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ABSTRACT
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(ES) has become more and more popular in recent times, as it provides important information about the

tail risk. We present a new backtest for the unconditional coverage property of the ES. The test is based

on the so called cumulative violation process and its main advantage is that the distribution is known

for finite out-of-sample size. This leads to better size and power properties compared to existing tests.

Moreover, we extend the test principle to a multivariate test and analyze its behavior by simulations and

an application to bank returns.
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1 Introduction

Since the 1996 Market Risk Amendment to the First Basel Accord, the Value at Risk

(VaR) was (and still is) the standard measure for risks of financial investments. Besides,

it has become the industry standard not only for banks but also, e.g., for insurance

companies (due to Solvency II) and asset managers. However, despite its prevalence,

conceptual simplicity and easy interpretation, the VaR has several drawbacks based on

fundamental deficiencies. On the one hand, it lacks the desirable property of a coherent

risk measure (see Artzner et al., 1999) for non-Gaussian Profit & Loss (P/L) distributions.

On the other hand, the VaR does not account for tail risks.

As a consequence, alternative risk measures are of increasing importance and interest with

a particular focus on the Expected Shortfall (ES). Main reasons for this are that the ES is a

coherent risk measure and accounts for tail risks. Moreover, a consultation paper from the

Basel Committee (Basel Committee on Banking Supervision, 2012) opted to replace VaR

with ES. However, while the estimation of the ES is quite similar compared to the VaR,

backtesting ES models remains a major challenge (see Yamai and Yoshiba, 2002, 2005;

Kerkhof and Melenberg, 2004). While there are several formal VaR-backtests (see, e.g.,

Candelon et al., 2011; Berkowitz et al., 2011; Ziggel et al., 2014, for some recently proposed

tests), there are only a few studies dealing with ES-backtests (Berkowitz, 2001; Wong,

2008, 2010; Acerbi and Szekely, 2014). Most recently, Du and Escanciano (2016) proposed

some backtests for ES forecasts which are easy to implement. We build upon these

recently proposed backtests and present a new backtest for the unconditional coverage

(UC) property of the ES. This property is of particular interest for regulators whose focus

is mainly on UC backtests.

Our test is based on the so called cumulative violation process. Its main advantage is

that the distribution of the test statistic is available for finite out-of-sample size which

leads to better size and power properties compared to existing tests. Moreover, it can be

easily extended to a multivariate setting. To the best of our knowledge, there is currently
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no multivariate backtesting framework for the ES, although this is a highly important

task (see Wied et al. (2016) for a discussion concerning multivariate VaR tests).

2 Methodology

In this section, we introduce the notation used throughout the paper, define the desirable

properties of VaR and ES models and present our new uni- and multivariate backtests.

2.1 Notation and ES-Violation Properties

Let {yt}nt=1 be the observable part of a time series {yt}t∈Z, where yt represents the return

of a bank or an asset at day t. Moreover, let {V aRt|t−1(p)}nt=1 be VaR-forecasts at level

p ∈ (0, 1), implicitly defined by P (yt < −VaRt|t−1(p)|Ft−1) = p, where Ft−1 denotes

the information set up to time t − 1. The ex-post indicator variable ht(p) for a given

VaR-forecast V aRt|t−1(p) is defined as

ht(p) = 1(yt < −VaRt|t−1(p)),

where 1 denotes the indicator function. In this notation, ht(p) = 1 denotes a VaR-

violation.

In this paper we focus on backtesting the ES. Following Du and Escanciano (2016) we

define the conditional distribution of yt given the information set Ft−1 as Gt|t−1(·) :=

Gt(·|Ft−1). The ES is defined as

ESt := −E(yt|yt < −VaRt|t−1(p),Ft−1) =
1

p

p∫
0

VaRt|t−1(u)du.

Du and Escanciano (2016) focus on the so called cumulative violations process to test
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the correct specification of the ES. The cumulative violation process

Ht(p) : =
1

p

p∫
0

ht(u)du =
1

p

p∫
0

1(yt < −VaRt|t−1(u))du

=
1

p

p∫
0

1(Gt|t−1(yt) < u)du =
1

p

(
p−Gt|t−1(yt)

)
1(yt < −VaRt|t−1(p))

takes values ranging from zero to one if a VaR violation occurs (ht(p) = 1), otherwise it

is equal to zero. If Gt|t−1 is continuous for all t, then Gt|t−1(yt) is uniformly distributed

on [0, 1]. In consequence the expected value at each time t is given by

E(Ht(p)) =
p

2
, ∀t. (1)

This is called the UC-property for the ES. As stated in Du and Escanciano (2016), {Ht}

is unobservable because the true model is unknown and has to be estimated. Therefore

some assumptions are necessary:

Assumption 1.

