

such that P (ĉn(α) > N(ε)) < ε+ oP (1). By Kolmogorv axioms we obtain

P (SCMn ≤ ĉn(α)) = P (SCMn ≤ ĉn(α), SCMn ≤ N(ε)) + P (SCMn ≤ ĉn(α), SCMn > N(ε))

≤ P (SCMn ≤ N(ε)) + P (SCMn > N(ε))

≤ ε+ oP (1),

where the last inequality can be deduced from Theorem 1 ii.).
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II Monte Carlo Simulation Study

II.1 MC Simulation Study for SCM,S
n

In this section, we show that our test SCM,S
n holds the size level and has considerable power

properties using five different functional forms of complex interacting covariate effects,

which we denote by DGP 13–17. Motivated by our second application, we use more flexible

product tensor B-splines instead of product interactions using univariate B-splines to model

the interacting covariate effects. We consider this approach reasonable for two reasons.

First, our second application reveals that the covariates indeed interact in a very complex

way. Second, we show empirically in this section that multivariate tensor product B-

splines yield satisfactorily testing results. For this, we couple DGPs 13–17 with various

model specifications, which we refer to as B1–B6 (for two covariates) and T1–T5 (for three

covariates). Overall, these settings attempt to mimic the situation of interaction effects as

seen in our second real data illustration on electricity prices in Sec. 6.2 of our manuscript and

are based on tensor product B-splines. For a detailed MC simulation study investigating

univariate product interacting covariate effects, we refer to II.2. Here, we demonstrate

for two-dimensional functions that our test SCM
∗

n holds the size level and has good power

properties in case of product interacting covariate effects.
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Data Generating Processes DGPs 13–17 contain two or three interacting covariates

and are defined as follows:

DGP 13: y13(x1, x2) := 7 · sin(x1 · x2) + x1 + u

DGP 14: y14(x1, x2) := sin(x1 · x2) + x1 · x2
2 + z1(x1, x2) + u

DGP 15: y15(x3, x4) := 1 + 2x3 + 4x4 + 70 cos(x3 · x4) + u (II.1)

DGP 16: y16(x2, x5) := x2
2 · x5 + x2 · u+ cos(x2u) + z1(x2, x5)

DGP 17: y17(x1, x2, x3) := x1 + sin(x2) · x3 + z2(x1, x2, x3) + u

Above, let x1 ∼ U(−4,−4), x2 ∼ N(5, 1), x3, x4 ∼ U(0, 1), x5 ∼ U(−10, 10), z1(x1, x2) ∼

SN(x1 +x2
2, 2 + sin(2x1), x1/4), z2(x1, x2, x3) ∼ SN(x2 +x2

3, 5 + sin(x1)x3, x3), u ∼ N(0, 1),

where U(·, )̇, N(·, ·) and SN(·, ·, ·) denote uniform, Gaussian and skew normal distributions,

respectively. To estimate the functional forms in DGPs 13–17, we use cubic P -splines.

Model Specifications To increase the readability, the notation is geared to the imple-

mentation in R, i.e. s(·, τ) models the marginal P -spline and ti(·, ·, τ) for the interaction

effect at the quantile τ excluding the basis functions associated with the lower dimensional

marginal effects of the marginal smooths. For the case of two covariates, we define the
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following specifications:

B1: F−1
Y |X(τ | x1, x2) := s(x1, τ)

B2: F−1
Y |X(τ | x1, x2) := s(x1, τ) + s(x2, τ)

B3: F−1
Y |X(τ | x1, x2) := s(x1, τ) + s(x2, τ) + ti(x1, x2, τ)

B4: F−1
Y |X(τ | x1, x2) :=


s(x1, τ) + s(x2, τ), if 0.25 < τ < 0.75

s(x1, τ) + s(x2, τ) + ti(x1, x2, τ), otherwise

B5: F−1
Y |X(τ | x1, x2) :=


s(x1, τ) + s(x2, τ), if 0.25 < τ

s(x1, τ) + s(x2, τ) + ti(x1, x2, τ), otherwise

B6: F−1
Y |X(τ | x1, x2) :=


s(x1, τ) + s(x2, τ), if τ < 0.75

s(x1, τ) + s(x2, τ) + ti(x1, x2, τ), otherwise

For the case of three covariates, let s(x, τ) := s(x1, τ) + s(x2, τ) + s(x3, τ). We define the

following specifications:

