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1 Introduction

It is well known that dependencies within a portfolio increase in times of financial crisis (cf. Aloui et al.
(2011)). From a portfolio manager point of view the increase of the dependencies is disadvantageous,
which is known as the diversification effect. In fact, investors are interested in decreasing the dependencies
by rescheduling the portfolio to lower the risk of losses. One of many approaches to detect those changes
in the dependence structure is to test for changes in the copula function. For instance, Busetti and Harvey
(2011), Brodsky et al. (2009) and Krämer and van Kampen (2011) have designed nonparametric tests for
breaks in the copula in a fixed point considering N -dimensional random vectors. Bücher and Ruppert
(2013) extended their approaches by testing for overall constancy of the copula in the case of known
marginal distributions, while the test of constancy suggested in Bücher et al. (2014) considers sequentially
estimated marginals. Wied et al. (2013) propose a test for changes in Spearman’s rho, Dehling et al.
(2017) consider a test for changes in Kendall’s tau. Manner et al. (2019) construct a parametric test for
detecting breaks in the parameters of factor copula models. The above mentioned tests can be applied to
detect and quantify contagions between different financial markets or to construct optimal portfolios.

All the proposed methods test for the ”classical“ hypothesis, meaning that they test for stationarity
in a sequence of random vectors {Xj}Tj=1 with Xj ∈ RN , i.e.

H0 : X1,X2, . . . ,XT ∼ F.

with the alternative in the simplest case of one structural breakpoint in time (cf. Dette and Wied (2016))

H1 : X1,X2, . . . ,Xj ∼ F1 and Xj+1, . . . ,XT ∼ F2,

where the distribution function changes from F1 to F2 with F1
d

6= F2 at time j ∈ {1, . . . T}, i.e. F1 and F2
are not equal in distribution.
A general issue of such hypothesis testing is the consistency problem, i.e. any consistent test will detect
any arbitrary small change in the parameters if the sample size is sufficiently large. This discrepancy was
mentioned for the first time in 1938 by Berkson (1938).

Beyond that, in the case of small changes the rejection of the null might result in an unnecessary
break point estimation and an expensive adjustment of the considered model. In practice, small changes
in the data might not be crucial, since they do not necessarily add up to significant changes. Thus, the
gain derived by the detected break point could be negatively overcompensated by the costs of adjusting
the model (e.g. in case of portfolio theory these can be interpreted as transaction costs) or to be short
and to the point: Significance does not necessarily imply relevance.

Therefore, we impose the more realistic assumption that our sequence of random vectors {Xj}Tj=1
with Xj ∈ RN with j ∈ {1, . . . T} is driven by the distribution function F1 and F2, i.e. X1,X2, . . . ,Xj ∼
F1 and Xj+1, . . . ,XT ∼ F2 for some j ∈ {1, . . . T} such that

H0 : ‖F1 − F2‖ ≤ ∆ versus H1 : ‖F1 − F2‖ > ∆, (1)

where ‖.‖ is an appropriate norm and ∆ > 0 a fixed adjustable size. The framework in (1) allows for a
break in the data (classical break point tests do not) and the adjustable size ∆ could serve as a measure
to control for the extent of the change.

Dette and Wied (2016) proposed a general approach to this problem. Later on, Dette et al. (2018) and
Dette and Gösmann (2017) extended this to the detection of changes in second-order characteristics and
to high-dimensional models, respectively. Motivated by their analysis, we are interested in augmenting
the literature of testing for relevant breaks in the copula of random vectors by a nonparametric testing
procedure that detects relevant changes in the copula function with sequentially estimated marginal
distributions. Thus, the testing problem is given by

H0 : ‖C1 − C2‖ ≤ ∆ versus H1 : ‖C1 − C2‖ > ∆,

where C1 6= C2 are copulas and ∆ > 0 fixed. As the copula measures the dependence between random
variables, we therefore test whether the dependence structure changes more than some given threshold ∆.

Coming back to portfolio management, a small increase in the dependence structure of a portfolio does
not necessarily indicate the need to reschedule the portfolio, since transaction costs could overcompensate
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the benefits of the new, more risk diversified portfolio. Only a relevant change in the dependence structure,
i.e. the copula difference within a certain norm is larger than ∆, should result in rescheduling the portfolio.

In our empirical application we analyzed the German DAX30 data of cross sectional dimension N = 30
between January 2003 and July 2015. Here, ∆ could be interpreted as the largest admissible copula
difference such that the relevant change hypothesis is not rejected. Every other choice of ∆ that is smaller
leads to a rejection of the null hypothesis. As a result, ∆ can also be considered as a measure that
quantifies the extent of a crisis (given that dependencies of financial returns are usually larger in times of
crises).

The rest of the paper is structured as follows. Section 2 introduces the considered null hypothesis and
test statistic, where Section 3 presents the bootstrap procedure to determine critical values to perform the
test. Results from the Monte Carlo simulations can be found in Section 4. Section 5 presents our empirical
application and Section 6 concludes. A Supplemental Appendix provides theoretical background.