1. There is a parametric model Gt|t−1(y|θ0) which specifies the distribution Gt|t−1(y)

∀t and y ≤ G−1
t|t−1(p). The parameter θ0 lies in the interior of a finite-dimensional

interval Θ.

2. Gt|t−1(x|θ) is continuously differentiable in θ and x ∈ R and strictly increasing in

x ∈ R almost surely.

3. The in-sample of size T is used to estimate the parameter θ0 ∈ Rp with the consistent

estimator θ̂T .

These assumptions define our framework and should be fulfilled in most situations.

In the next section we present the UC-backtest from Du and Escanciano (2016) and

propose our new UC-backtests. The advantage of our tests is that the distribution for

finite out-of-sample size is known.
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2.2 New UC-Backtest

For testing the hypothesis

H0 : E(Ht(p)) =
p

2
, ∀ t = 1, . . . , n,

vs.

H1 : ¬H0 (2)

Du and Escanciano (2016) suggest to use a t-test with normal approximation. Since

E(Ht(p)
2) = p

3
and Var(Ht(p)) = p

3
− p2

4
, ∀t, the t-test statistic is given by

UES =
√
n

H(p)− p/2√
p(1/3− p/4)

with H(p) := 1
n

∑n
t=1 Ĥt(p) and Ĥt(p) = 1

p
(p−Gt|t−1(yt|θ̂T ))1(yt < G−1

t|t−1(p|θ̂T )).

Note that Ĥt(p) is used instead of Ht(p) because θ0 is unknown and has to be estimated

by θ̂T . If θ̂T is
√
T -consistent and T increases faster than n (and both tend to infinity)

such that n/T → 0, UES has a standard normal limit distribution.

Now we consider the case that T tends to infinity (no estimation error) but n is fixed and

relatively small (e.g. n = 250 or n = 500). To be more precise, we assume Gt|t−1(·|θ̂T ) =

Gt|t−1(·|θ0). In this situation, 1(yt < G−1
t|t−1(p|θ̂T )) follows a Bernoulli distribution with

parameter p. Moreover, 1
p
(p − Gt|t−1(yt|θ̂T )) is uniformly distributed on (0, 1). So, we

simulated series of (Ht) by first simulating n Bernoulli variables b1, . . . , bn with parameter

p. Then, we set Ht to 0 for all t where bt = 0 and to the realization of a uniform

distribution on (0, 1) for all t where bt = 1. In this way we simulated 500 000 series of

(Ht) for n = 250, 500 and p = 0.025 and calculated UES for each. With a kernel density

estimation (Gaussian kernel, bandwith by Silverman’s ‘rule of thumb‘, (Silverman, 1986,

p. 48)) we compare the estimated density function with the standard normal density

function. The result is displayed in Figure 1. We see that the simulated distribution is
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right skewed. Consequently, quantiles for high probabilities obtained from the normal

approximation are too small.

– Figure 1 here –

Our main contribution is to tackle this problem. For this, we have to reformulate the

test hypothesis. We start with the following observation:

Whenever a hit occurs at time t, Gt|t−1(yt) should be uniformly distributed on (0, p) and

therefore Ht(p) should be uniformly distributed on (0, 1). On the other hand, a hit should

occur with probability p if the ES-model is reasonable. Consequently, if the risk model

is appropriate, the observable series {Ht(p)}nt=1 can be modelled as a series of products

of Bernoulli distributed with uniformly distributed random variables. This leads to our

test hypotheses:

H0 : Ht(p) = ht(p) · ut, ht(p) ∼ B(p), ut ∼ U(0, 1) if ht(p) = 1 and bounded otherwise ,

∀t = 1, . . . , n

vs.

H1 : ¬H0

If H0 holds, the UC property (1) is obviously fulfilled. Our reformulated hypothesis

seems to be stronger than the previous one (2). However, as the calculated expected

value and variance in the t-test statistic are based on the reasonable assumption that

E(ht(u)) = u, ∀u ∈ (0, p), it is equivalent to our test hypothesis.