T1: F−1
Y |X(τ | x1, x2, x3) := s(x, τ)

T2 : F−1
Y |X(τ | x1, x2, x3) := s(x, τ) + ti(x1, x2, τ) + ti(x2, x3, τ)

T3 : F−1
Y |X(τ | x1, x2, x3) :=


s(x, τ) , if 0.25 < τ < 0.75

s(x, τ) + ti(x1, x2, τ) + ti(x2, x3, τ) , otherwise

T4 : F−1
Y |X(τ | x1, x2, x3) :=


s(x, τ) , if 0.25 < τ

s(x, τ) + ti(x1, x2, τ) + ti(x2, x3, τ) , otherwise

T5 : F−1
Y |X(τ | x1, x2, x3) :=


s(x, τ) , if τ < 0.75

s(x, τ) + ti(x1, x2, τ) + ti(x2, x3, τ) , otherwise

9



Estimation and Further Settings The estimation is carried out in the R-package qgam

by Fasiolo et al. (2020). To keep the computational costs for our MC simulation study in

reasonable limits and to make the results comparable, we use cubic P -splines with second

order difference penalty and set the number of knots to 5. We evaluate the test statistic for

the quantiles u ∈ {0.02, 0.04, . . . , 0.96, 0.98}. The number of overall replications is equal to

301 and the significance level is set to 0.05.

Table I. SCM,S
n : Size and power for DGPs 13–15 and B1–B6

DGP 13 DGP 14

B1 B2 B3 B4 B5 B6 B1 B2 B3 B4 B5 B6

n=500 1.000 0.050 0.033 0.033 0.058 0.033 1.000 0.106 0.057 0.076 0.0764 0.089

n=1000 1.000 0.088 0.058 0.050 0.045 0.067 1.000 0.103 0.043 0.040 0.0565 0.057

n=2000 1.000 0.150 0.079 0.046 0.070 0.121 1.000 0.237 0.050 0.057 0.1296 0.156

n=3000 1.000 0.392 0.083 0.096 0.187 0.292 1.000 0.445 0.060 0.073 0.1761 0.199

n=5000 1.000 0.655 0.046 0.067 0.241 0.492 1.000 0.694 0.066 0.080 0.2126 0.269

n=6000 1.000 0.867 0.076 0.053 0.279 0.613 1.000 0.764 0.089 0.050 0.1927 0.316

DGP 15 Electricity Data

B1 B2 B3 B4 B5 B6 B1 B2 B3 B4 B5 B6

n=500 1.000 1.000 0.027 1.000 1.000 1.000 0.661 0.110 0.086 0.096 0.126 0.086

n=1000 1.000 1.000 0.019 1.000 1.000 1.000 0.924 0.099 0.059 0.076 0.086 0.077

n=2000 1.000 1.000 0.039 1.000 1.000 1.000 1.000 0.199 0.063 0.239 0.206 0.226

n=3000 1.000 1.000 0.019 1.000 1.000 1.000 1.000 0.329 0.057 0.435 0.336 0.422

n=5000 1.000 1.000 0.029 1.000 1.000 1.000 1.000 0.688 0.040 0.824 0.688 0.804

n=6000 1.000 1.000 0.049 1.000 1.000 1.000 1.000 0.864 0.057 0.917 0.794 0.920

MC Study. Shown are the size and power properties for the test statistic SCM,S
n . The columns with bold

numbers depict the size of the specification test SCM,S
n . The remaining columns represent the power of

the test.
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Results Considering the bivariate case (cf. Tables I) we make four observations. First,

the test SCM,S
n holds the size level for the DGPs 13–15 (cf. Tables I, bold columns). Sec-

ond, generally, power properties depend on the degree of misspecification. In the case of a

moderately misspecified model (the difference between B4 and B5 or B6 is only that the

lower 25% or upper 75% quantile contains interaction effects), the test SCM,S
n shows reason-

able power properties. The higher the degree of misspecification the higher the rejection

rates. This is particularly evident on DGP 15, where the test always detects misspecifica-

tion. Third, consistent with our theoretical investigations in Sec. 3, the rejection rate for

misspecified models increases with increasing sample size. Fourth, omitted variable bias is

always detected (cf. Tables I, column B1 in DGP 13–15). Considering the multivariate case