2 Relevant change and test statistic

In this section we introduce the null hypothesis, the assumptions and the the relevant change characteristic
of our testing procedure in a fully non-parametric setting.
Let X1, . . . ,XT denote N -dimensional random vectors and U1, . . . ,UT the vector of the marginal
distributions, i.e. Ut := (F1(Xt1), . . . , FN (XtN )) for t = 1, ..., T where Fi(·) is the i-th marginal such that

U1, . . . ,UbsTc ∼ C1(u)
UbsTc+1, . . . ,UT ∼ C2(u),

(2)

where u ∈ [0, 1]N and C1, C2 : [0, 1]N → [0, 1] are copulas which capture the dependencies between the
components of X1, ...,XbsTc and XbsTc+1, ...,XT , respectively. Here, bsT c denotes the change point in
time, where T is the size of the sample and s ∈ (0, 1). Note, that the model set-up (2) is valid under
both the null and the alternative hypothesis. In order to achieve reliable results, classical concepts of
dependencies (e.g. U1, ....,UT is stationary and strong mixing with coefficients converging sufficiently fast
to 0) are not applicable any more in the setting of detecting relevant changepoints, because the general
model set-up (2) of relevant changepoint analysis allows the sequence U1, ....,UT to be non-stationary.
That is why we have to impose the assumption of a triangular array, that is α-mixing1.
To aggregate over u, we consider the L2-norm ‖ · ‖L2 . Thus, the null hypothesis of no relevant change in
the copula function is given by

H0 : ‖C1(u)− C2(u)‖L2 ≤ ∆

versus the alternative

H1 : ‖C1(u)− C2(u)‖L2 > ∆,

where ‖.‖L2 is the L2-norm and ∆ > 0 fixed. For every u ∈ [0, 1]N and t ∈ (0, 1) the cumulative sum
(CUSUM) type process for detecting changes in the copula is then

Û∗T (t,u) := t(1− t)

 1
btT c

btTc∑
i=1

Z
1:btTc
i (u)− 1

T − btT c

T∑
i=btTc+1

Z
btTc+1:T
i (u)

 , (3)

where Zt1:t2
i (u) := 1{F̂ t1:t2

1 (Xi1) ≤ u1, . . . , F̂
t1:t2
N (XiN ) ≤ uN}, t1 < t2 ∈ {1, . . . , T} for i = 1, . . . , T and

1{·} the indicator function. Here F̂ t1:t2
j (·) is the empirical distribution function, using data information

between t1 and t2 and is defined as

F̂ t1:t2
j (x) := 1

t2 − t1 + 1

t2∑
i=t1

1{Xij ≤ x}, j = 1, ..., N.

1 Due to the fact that this discussion is very technical, we shifted the details to the Supplemental Appendix.
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For the derivation of our testing procedure we now consider ÛT (t,u) defined as

ÛT (t,u) := t(1− t)

 1
btT c

btTc∑
i=1

Zi(u)− 1
T − btT c

T∑
i=btTc+1

Zi(u)

 , (4)

where Zi(u) := 1{F1(Xi1) ≤ u1, . . . , FN (XiN ) ≤ uN}, t1 < t2 ∈ {1, . . . , T} with Fi as known marginals,
i = 1, . . . , T . For fixed s ∈ (0, 1), a straightforward calculation yields2

lim
T→∞

E[ÛT (t,u)] =
{
s(1− t) (C1(u)− C2(u)) , s ≤ t
t(1− s) (C1(u)− C2(u)) , s > t,

(5)

where we have to distinguish between data before and after the breakpoint bsT c. In the next step, we
want to eliminate the quantile and time dimension u and t, respectively. For this purpose, we consider
the L2-norm and obtain

L(t) := lim
T→∞

E[‖ÛT (t,u)‖2
L2 ] =

{
s2(1− t)2‖C1(u)− C2(u)‖2

L2 , t > s

(1− s)2t2‖C1(u)− C2(u)‖2
L2 , t ≤ s,

for every norm of the type ‖f(·,u)‖2
L2 :=

∫
[0,1]N f(·,u)2du. Integrating out t yields∫ 1

0
L(t)dt = s2(1− s)2

3 ‖C1(u)− C2(u)‖2
L2 . (6)

Thus, integrating out t from the empirical counterpart L̂T (t) := ‖ÛT (t,u)‖2
L2 yields the test statistic κ̂T

for the initial problem of detecting the relevant change

κ̂T :=
1∫

0

L̂T (t)dt. (7)

Due to the fact that our test statistic mainly consists of an integral over t, we disregard the possibility to
trim the sample in some way, as it is sometimes done in the breakpoint literature.

We use ŝ := argmax
s∈(0,1)

‖ÛT (s,u)‖L2 as the natural argmax estimator for the changepoint location

fraction s3. We reject the null hypothesis of no relevant change if the test statistic (7) less the adjusted
centering s2(1−s)2

3 ‖C1(u)− C2(u)‖2
L2 deviates too far from zero. If the marginal distributions are known

the limiting distribution of the process

√
T

 1∫
0

L̂T (t)dt− s2(1− s)2

3 ‖C1(u)− C2(u)‖2
L2

 , (8)

is normal which is shown in the Supplemental Appendix.

Due to the high computational effort in high dimensions using the L2-norm it could be reasonable
to only test for specific points q in the copula, e.g. q could be chosen as the value that maximizes the
copula difference, i.e. q := supu∈[0,1]N |C1(u)− C2(u)|. For this purpose we fix q = (q1, . . . , qN )′. What
we call quantile counterpart of the process (8) is then given by

√
T

 1∫
0

L̂q
T (t)dt− 1

3s
2(1− s)2(C1(q)− C2(q))2

 , (9)

2 For the very detailed derivation of the testing procedure we refer to the Supplemental Appendix.
3 Note, ŝ is a superconsistent estimator of the changepoint fraction s with convergence rate T (cf. Dette and Wied (2016)).
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where L̂T (t) from (8) is replaced by its quantile version L̂q
T (t) := (ÛT (s,q))2 for q ∈ [0, 1]N fixed.