Moreover, no information concerning past values of Ht(p) should be helpful in forecasting

hits and their characteristics if the ES-model is correctly specified. Hence, we add the

following reasonable assumption, which is similar to what Du and Escanciano (2016)

assume in order to derive that the variance of
√
nH(p) is given by p

3
− p2

4
.

Assumption 2.

The random vectors (h1(p), u1), . . . , (hn(p), un) are independent over time.
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Under this assumption, with the law of total probability, the cumulative distribution

function (cdf in the following) of

H·n :=
n∑
t=1

Ht(p) =
1

p

n∑
t=1

(p−Gt|t−1(yt|θ0))1(yt < G−1
t|t−1(p|θ0)) (3)

is given by

FH·n(x) := P (H·n ≤ x) =
n∑
k=0

P

(
n∑
t=1

ht(p) = k,
k∑
j=1

uj ≤ x

)
.

Here,
∑n

t=1 ht(p) is binomial distributed with parameter n and p and the distribution of∑k
j=1 uj is the so called Irwin-Hall distribution (Irwin (1927), Hall (1927)) with parameter

k and cumulative distribution function

Υk(x) :=
1

k!

bxc∑
j=0

(−1)j
(
n

j

)
(x− j)k.

Thus, the cdf is given by

FH·n(x) =



0 , if x < 0

(1− p)n , if x = 0

(1− p)n +
n∑
k=1

(
n
k

)
pk(1− p)n−kΥk(x) , if x ∈ (0, n]

1 , if x > n.

With increasing k, Υk is numerically unstable, because
(
n
k

)
takes huge values and/or

pk(1 − p)n−k is close to zero. For implementation, it can be useful to use the normal

approximation beginning from an upper bound (e.g. k ≥ 20 ). The Irwin-Hall distribu-

tion with parameter k presents the distribution of the sum of k independent uniformly

distributed random variables each with expected value 1
2

and variance 1
12

. One can use

the central limit theorem to approximate this distribution by a normal distribution with
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mean k · 1
2

and variance k · 1
12

and therefore Υk(x) ≈ Φ
(
x−k/2√
k/12

)
, where Φ denotes the

distribution function of the standard normal distribution.

To demonstrate the usefulness of our test, we simulate N = 10, 000 series of {Ht(p)}nt=1

with length n = 250 and calculate high quantiles of the simulated {H·n,j}Nj=1. The

simulated quantiles, the theoretical quantiles from FH·n and the approximation used from

Du and Escanciano (2016) are displayed in Table 1. The latter is a normal distribution

with expected value np/2 and variance n(p/3 − p2/4). One notices that the theoretical

quantiles from FH·n are closer to the simulated ones than the ones from Du and Escanciano

(2016).

– Table 1 here –

In the following, we assume that there is at least one hit or rather Ĥ·n(p) > 0, with Ĥ·n

defined as in (3) with the estimated parameter θ̂T instead of θ0. We get the continuous

conditional cdf

FH·n|H·n>0(x) = (1− (1− p)n)−1

n∑
k=1

(
n

k

)
pk(1− p)n−kΥk(x).

The conditional cdf is used to define our test statistic

SUC := FH·n|H·n>0(Ĥ·n) = (1− (1− p)n)−1

n∑
k=1

(
n

k

)
pk(1− p)n−kΥk(Ĥ·n)

whose limit distribution is given in the following theorem.

Theorem 3.

Under Assumption 1 and 2, if n is fixed and T →∞ then

SUC

∣∣∣ {Ĥ·n > 0
}

d−→ U(0, 1).

The proof of this theorem can be found in Appendix A.
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Thus one would reject H0 at level α if SUC > 1− α. We expect that our test has better

size properties, because the t-test suffers from the approximation error.

2.3 Multivariate Test

Next, we extend the test to the multivariate framework. Instead of the following approach,

one could also simply use the univariate test in combination with a Bonferroni-Holm

correction. So, we could use the t-test from Du and Escanciano (2016) or the improved

test for each business line i = 1, . . . ,m with the following procedure: The p-values for

each line are sorted, leading to the values P(i). If P(i) <
α

m+1−i and P(i+1) >
α

m−i , the first

i single hypothesis are rejected. However, we reject the global hypothesis if there is at

least one hypothesis that is rejected. To be precise we reject if

P̃ := min
k=1,...,m

(P(k) · (m+ 1− k)) < α. (4)

In contrast to that, we propose a generic multivariate procedure which aims at systematic

model errors instead of focusing on single business lines. We expect such a procedure

to have more power than the former one. The price for this is that we need stronger

assumptions, in particular, n must tend to infinity.