Table II. SCM,S
n : Size and power for DGPs 16–17 and B2, T1–T5

DGP 16 DGP 17

B2 T1 T2 T3 T4 T5 B2 T1 T2 T3 T4 T5

n = 500 0.476 0.179 0.034 0.037 0.186 0.033 0.691 0.073 0.063 0.073 0.060 0.076

n = 1000 0.754 0.332 0.017 0.043 0.303 0.040 0.940 0.083 0.073 0.073 0.083 0.073

n = 2000 0.898 0.472 0.008 0.055 0.458 0.063 0.998 0.083 0.043 0.069 0.080 0.070

n = 3000 0.984 0.780 0.032 0.055 0.764 0.063 1.000 0.149 0.063 0.099 0.163 0.123

n = 5000 1.000 0.852 0.012 0.066 0.835 0.070 1.000 0.179 0.069 0.093 0.163 0.096

n = 6000 1.000 0.878 0.017 0.086 0.889 0.104 1.000 0.183 0.053 0.086 0.179 0.089

MC Study. Shown are the size and power properties for the test statistic SCM,S
n . The columns with bold

numbers depict the size of the specification test SCM,S
n . The remaining columns represent the power of

the test.

with three covariates (cf. DGPs 16–17 and B2, T1–T5 in Tab. II), we make the following

observations: First, the test SCM,S
n holds the size level (cf. Tab. II, bold columns). Second,

as in the bivariate cases, power properties depend on the degree of misspecification. For

a moderately misspecified model (T4 and T5 contain interaction effects only in the lower
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25% or upper 75% quantile), the test shows reasonable power properties. The higher the

degree of misspecification the higher the rejection rates (columns B2 and T1). Third, due

to the curse of dimensions, however, the multivariate case with three covariates requires a

larger number of observations n to obtain similar properties as the multivariate case with

two covariates. Last, the omitted variable bias is sufficiently well detected for n ≥ 2000

(cf. Tab. II, column B2).

II.2 Further Results from the MC Study using Product Inter-

acting Covariates

In this section, we show that our test SCM,S
n holds the size level and has good power

properties in case of product interacting covariates. For this, we consider the complex

multivariate case with three covariates for the test statistic SCM,S
n (cf. DGPs 16–17 and

B2, T1–T5 in Tab. III), where we replace the tensor interaction in T2–T5 by univariate

product interactions, i.e. we replace ti by s(x1 ·x2), s(x2 ·x3) and s(x1 ·x2 ·x3), respectively.

We make the following observations:

First, the test SCM,S
n holds the size level (cf. Tab. III, bold columns). Second, as in the

tensor product cases in Sec. II.1, power properties depend on the degree of misspecification.

For a moderately misspecified model (T4 and T5 contain interaction effects only in the

lower 25% or upper 75% quantile), the test shows reasonable power properties. The higher

the degree of misspecification the higher the rejection rates (cf. columns B2 and T1).

Third, due to the curse of dimensions, however, the multivariate case with three covariates

requires a large number of observations n to obtain a powerful testing procedure as discussed

in Sec. II.1. Last, the omitted variable bias is sufficiently well detected for n ≥ 2000

(cf. Tab. III, column B2).
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Table III. Product interaction SCM,S
n : Size and power for DGPs 16–17 and B2, T2–T5

DGP 16 DGP 17

B2 T1 T2 T3 T4 T5 B2 T1 T2 T3 T4 T5

n = 500 0.194 0.043 0.016 0.010 0.054 0.010 0.623 0.041 0.050 0.050 0.040 0.054

n = 1000 0.461 0.107 0.026 0.029 0.131 0.030 0.884 0.038 0.024 0.030 0.031 0.030

n = 2000 0.854 0.273 0.036 0.054 0.287 0.060 0.999 0.059 0.043 0.061 0.061 0.059

n = 3000 0.984 0.673 0.039 0.069 0.666 0.067 1.000 0.088 0.063 0.087 0.091 0.089

n = 5000 0.999 0.900 0.027 0.098 0.886 0.126 1.000 0.128 0.059 0.066 0.131 0.067

n = 6000 1.000 0.927 0.033 0.087 0.924 0.146 1.000 0.108 0.054 0.063 0.113 0.077

MC Study on product interactions. Shown are the size and power properties for the test statistic SCM,S
n

using product interaction effects, i.e. the tensor product splines in T2–T5 ti(x1, x2), ti(x2, x3) are replace

by product interactions s(x1 · x2) and s(x2 · x3), respectively. The columns with bold numbers depict the

size of the specification test SCM,S
n . The remaining columns represent the power of the test.