Accordingly, the test statistic κ̂q
T is then defined as

κ̂q
T :=

1∫
0

L̂q
T (t)dt. (10)

Since the limit distributions of the processes (8) and (9) are not known in case of unknown marginals,
we suggest a bootstrap procedure. The null hypothesis will be rejected if the expression in (8) or (9) is
greater than the value of the corresponding quantile, which can be obtained by applying the bootstrap
procedure presented in Section 3. The test holds the size level if the fixed adjustable threshold ∆ is chosen
as ‖C1(u) − C2(u)‖L2 or for the quantile case |C1(u) − C2(u)|. For ∆ smaller than this threshold the
test is oversized while a larger ∆ results in a lower rejection rate. In the application later on, we set
q = 0.6 · (1, . . . , 1), which is in line with our Monte Carlo simulations. An ∆ chosen in this way can be
used, for example, to assess the extent of a crisis.

Our Monte Carlo simulations below confirm that the bootstrap results in a reasonably sized and
powered testing procedure. For the bootstrap we consider the L2-norm, but this can be easily adjusted to
the quantile version simply by interchanging the L2-norm with the absolute value | · | for fixed q ∈ [0, 1]N .

3 Bootstrap and Testing procedure

The bootstrap is based on the natural estimators of the respective terms of the process (8) or (9).
We assume that our sample {Xi}Ti=1 is serially independently distributed or residual data from pre-
estimated time series models e.g. GARCH adjusted data. Further, {Xi}Ti=1 is compounded of {Xi}bsTci=1 and
{Xi}Ti=bsTc+1, such that there is only one breakpoint location in bsT c, s ∈ (0, 1) and {Xi}bsTci=1 ∼ C1(F (X))
and {Xi}Ti=bsTc+1 ∼ C2(F (X)). Then, the bootstrap procedure suggests the following course of action:

i) Estimate the breakpoint location bsT c by bŝT c, where ŝ is determined by

ŝ := argmax
s∈(0,1)

‖Û∗T (s,u)‖L2 . (11)

Sample separately with replacement from {Xi}bŝTci=1 and {Xi}Ti=bŝTc+1 to obtain B bootstrap samples
{X(b)

i }Ti=1, for b = 1, . . . , B.
ii) Estimate the break point location bŝbT c for each bootstrap sample {X(b)

i }Ti=1, for b = 1, . . . , B, using
adjusted (11).

iii) Estimate the copula difference ∆b
C = ‖Ĉ1:bŝbTc

b (u) − ĈbŝbTc+1:T
b (u)‖L2 for each bootstrap sample

{X(b)
i }Ti=1, for b = 1, . . . , B, where Ĉt1:t2

b is the empirical copula estimate with sequentially estimated
marginals, using the data from t1 to t2.

iii) Calculate the bootstrap versions of the centred expressions (8) or (9)

K(b) :=
√
T

(∫ 1

0
L̂∗bT (t)dt− 1

3 ŝ
2
b(1− ŝb)2∆b

C

)
,

with L̂∗bT (t) := ‖Û∗bT (s,u)‖2
L2 , where Û∗bT (s,u) is the bootstrap analogue of (3), using {X(b)

i }Ti=1.
iv) Compute B versions of K(b) and determine the critical value c such that

1
B

B∑
b=1

1{K(b) > c} != q,

where q ∈ (0, 1).
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With the above described bootstrap procedure we can calculate critical values for (8) and (9). The
testing procedure is as follows: We reject the null of no relevant change ‖C1(u)− C2(u)‖L2 ≤ ∆ if

κ̂T >
ŝ2(1− ŝ)2

3 ∆2 + b1−α√
T
, (12)

where b1−α is the 1− α quantile of the bootstrap distribution. Note that the critical values obtained by
the bootstrap remain stochastically bounded both under the null and the alternative hypothesis, as the
test statistic is always correctly centered.
The bootstrap and testing procedure can be easily adapted for the quantile case by adapting step i)
- iii). The test given in equation (12) is an exact level α test if ∆ is chosen as the copula difference
||C1(u)−C2(u)||L2 or |C1(q)−C2(q)|. Otherwise, the size is smaller than α. In particular, κ̂T converges
weakly to a degenerated random variable if the copula difference is equal to zero and the Davies problem
is present, i.e. the break point is unidentified under the null hypothesis. Consequently, the level of
the proposed tests have practically size zero, whereas classical stationarity tests hold the asymptotic
α-level. Thus, the power of the classical tests is usually larger than the power of the relevant change
tests considered here. For practitioners we suggest to run a classical test first, e.g. Bücher and Ruppert
(2013) for the case of known marginals and Bücher et al. (2014) in the case of sequentially estimated
marginals. If the test rejects the null of stationarity, i.e. the copula difference is significantly larger than
zero, estimate the break fraction and apply the proposed relevant change test. This two-step procedure
has the drawback, however, that the statistical properties are not clear.

4 Quantile- and L2-Simulations

In this section we want to analyze finite sample properties of our proposed relevant testing procedure,
where we simulate multivariate data up to dimension N = 30 using a factor copula model following Oh
and Patton (2017). We consider both serially independently distributed and residual data.