With m business lines we define

Ht := (Ht,1(p1), . . . , Ht,m(pm))′ (5)

with Ht,j the cumulative violation from business line j at day t, j = 1, . . . ,m and t =

1, . . . , n. For simplicity we assume that p1 = . . . = pm =: p, but all results can be easily

extended for different coverage levels. The test hypothesis regarding the distribution of
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the expression in equation (5) is formulated as

Hm
0 : Ht = (ht,1(p) · ut,1, . . . , ht,m(p) · ut,m)′,

ht,i(p) ∼ B(p) and ut,i ∼ U(0, 1), if ht(p) = 1 and bounded otherwise,

∀t = 1, . . . , n, i = 1, . . . ,m

vs.

Hm
1 : ¬H0

Similarly to Assumption 2, we assume independence over time and the same cross-

sectional dependence structure at each time point:

Assumption 4.

1. H1, . . . ,Hn are independent.

2. Cov(H1) = . . . = Cov(Hn) =: Σ.

Clearly, we need that n tends to infinity to estimate Σ consistently. Therefore, it is

required that T tends to infinity relatively faster than n. Moreover, we need the following

Assumption 5.

1.
√
T (θ̂T − θ0) = Op(1).

2. The first moments of the random variables sup
θ∈Θ

∂E(Ht(p)|Ft−1)
∂θ

are uniformly bounded

over t ∈ N.

Assumption 5.1 means that θ̂T is
√
T consistent and the limit distribution of

√
T (θ̂T −θ0)

is bounded in probability. For example, a maximum likelihood estimator with a fixed,

rolling or recursive forecasting scheme fulfills this condition as it is shown by Escanciano

and Olmo (2010). The more technical Assumption 5.2 is similar to Assumption A.3 in

Escanciano and Olmo (2010). Moreover, in Appendix B, we give one example of lower-

level assumptions, under which this assumption holds.
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The test statistic is based on the standardized sum of the univariate test statistics. More

precisely, the test statistic is given by:

SmUC :=
1

σ̂

m∑
i=1

Φ−1(SUC,i) =
1

σ̂

m∑
i=1

Φ−1(FH·n|H·n>0(Ĥ·n,i)) (6)

with σ̂2 a consistent estimator for Var(
∑m

i=1 Φ−1(SUC,i)).

Theorem 6.

Under Assumption 1,2,4 and 5, if T →∞ and n→∞, n/T → 0, it holds

SmUC |
{
Ĥ·n,j > 0, ∀j

}
d−→ N (0, 1),

with the variance estimator

σ̂2 =
m∑
i=1

m∑
j=1

∑n
t=1(Ĥt,i −H i)(Ĥt,j −Hj)√∑n

t=1(Ĥt,i −H i)
√∑n

t=1(Ĥt,j −Hj)
.

Here, H i := 1
n

∑n
t=1 Ĥt,i and Hj := 1

n

∑n
t=1 Ĥt,j.

The proof of this theorem can be found in Appendix A.

With this theorem, we obtain our multivariate UC-test for backtesting the ES. Given

that there is at least one hit in each business line, we reject Hm
0 if SmUC > u1−α, with u1−α

the 1− α quantile of the normal distribution.

3 Simulation Study

In our simulation study we examine the power of our proposed backtest in a controllable

but realistic scenario. Also we compare the empirical size and power with the t-test

proposed by Du and Escanciano (2016). All simulations are computed for significance

levels of 5% and 1%, for n = 250, 500 and p = 0.025. We perform 2,000 repetitions for

each setting.
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In the univariate setting our test delivers the exact distribution for finite out-of-sample-

size, but uses basically the same information like the t-test. Thus we enhanced the size

properties, but the size corrected power is the same as the t-test. So we report both

the size corrected and uncorrected power in the univariate setting. However, in the

multivariate settings we report only the size corrected power.

We consider two scenarios. In the first scenario there is a structural break between time

point T and T + 1 and in the second scenario the risk model is misspecified.