III Further Results from Modelling Australian Elec-

tricity Prices

Tensor product interacting covariates In addition to Sec. 6.2 of our manuscript,

Fig. II shows the decomposition of the main and interaction effects at the 10% quantile

at 6:00 p.m. using specification S6. Since the contour lines in the second and third panel

(upper right and lower left) show the presence of interactions between demand and day, we

conclude that the relation between the three covariates cannot be fully captured by product

interactions based on univariate splines. In addition, different day-demand combinations

have a different impact on the market wide price Pi.

Univariate product interacting covariates Fig. I shows the decomposition of the

main and interaction effects at the 10% quantile at 6:00 p.m. using specification S6, where
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Figure I. Estimated main and product interaction effects at the 90% quantile at 6:00 p.m.

Electricity prices. Figures depict the estimated effects of the three covariates on the 10% quantile of the

Australian NEM hourly electricity price distribution for 2019. The time of the day is set to 06:00 p.m.

The estimation of the conditional qf is based on the sum of the main effects and bi- and trivariate product

interaction effects, i.e. F−1Y |X(τ | x1, x2, x3) = s(x1, τ) + s(x2, τ) + s(x3, τ) + s(x1 · x2, τ) + s(x1 · x3, τ) +

s(x2 · x3, τ) + s(x1 · x2 · x3, τ). The first panel (upper left) shows the sum of the univariate main effects

of days (x1), time of day (x2) and total market demand (x3). The second and third panel illustrate the

bivariate and trivariate product interaction effects. The overall effect is depicted in the last panel (lower

right).
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the tensor product interaction effects are replaced by univariate interacting covariates,

i.e. specification S6 is modified to

S6∗: F−1
Y |X(τ | x1, x2, x3) = s(x1, τ) + s(x2, τ) + s(x3, τ) + s(x1 · x2, τ)

+ s(x1 · x3, τ) + s(x2 · x3, τ) + s(x1 · x2 · x3, τ).

For the application of our test SCM
∗

n with univariate product interacting effects to the

Australian NEM, we consider a rolling window and set n ∈ {500, 1000, 2000} and τ ∈

{0.02, 0.04, . . . , 0.98}. The number of sub-samples is 501 and the critical values are calcu-

lated at a significance level of 5%. To ensure comparability of rejection rates for different n

and since we replaced the multivariate tensor by univariate interaction effects (cf. S6 and

S8–S13), we set the number of knots to 5. The rejection rates of the specification test SCM∗n

are listed in Tab. IV. For further details on the application we refer to Sec. 6.2.

Table IV. Product Interaction: Rejection rates of the test statistic SCM
∗

n

S6 S7 S8 S9 S10 S11 S12 S13

n=500 0.058 0.072 0.068 0.058 0.072 0.056 0.062 0.081

n=1000 0.173 0.235 0.212 0.183 0.217 0.164 0.171 0.192

n=2000 0.646 0.874 0.773 0.661 0.739 0.670 0.685 0.784

Electricity prices. The table shows the sub-sample rejection rates of size n of the specification S6–S13,

where the interaction effects modeled by tensor product splines ti are replaced by product interaction

effects, i.e. s(x1 · x2), s(x1 · x3), s(x2 · x3) and s(x1 · x2 · x3).
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Figure II. Estimated main and product interaction effects at the 10% quantile at 6:00 p.m.

Electricity prices. Figures depict the estimated effects of the three covariates on the 10% quantile of the

Australian NEM hourly electricity price distribution for 2019. The time of the day is set to 06:00 p.m..

The estimation is based on the model specification S6. The first panel (upper left) shows the sum of the

univariate main effects of days (x1), time of day (x2) and total market demand (x3), where x2 is set to

6:00 p.m. The second and third panel illustrate the bivariate and trivariate interaction effects. The overall

effect is depicted in the last panel (lower right).
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