4.1 Serially Independently Distributed Data

In this subsection we conduct two major Monte Carlo simulations. First, we consider the following simple
DGP

Xt = [X1t, X2t]′ = N2 (0, Σt(ρ)) , (13)

where N2(0, Σt(ρ)) with t = 1, ..., T describes the bivariate normal distribution with expectation vector

zero and covariance matrix Σt(ρ) =
(

1 ρ
ρ 1

)
and ρ ∈ [−1, 1]. We set ρ equal to −0.3 for t = 1, ..., T2 and

ρ = 0.8 for t = T
2 + 1, ..., T . Thus, the breakpoint bsT c is chosen at T

2 . We restrict the size analysis
in this subsection to the two dimensional case N = 2. The following size study presents both L2-norm
based results and an analysis where we consider the specific point q = (0.6, 0.6). Note, the closer the
quantile is to its boundaries, i.e. 0 or 1, the more observations are needed. Critical values of our tests are
computed using the bootstrap algorithms from Sections 3 with B = 300 bootstrap replications. The tests
are performed at the α = 0.05, 0.1 significance level using 301 Monte Carlo replications. The computations
were implemented in Matlab, parallelized and performed using CHEOPS, a scientific High Performance
Computer at the Regional Computing Center of the University of Cologne (RRZK).
Table 1 presents the results of the relevant change tests under the null with ∆ chosen as the estimated
copula difference |C1(q)− C2(q)|, where C1 and C2 are estimated by the consistent copula estimator

Ĉ(u) = 1
t2 − t1

t2∑
i=t1

1{F̂ t1:t2
1 (Xi1) ≤ u1, . . . , F̂

t1:t2
N (XiN ) ≤ uN}, (14)

using realizations {X1, . . .XbŝTc} and {XbŝTc+1, . . .XT }. The breakpoint bŝT c is estimated by

ŝ := argmax
s∈(0,1)

|ÛT (s,q)|. (15)
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Table 2 reports the results of the relevant change tests under the null, where the functional difference
between the copulas is determined by the L2-norm. Similar to the quantile case, we consider for the size
analysis ∆ := ‖C1(u)−C2(u)‖L2 and accordingly ŝ := argmax

s∈(0,1)
‖ÛT (s,u)‖L2 . Overall, the tests show good

size properties and converges to the predetermined rejection level α if T gets larger. For smaller T , the
differences to α are slightly, but not dramatically larger and it does not appear necessary to consider size
corrections. For the power analysis, we use the quantile based test and consider two different scenarios.

Table 1: Size using quantile version
T = 300 T = 500 T = 750 T = 1000

q95 0.06 0.06 0.04 0.05
q90 0.12 0.11 0.10 0.10

Table 1 reports the rejection rate of the relevant change test for data generated with the DGP described
in (13) using B = 300 bootstrap replications. The copula difference is evaluated at q = (0.6, 0.6). In total,
we conducted 301 Monte Carlo replications.

Table 2: Size using the L2-norm
T = 300 T = 500 T = 750 T = 1000

q95 0.06 0.06 0.04 0.06
q90 0.11 0.11 0.10 0.12

Table 2 reports the rejection rate of the relevant change test for data generated with the DGP described
in (13) using B = 300 bootstrap replications. The copula difference is determined using the L2-norm. In
total, we conducted 301 Monte Carlo replications.

In the first scenario we keep ∆ fix and vary ρ in the DGP (13). In the second scenario we vary ∆ and
keep the DGP (13) fixed.

The upper panel of Table 3 depicts the first scenario. In this case we determine ∆0 as the copula
difference at the point q = (0.6, 0.6) generated by the DGP (13) with ρ = −0.3 before and ρ = 0.8 after
the break point at T

2 . We now vary ρ ∈ {−0.4,−0.5,−0.6,−0.7} before the break point and the results of
the rejection rate can be seen in the upper panel of table 3 for different sample sizes.

The lower panel of table 3 depicts the second scenario. After determining the quantile value under the
null, we decrease the tolerance ∆ in the test (12) by ∆ = d ·∆0 with d ∈ {0.95, 0.9, 0.85, 0.8}.

Note, that in both cases the rejection rate of the relevant change test holds the size level α and the
rejection rate tends to 1 for increasing sample size T and decreasing d or ρ. This is the expected behavior
as the null and alternative hypothesis differ the more the smaller d or ρ are. In the second major MC
simulation, we consider our data to be jointly distributed with a one factor copula model following Oh
and Patton (2017), where the marginal distributions are in general unknown and the copula is implied by
the following factor structure

Xt = [X1t, . . . , XNt]′ = βββtZ + qqq, (16)

with βββt = βt · (1 . . . , 1)′ is a parameter vector of size N , Z i.i.d.∼ Skew t
(
ν−1, λ

)4 and qqq = [q1t, . . . , qNt]′

with qit
i.i.d.∼ t

(
ν−1) for i = 1, . . . , N and t = 1, . . . , T . We fix ν−1 = 0.25 and λ = −0.5, such that our

model is parametrized by the single factor loading θt = βt for t = 1, . . . , T . The DGP in (16) provides
left skewed and fat tailed data, which is a common property in financial data applications and also in

4 As in Oh and Patton (2017) this refers to the skewed t-distribution by Hansen (1994).
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Table 3: Power
Power Analysis varying ρ

ρ = −0.3 ρ = −0.4 ρ = −0.5 ρ = −0.6 ρ = −0.7
T = 300 0.06 0.48 0.83 0.98 1.00
T = 500 0.06 0.62 0.94 1.00 1.00
T = 750 0.04 0.69 0.98 1.00 1.00
T = 1000 0.05 0.84 0.99 1.00 1.00

Power Analysis varying ∆
∆ = ∆0 ∆ = 0.95 ·∆0 ∆ = 0.9 ·∆0 ∆ = 0.85 ·∆0 ∆ = 0.8 ·∆0

T = 300 0.06 0.31 0.63 0.88 0.97
T = 500 0.06 0.33 0.75 0.94 1.00
T = 750 0.04 0.36 0.83 0.96 1.00
T = 1000 0.05 0.42 0.86 1.00 1.00

Table 3 reports the rejection rate of the quantile relevant change test for data generated with the DGP
described in (13) using B = 300 bootstrap replications. The copula difference is evaluated at q = (0.6, 0.6).
Varying ∆ = d ·∆0, where d = {0.95, 0.9, 0.85, 0.8} (lower panel) and ρ = {−0.4,−0.5,−0.6,−0.7} in
Σt(ρ) (upper panel) for t = bT2 c+ 1, ..., T . In total, we conducted 301 Monte Carlo repetitions.

line with our application in Section 5. We construct a break at T
2 , where θ0 denotes the parameter value

of the model before and θ1 the parameter value after the break. For our simulation study we choose
θ0 = 1 and θ1 = 2. Note again, the test is an exact level α test if and only if ∆ is chosen as the copula
difference. Table 4 reports the results of the relevant change test under the null, where the functional
difference is computed with the help of the L2-norm. Table 4 shows, that the test using the proposed
bootstrap procedure holds the size level using the DGP (16). As expected, the size converges to the
corresponding rejection level α ∈ {0.05, 0.1} as T gets larger. This characteristic also holds for Table 5.