In the first scenario, in order to extend the univariate AR(1)-GARCH(1,1) model from

Du and Escanciano (2016) we use a AR(1)-CCC-GARCH(1,1) model with normal- and

t-distributed innovations to generate data. The values of the parameters are the same as

in Du and Escanciano (2016), thus these are typical values in empirical applications (Du

and Escanciano, 2016, p.15). The m-dimensional series {Yt}t=1,...,T+n is generated by:

Yt = ρYt−1 + vt, vt = σtεt, εt ∼ t(ν,Σ)

σ2
t = ω1m + αImv

2
t−1 + βImσ

2
t−1.

Here, |ρ| < 1, ω ≥ c > 0, α, β ≥ 0 for some constant c. We use ν = ∞ (which leads to

normally distributed innovations) to generate the in-sample data {Yt}t=1,...,T and fit the

model. If the out of sample is also driven by normal innovations the VaR and ES can be

consistently estimated and Hm
0 holds.

To examine the power of our test, we simulate a structural break at time T , after that

point the innovations are t-distributed with ν ∈ {30, 15, 10, 7} degrees of freedom. The

chosen covariance matrix Σ will be fixed with Σij = 0.4 if i 6= j and Σii = 1.

In each of the simulations we estimate θ0 = (ρ, ω, α, β)′ = (0.05, 0.05, 0.1, 0.85)′ sepa-

rately for each business line by θ̂T,j with the well known conditional maximum likelihood
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estimation with in-sample size T ∈ {500, 2500}. Thus we get for each business line j and

each day t the estimated cdf

Gt|t−1,j(Yt,j|θ̂T,j) = Φ(ε̂t,j) (7)

with

ε̂t,j =
Yt,j − ρ̂jYt−1,j

σ̂t,j
,

and

σ̂t,j = ω̂j + α̂j(σ̂t−1,j ε̂t−1,j)
2 + β̂σ2

t−1,j. (8)

With this cdf we can calculate the estimated cumulative violation for each day t and each

business line j:

Ĥt,j(p) =
1

p

(
p−Gt|t−1,j(Yt,j|θ̂T,j))

)
1(Gt|t−1,j(Yt,j|θ̂T,j) < p). (9)

The power of our test is compared to the Bonferroni-Holm adjusted t-test-procedure

(called Bonferroni-Holm test in the following), i.e., we report the number of simulation

runs in which at least one single hypothesis is rejected based on the decision rule in (4).

For this, we use the t-test from Du and Escanciano (2016). For power comparison we

report the size corrected power. Therefore, we modify the decision rule (4) in the way

that we reject the null hypothesis at significance level α if

min
k=1,...,n

(P(k) · (m+ 1− k)) < P̃α,

where P̃α is the α-quantile of the 2,000 values of P̃ (as defined in (4)) simulated under

the null hypothesis.

Tables 2 and 3 show the simulation results in the univariate case for T = 2500 and

T = 500, respectively. As mentioned before, the corrected power is the same for both
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tests. Therefore the uncorrected power for both tests is reported as well as the common

corrected power. In this setting our test has better size properties but less power. The

size distortions are due to the parameter estimation error.

– Table 2 & 3 here –

The simulation results for the multivariate case are presented in Tables 4-7 below.

As shown, our test clearly outperforms the standard t-test which has extremely bad size

properties. Moreover, the size adjusted power of our test is significantly better in all

cases. For an in-sample size of length T = 500, our test suffers from slight size distortions

which vanish for T = 2500.

– Tables 4-7 here –

In the second scenario the data generation process is a multivariate Garch in mean model

with constant correlations. The m-dimensional series {Yt}t=1...,T+n is generated by:

Yt = −γσ2
t + vt, vt = σtεt, εt ∼ N(0,Σ)

σ2
t = ω1m + αImv

2
t−1 + βImσ

2
t−1.

As before, the covariance matrix Σ will be fixed with Σij = 0.4 if i 6= j and Σii = 1. The

GARCH paramaters are chosen as proposed by Du and Escanciano (2016) and are set to

ω = 0.01, α = 0.29 and β = 0.7. With γ = 0 the AR-GARCH risk model holds (ρ = 0)

while for γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} we examine the power of the tests. The estimation of

the cdf’s, residuals and cumulative violations is analogue to scenario 1 and shown in (7),

(8) and (9), respectively.

The simulation results of the univariate case are shown in Tables 8 and 9. Similar to the

first setting, our test has slightly better size properties whereas the (uncorrected) power

is slightly lower. Again, the corrected power is the same for both tests.
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– Tables 8 & 9 here –

Tables 10-13 present the multivariate cases. Here, the Bonferroni-Holm test is clearly

outperformed by our multivariate backtest in terms of size and power. Nevertheless,

even the multivariate backtest shows a size distortion in case of the small in-sample of

size T = 500. This distortion vanishes when the in-sample size increases.