Table 4: Size using the L2-norm
T = 300 T = 500 T = 750 T = 1000

N = 2 q95 0.03 0.04 0.04 0.04
q90 0.07 0.08 0.11 0.11

N = 3 q95 0.03 0.05 0.04 0.05
q90 0.06 0.10 0.12 0.10

N = 5 q95 0.02 0.04 0.07 0.05
q90 0.04 0.09 0.13 0.09

Table 4 shows the rejection rate of the relevant change test for the DGP (16) using B = 300 bootstrap
replication. In total, we conducted 301 Monte Carlo repetitions.

In this case, we set ∆ equal to the copula difference evaluated at the specific point q = 0.6 · (1, . . . , 1),
where (1, . . . , 1)′ is a N -dimensional vector. The experiment is repeated in Table 6 for q = 0.1 · (1, . . . , 1).
Considering such particular quantiles provides the advantage to conduct high dimensional data analysis
with comparatively moderate computational efforts. Thus, the relevant change test is especially suitable
for high dimensional data applications. In practice, for instance, the specific quantile q can be chosen as
the quantile that maximizes the copula difference. The simulations show that a higher T is necessary to
avoid size distortions if q is close to 0. Table 7 presents size results for the setting of Table 5 with the
modification that the break already occurs at T

4 . Here, the empirical size is slightly further away from the
nominal size, but the differences are minor.

The size analysis in the factor copula setting is completed by analyzing the two-step procedure
mentioned at the end of Section 3. This means we first perform the non-parametric copula constancy
test proposed in Bücher et al. (2014) and state the rejection frequency. Then, for the rejected runs, we
apply the relevant change test, where ∆ is chosen as the estimated copula difference, and again state
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the frequency of rejections, cf. Table 8. The frequency in the first step gives the empirical power of the
Bücher et al. (2014) test, which tends to 1 for increasing T . The frequency in the second step gives the
empirical size of the relevant change test, which is close to the nominal size.

Table 5: Size using quantile version
T = 300 T = 500 T = 750 T = 1000

N = 2 q95 0.06 0.04 0.05 0.06
q90 0.14 0.10 0.13 0.12

N = 3 q95 0.08 0.07 0.06 0.06
q90 0.15 0.13 0.12 0.12

N = 5 q95 0.04 0.04 0.05 0.05
q90 0.10 0.10 0.13 0.12

N = 30 q95 0.03 0.04 0.05 0.06
q90 0.08 0.10 0.09 0.11

Table 5 reports the rejection rate of the relevant change test for data generated with the DGP described
in (16) using B = 300 bootstrap replications. The copula difference is evaluated at q = 0.6 · (1, . . . , 1)′. In
total, we conducted 301 Monte Carlo repetitions.

Table 6: Size using quantile version
T = 1000 T = 2000 T = 4000

N = 2 q95 0.08 0.09 0.08
q90 0.18 0.17 0.16

N = 3 q95 0.09 0.10 0.07
q90 0.17 0.18 0.15

N = 5 q95 0.06 0.09 0.05
q90 0.12 0.19 0.13

N = 30 q95 0.04 0.05 0.05
q90 0.11 0.12 0.12

Table 6 reports the rejection rate of the relevant change test for data generated with the DGP described
in (16) using B = 300 bootstrap replications. The copula difference is evaluated at q = 0.1 · (1, . . . , 1)′. In
total, we conducted 301 Monte Carlo repetitions.

For the power analysis of the quantile based test we consider two different scenarios. First, we set a
fixed ∆ while we increase the copula difference by increasing the parameter θ1 after the break. Second,
we keep the parameter values θ0 = 1 and θ1 = 2 fixed and decrease ∆, while the starting point for ∆ is
equal to the implied copula difference at q = 0.6 · (1, . . . , 1)′.

Table 9 reports the rejection rate of the test (12) using the 95%−quantile of the proposed bootstrap
distribution in Section 3. The first column depicts the rejection rate under the null hypothesis. The values
of the other columns are obtained by increasing the corresponding copula parameter θ1 ∈ {2.2, 2.4, 2.6, 2.8},
while ∆ remains fixed to the initial copula difference, i.e. θ0 = 1 and θ1 = 2.

Table 9 illustrates that the power of the test (12) generally increases not only if T but also if the
cross sectional dimension N increases. For example, the scenario N = 30, T = 750 and θ1 = 2.6 always
rejects the null hypothesis, i.e. the rejection rate is equal to 1. This is also expected, since we increase
the parameter in the factor copula model (16) for each component. Consequently, the error is effectively
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Table 7: Size using quantile version
T = 300 T = 500 T = 750 T = 1000

N = 2 q95 0.06 0.08 0.04 0.06
q90 0.14 0.15 0.11 0.12

N = 3 q95 0.07 0.06 0.05 0.06
q90 0.15 0.13 0.10 0.11

N = 5 q95 0.06 0.06 0.05 0.05
q90 0.14 0.13 0.12 0.11

N = 30 q95 0.06 0.08 0.07 0.07
q90 0.09 0.13 0.13 0.12

Table 7 reports the rejection rate of the relevant change test for data generated with the DGP described
in (16) using B = 300 bootstrap replications. The copula difference is evaluated at q = 0.6 · (1, . . . , 1)′.
The break is constructed at T

4 . In total, we conducted 301 Monte Carlo repetitions.

Table 8: Pretest
T = 300 T = 500

Pre Delta Pre Delta
N = 2 0.43 0.09 0.65 0.08
N = 3 0.63 0.05 0.89 0.04
N = 5 0.76 0.03 0.95 0.04

Table 8 shows the rejection rate of the relevant change test for the DGP (16) with a break at T
2 with

θ0 = 1 and θ1 = 1.6 using B = 300 bootstrap replication on a significance level of 0.05. In total, we
conducted 301 Monte Carlo repetitions. First we performed the Bücher et al. (2014) test (Pre) and for
the rejected runs we applied the relevant change test (Delta). The ∆ is chosen as the estimated copula
difference.

added up which leads to the gain in power.
Table 10 provides the power analysis for the setting of Table 9 for a break at T

4 . According to the
expectations, the table shows that the power increases for an increasing θ or T . However, the empirical
power is lower compared to the setting with a break at T

2 .
Finally, Table 11 analyzes the rejection rate if ∆ decreases while the copula difference remains fixed. The
value ∆0 is equal to the copula difference computed at the point q = 0.6 · (1, . . . , 1)′. Now, we decrease ∆
stepwise, i.e. ∆ = d ·∆0 with d ∈ {0.95, 0.9, 0.85, 0.8, 0.75}. Table 11 shows, that the rejection rate tends
to 1 if T increases. Moreover, the power is generally higher for larger N .

4.2 Residual Data

In this subsection we consider residual data Xt from pre-estimated time series models for t = 1, . . . , T .
For our simulation we consider a GARCH(1,1) model, i.e.

rit = σitXit

σ2
it = α0 + α1r

2
i,t−1 + β1σ

2
i,t−1

(17)

for i = 1, . . . , N and t = 1, . . . , T . To get serial correlated data we first simulate residual data using the
factor copula model (16) with a break constructed at T

3 and θ0 = 1 and θ1 = 2. Then, we transform
the residual data in serial correlated data rit using the GARCH(1,1) model with fixed parameter values
α0 = 1

10 , α1 = 1
15 and β1 = 1

3 for i = 1, . . . , N and t = 1, . . . , T .
With the simulated serial correlated data rit we estimate the time series models using a GARCH(1,1)
model and determine the residual data Xit for i = 1, . . . , N , which is used to perform the test. We vary
the sample size T = 1000, 2000, 4000 and cross sectional dimension N = 3, 5, 10. The results can be seen
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Table 9: Power
θ1 = 2.0 θ1 = 2.2 θ1 = 2.4 θ1 = 2.6 θ1 = 2.8

N = 2 T = 300 0.06 0.46 0.70 0.80 0.89
T = 500 0.04 0.48 0.75 0.87 0.93
T = 750 0.05 0.56 0.81 0.93 0.97
T = 1000 0.06 0.57 0.87 0.97 1.00

N = 3 T = 300 0.08 0.49 0.70 0.86 0.95
T = 500 0.07 0.44 0.75 0.89 0.96
T = 750 0.06 0.56 0.81 0.97 0.99
T = 1000 0.06 0.65 0.94 0.99 1.00

N = 5 T = 300 0.04 0.42 0.70 0.86 0.95
T = 500 0.04 0.50 0.82 0.94 0.99
T = 750 0.05 0.60 0.95 1.00 1.00
T = 1000 0.05 0.67 0.94 1.00 1.00

N = 30 T = 300 0.03 0.56 0.80 0.93 0.97
T = 500 0.04 0.55 0.92 0.99 1.00
T = 750 0.05 0.68 0.97 1.00 1.00
T = 1000 0.06 0.78 0.99 1.00 1.00

Table 9 reports the rejection rate of the quantile relevant change test for data generated with the
DGP described in (16) using B = 300 bootstrap replications. The copula difference is evaluated at
q = 0.6 · (1, . . . , 1)′ varying θ1 ∈ {2.0, 2.2, 2.4, 2.6, 2.8} with θ0 = 1 in the DGP (16). In total, we
conducted 301 Monte Carlo repetitions.

Table 10: Power break at T
4

θ1 = 2.0 θ1 = 2.2 θ1 = 2.4 θ1 = 2.6 θ1 = 2.8
N = 2 T = 1000 0.08 0.27 0.53 0.72 0.86

T = 2000 0.08 0.41 0.76 0.94 0.98
N = 3 T = 1000 0.07 0.30 0.71 0.82 0.95

T = 2000 0.08 0.45 0.84 0.96 0.99
N = 5 T = 1000 0.06 0.33 0.67 0.90 1.00

T = 2000 0.07 0.51 0.89 0.99 1.00

Table 10 reports the rejection rate of the quantile relevant change test for data generated with the
DGP described in (16) using B = 300 bootstrap replications. The copula difference is evaluated at
q = 0.6 · (1, . . . , 1)′ varying θ1 ∈ {2.0, 2.2, 2.4, 2.6, 2.8} with θ0 = 1 in the DGP (16) where the break point
ist constructed at T

4 . In total, we conducted 301 Monte Carlo repetitions.

in Table 12, which indicates that the test using residual data holds the size level.
Table 13 presents size results for the case of breaks in the GARCH parameters, where the GARCH
residuals are calculated by means of the known GARCH parameters. Here, the coefficient β from (17)
increases from 0.4 to 0.7 at T

2 . Also in this case, the empirical size is close to the nominal size.
Finally, the power of our test in the case of GARCH residuals (with constant parameters) is examined
in Table 14. The power is slightly lower than in the case without GARCH effects (Table 9), but also
converges to 1 for increasing θ1.