– Tables 10-13 here –

4 Application

In this section, we apply the two multivariate backtests discussed in the last section

on m = 13 time series of bank returns in the time span 2006 until 2016. To be more

precise, we consider a subset with sufficiently long history of the stocks from the 20 largest

banks that have been previously analyzed in Wied et al. (2016) namely: Citigroup Inc.,

HSBC Holdings, Barclays, BNP Paribas, The Royal Bank of Scotland Group, Bank of

America Corporation, JPMorgan Chase & Co, Deutsche Bank AG, Société Générale,

Morgan Stanley, Banco Santander, UniCredit and Credit Suisse. As already mentioned

in Wied et al. (2016) the motivation of this empirical study is straightforward. On the

one hand, a regulator of a set of banks could be interested in testing the overall fragility

of the banking sector. On the other hand, regulators focus mainly on uc backtests.

Thus, multivariate backtests could be of significant help to regulators to forecast times

of contagion in the financial system, thereby supplementing current efforts to stress-test

banking sectors (Acharya and Steffen, 2014).

We consider each year separately and fit three different univariate GARCH models (stan-

dard GARCH (S-GARCH), E-GARCH and GJR-GARCH) based on the last 10 years, re-

spectively. From this, we calculate the cumulative violation processesHt,i(p) for p = 2.5%,
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as used in equation (5). To be more precise, for each stock we model

Yt,i = µi + ρiYt−1,i + γivt−1,i + vt,i, vt,i = σt,iεt,i

individually with skewed t-distributed innovations εt,i and depending on the model

σ2
t,i = ωi + αiv

2
t−1,i + βiσ

2
t−1,i (S-GARCH)

log σ2
t,i = ωi + αi(|εt−1,i| − E(|εt−1,i|)) + θiεt−1,i + βi log(σ2

t−1,i) (E-GARCH)

σ2
t,i = ωi + (αi + θi1(vt−1,i < 0))v2

t−1,i + βiσ
2
t−1,i (GJR-GARCH).

The innovations εt,i are assumed to be independent over time. As the risk of each bank

is modelled separately, we estimate the models separately for each series. This approach

reflects the situation that each bank is analyzed individually by the regulators. Due to

its construction, cross-sectional dependence and, in particular, potential contagion effects

are taken into account in our test.

Table 14 presents the empirical means and volatilities of the returns for each year.

Moreover, it shows the amount of VaR-violations, the average of Ht,i(p) for a year

and all stocks, 1
m·n
∑n

t=1

∑m
i=1 Ht,i(p), as well as the maximal average over the stocks,

maxi=1,...,m
1
n

∑n
t=1Ht,i(p). The second quantity is what basically enters (6), while the

third quantity gives information about the worst business line which basically enters the

Bonferroni-Holm test.

In addition, Table 14 shows the p-value of the multivariate test. Moreover, for the

Bonferroni-Holm test, we present the quantity

P̃ = min
k=1,...,m

(P(k) · (m+ 1− k)),

where P(k) is the k-th sorted p-value, see also equation (4).

With significance level α = 0.05, as a whole, the test (6) rejects 4 times and the

Bonferroni-Holm test 1 time. Given that we would expect 1.65 rejections for 33 tests, the
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amount of rejections is small.1 This result is in line with the intuition that the Bonferroni-

Holm test rejects in the presence of one extreme business line, while the multivariate test

aims for systematic problems with the model fit. As expected, the p-values of the tests

are smaller in the time of the financial crisis around 2008. Moreover, there is evidence

that the GJR-GARCH model provides the best fit to the data as there is no rejection

for α = 0.05. This finding is in line with the existing literature (see, e.g., Berens et al.,

2018) and due to the fact that not only the size but also the direction of a shock has an

impact on the volatility forecast. This is important as numerous studies have shown that

asset returns and conditional volatility are negatively correlated (see, e.g., Bekaert and

Wu, 2000). Nevertheless, also here, the p-value is lower compared to other times, which

shows that the model fit is worse compared to bullish market times.