5 Application

In this section, we apply the quantile based test to a multivariate data set of cross-sectional dimension
N = 30. First, we apply a GARCH(1, 1) filter to the daily aggregated stock log-returns over a time span
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Table 11: Power

∆ = ∆0 ∆ = 0.95·∆0 ∆ = 0.9 ·∆0 ∆ = 0.85·∆0 ∆ = 0.80·∆0 ∆ = 0.75·∆0

N = 2 T = 300 0.06 0.18 0.36 0.57 0.72 0.95
T = 500 0.04 0.19 0.37 0.55 0.72 0.94
T = 750 0.05 0.15 0.35 0.56 0.74 0.95
T = 1000 0.06 0.22 0.43 0.64 0.80 0.98

N = 3 T = 300 0.08 0.17 0.37 0.57 0.77 0.95
T = 500 0.07 0.15 0.32 0.54 0.73 0.96
T = 750 0.06 0.20 0.41 0.64 0.84 0.97
T = 1000 0.06 0.17 0.45 0.60 0.87 0.98

N = 5 T = 300 0.04 0.15 0.29 0.51 0.69 0.90
T = 500 0.04 0.16 0.35 0.56 0.75 0.94
T = 750 0.05 0.19 0.43 0.63 0.83 0.99
T = 1000 0.05 0.17 0.43 0.73 0.92 1.00

N = 30 T = 300 0.03 0.18 0.32 0.47 0.65 0.88
T = 500 0.04 0.15 0.34 0.55 0.76 0.95
T = 750 0.05 0.15 0.42 0.66 0.84 0.98
T = 1000 0.06 0.19 0.50 0.75 0.91 1.00

Table 11 reports the rejection rate of the quantile relevant change test for data generated with the DGP
described in (16) using B = 300 bootstrap replications and 301 Monte Carlo repetitions. The copula
difference is evaluated at q = 0.6 · (1, . . . , 1)′, while ∆ = d ·∆0 with d ∈ {0.95, 0.9, 0.85, 0.8, 0.75}.

Table 12: Size using quantile version for GARCH-data
T = 1000 T = 2000 T = 4000

N = 2 q95 0.06 0.07 0.06
q90 0.15 0.14 0.12

N = 3 q95 0.05 0.07 0.06
q90 0.12 0.13 0.13

N = 5 q95 0.05 0.06 0.06
q90 0.11 0.13 0.11

N = 10 q95 0.06 0.05 0.05
q90 0.11 0.10 0.10

Table 12 reports the rejection rate of the relevant change test where residual data from pre-estimated
GARCH(1,1) models is considered. The copula difference is evaluated at q = 0.6 · (1, . . . , 1)′. In total, we
conducted B = 300 bootstrap replications and 701 Monte Carlo repetitions.

ranging from January 2003 to July 2015 from the German DAX30, implying T = 3200 and N = 305.
Second, we estimate a possible break point location in our GARCH(1, 1) adjusted data set, using (15),
with the quantile q = 0.6 · (1, . . . , 1)′. This gives bŝT c = 1884 (15.02.2011), cf. the black solid line in
Figure 1. The first estimated break point in February 2011 now divides the data set into two parts (Dec.
04 - Feb. 11 and Feb. 11 - Jul. 15). As the test indeed indicates a break (see below), we repeat the
breakpoint estimation in each part and obtain bŝT c = 676 (17.05.2006) for the first part and bŝT c = 2653
(26.02.2014) for the second part, respectively, which are both represented by the black dotted line in
Figure 1. We do not search further for any breaks, as it seems to be unlikely that there are more than
three change points, see Manner et al. (2019).

In the next step, we calculate (for each interval with one estimated breakpoint inside) ∆smallest

for each estimated break point as the smallest ∆ for which the null hypothesis of no relevant change
cannot be rejected, i.e., |C1(0.6)−C2(0.6)| ≤ ∆smallest. The number of bootstrap replications is 300. For
each estimated break point, we also calculate the difference of the two resulting empirical copulas δ for

5 We adjusted the estimate for 5% of their outliers by setting these values equal to the expected value.
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Table 13: Size using quantile version for GARCH-data with breaks
T = 1000 T = 2000 T = 4000

N = 2 q95 0.04 0.06 0.05
q90 0.09 0.09 0.11

N = 3 q95 0.03 0.05 0.05
q90 0.08 0.11 0.09

N = 5 q95 0.03 0.06 0.05
q90 0.08 0.12 0.11

N = 10 q95 0.04 0.06 0.07
q90 0.13 0.14 0.13

Table 13 reports the rejection rate of the relevant change test where residual data from pre-estimated
GARCH(1,1) models is considered. The coefficient of β1 increases from 0.4 to 0.7 for each time series at
T
2 . The copula difference is evaluated at q = 0.6 · (1, . . . , 1)′. In total, we conducted B = 300 bootstrap
replications and 701 Monte Carlo repetitions.

Table 14: Power GARCH
Power Analysis varying θ of the DGP (16) using GARCH-residuals

θ1 = 2.0 θ1 = 2.2 θ1 = 2.4 θ1 = 2.6 θ1 = 2.8
N = 2 T = 1000 0.05 0.46 0.73 0.90 0.99

T = 2000 0.07 0.47 0.82 0.98 1.00
N = 3 T = 1000 0.05 0.46 0.76 0.94 0.99

T = 2000 0.06 0.50 0.93 1.00 1.00
N = 5 T = 1000 0.04 0.47 0.82 0.96 1.00

T = 2000 0.05 0.64 0.97 1.00 1.00

Table 14 reports the rejection rate of the quantile relevant change test for data generated with the
DGP described in (16) using B = 300 bootstrap replications. The copula difference is evaluated at
q = 0.6 · (1, . . . , 1)′ varying θ1 ∈ {2.0, 2.2, 2.4, 2.6, 2.8} with θ0 = 1 in the DGP (16) using GARCH-
Residuals. In total, we conducted 301 Monte Carlo repetitions.

u = 0.6 · (1, ..., 1)′, i.e. δ := |Ĉ1(0.6)− Ĉ2(0.6)| and the change of the pairwise averaged Spearman’s rhos
before and after the estimated break point. The results of ∆smallest, δ and the change of the pairwise
averaged Spearman’s rhos can be found in Table 16. Table 15 provides the estimated Spearman’s rho
using the initial dataset for the breakpoint in Feb. 11 and the resulting subdatasets for the change in
Spearman’s rho in May 06 and Feb. 14. Given q = 0.6 · (1, . . . , 1)′, one possible reason for the first

Table 15: Empirical Values
Dec. 04 -
May 06

May 06 -
Feb. 11

Feb.11 -
Feb. 14

Feb. 14 -
Jul. 15

Dec. 04 -
Feb. 11

Feb.11 -
Jul. 15

ρSpearman 0.3469 0.4216 0.4677 0.5237 0.3998 0.4841

Table 15 reports the mean of Spearman’s ρ in the corresponding intervals of the GARCH(1, 1) adjusted
log returns.

estimated break point in Feb. 2011 can be the beginning of the Euro crisis, i.e. the period in which
considerable peaks of several Euro government bond yields were observed. Both, Delta and Spearman’s
rho are at their highest values here, which suggests that this crisis is having the strongest impact. It is
well known that dependencies increase in times of crisis. The fact that Spearman’s rho is rising strongly
and positively after the break point in Feb. 11 is therefore an indication. For the break point in May 06,
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Table 16: Empirical Break Points
May 06 Feb. 11 Feb. 14

∆smallest 0.0098 0.0293 0.0273
δ 0.0292 0.0316 0.0387
ρdiffSpearman 0.0747 0.0843 0.0560

Table 16 reports the smallest Delta ∆smallest such that the null hypothesis of no relevant break cannot
be rejected. It also provides the empirical copula difference before and after the break point. The last row
depicts the change in Spearman’s rho before and after the estimated break points.

Fig. 1: Value of the empirical Copula at q = 0.6 · (1, . . . , 1)

Value of the empirical copula defined in (14) evaluated at q = 0.6 · (1, . . . , 1), computed in a rolling
window of size 300. The estimated breakpoint, using (15), is displayed with the vertical black solid line
(15.02.2011). The two dotted lines represent estimated breakpoints of the resulting subdatasets on 17.
May 2006 and 26. February 2014, respectively. Observed data between January 2003 and July 2015,
implying T = 3200 and N = 30.

∆smallest is equal to 0.0098, while the difference in Spearman’s rho from the period Dec. 04 - May 06 and
May 06 - Feb. 11 is equal to 0.0747. Analogously, for the estimated break point in Feb. 14, ∆smallest is
equal to 0.0273, while the change in Spearman’s rho is equal to 0.0560. To sum up, if ∆ is chosen to be
the smallest value for which the null hypothesis of no relevant change cannot be rejected, the testing
procedure provides a formula to determine ∆ biuniquely. In addition, we observe that large values of
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∆smallest are related to large values of Spearman’s rho. This means, the test can not only be used to test
for relevant changes in the copula, but also as a selection tool to assess the effects of breaks.

6 Conclusion

In summary, the classical break point testing framework has two severe issues: On the one hand it
considers a null which is theoretically never fulfilled and on the other hand any consistent test detects
any arbitrary small change if the sample size is sufficiently large. Relevant change point analysis offers a
way out.

We propose a new non-parametric test for detecting relevant breaks in copula functions, where the
hypothesis is of the form H0 : ‖C1(u)−C2(u)‖ ≤ ∆ versus H1 : ‖C1(u)−C2(u)‖ > ∆ with ∆ a positive
adjustable size to allow for difference in the copulas C1 and C2. Here, the norm in the hypothesis represents
two different approaches: Either it measures the distance of the copulas given a certain value q or it
equals the L2-norm.

As a starting point, we consider a natural CUSUM-type test statistic fitting to the underlined testing
problem. For the estimation of the limiting distribution, we construct a new non-parametric bootstrap
based on natural estimates of the constructed testing process, which is applicable in the case of unknown
sequentially estimated marginal distributions.

In the case where the copula distance is measured at a given value q, we consider simulated data
up to cross sectional dimension N = 30. For the L2-norm, we investigate the behavior of our test up
to N = 5. The Monte Carlo simulations show considerable size and power properties for both serially
independent and residual data.

In our empirical application we analyze German DAX30 data of cross sectional dimension N = 30
between January 2003 and July 2015. Here, ∆ is interpreted as the smallest admissible copula difference
for which the relevant change hypothesis cannot be rejected. Every other choice of ∆ that is smaller leads
to a rejection of the null hypothesis. Cutting the empirical data into three parts leads to a detection of
the very start of the financial crisis in 2006, the start of the Euro crisis in 2011 and to a break in 2014
given that the quantile q is chosen to be equal to 0.6 · (1, . . . , 1)′.

In conclusion, ∆ can be regarded not only as the upper bound of an admissible copula distance, but
also as a measure of the extent of a crisis.
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