– Table 14 here –

5 Conclusion

We present a new backtest for the unconditional coverage property of the ES. The distri-

bution of the test statistic is available for finite out-of-sample size which leads to better

size and power properties compared to existing tests. Moreover, it can be easily extended

to a multivariate test. Our test is easy to implement and should be used whenever the

in-sample size is large compared to the out-of sample size. To the best of our knowledge

this is the first proposed ES backtest for the multivariate setting.

1Note, the small rejection rates in 2008/2009 are explainable by the large in-sample size of ten years as
the models are fitted by means of the volatile markets around millennium. If we decrease the in-sample
size (e.g. fit 2003-2007 to predict 2008) the prediction results become much worse.
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A Proofs

Proof of Theorem 3

First we prove that for each t = 1, . . . , n it holds that Ĥt(p)
p−→ Ht(p):

From Assumption 1 we get θT
p−→ θ0. With the continuous mapping theorem and due

to the continuity and strict monotonicity of Gt|t−1(·|θ̂T ), G−1
t|t−1(·|θ̂T ) uniformly converges

to G−1
t|t−1(·|θT ).

On the one hand we get ∀x ∈ R

1

p
(p−Gt|t−1(x|θ̂T ))

p−→ 1

p
(p−Gt|t−1(x|θ0)).

Moreover with p ∈ (0, 1) and y continuously distributed and 0 < ε < 1

P
(
|1(y < G−1

t|t−1(p|θ̂T ))− 1(y < G−1
t|t−1(p|θ0))| > ε

)
=P (y ∈ [min{G−1

t|t−1(p|θ̂T ), G−1
t|t−1(p|θ0)},max{G−1

t|t−1(p|θ̂T ), G−1
t|t−1(p|θ0)}])

T→∞−→P (y = G−1
t|t−1(p|θ0)) = 0

so we get 1(y < G−1
t|t−1(p|θ̂T ))

p−→ 1(y < G−1
t|t−1(p|θ0)). Now we use the following lemma

that extends the well known Slutzky-Theorem.

Lemma 7. If Xn
p−→ X and Yn

p−→ Y then XnYn
p−→ XY .

Proof There are at least two ways to prove this. The first is a direct calculation:

P (|XnYn −XY | > ε) = P (|XnYn −XnY +XnY −XY | > ε)

≤ P (|Xn(Yn − Y )|+ |Y (Xn −X)| > ε)

≤ P (|Xn(Yn − Y )︸ ︷︷ ︸
p−→0

| > ε/2) + P (|Y (Xn −X)︸ ︷︷ ︸
p−→0

| > ε/2)
n→∞−→ 0.

Second, one can use that, under the assumptions, (Xn, Yn)
p−→ (X, Y ) so that an appli-

cation of the continuous mapping theorem yields the result. �
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Using this lemma we get

Ĥt(p) =
1

p
(p−Gt|t−1(x|θ̂T )) · 1(y < G−1

t|t−1(p|θ̂T ))

p−→ 1

p
(p−Gt|t−1(x|θ0)) · 1(y < G−1

t|t−1(p|θ0)) = Ht(p).

Since n is fixed we immediately obtain

Ĥ·n
p−→ H·n,

if T tends to infinity. In the second step we show that

FH·n

(
Ĥ·n

∣∣∣ H·n > 0
) ∣∣∣ {Ĥ·n > 0

}
d−→ U(0, 1).

Therefore we use another lemma:

Lemma 8.

Let X0, X1, X2, . . . be continuous random variables on (R,F, P ) and Xn
d−→ X0 and

g : R→ R absolute continuous and strictly increasing. Then

g(Xn)|{Xn ∈ B}
d−→ g(X0)|{X0 ∈ B}.

Proof

Since g is absolutely continuous and strictly increasing, g−1 : R → R exists. Because

X is absolutely continuous it follows by definition of the convergence in distribution and

Portmanteau Lemma (see eg. van der Vaart (1998), p.6) for every B ∈ F

P (Xn ∈ B)
n→∞−→ P (X0 ∈ B).
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Let A ⊂ R and g−1(A) := {x ∈ R|g(x) ∈ A} ∈ F, B ∈ F with P (Xi ∈ B) > 0 ∀i.

P (g(Xn) ∈ A|Xn ∈ B) =
P (g(Xn) ∈ A,Xn ∈ B)

P (Xn ∈ B)

=
P (Xn ∈ g−1(A), Xn ∈ B)

P (Xn ∈ B)

=
P (Xn ∈ {g−1(A) ∩B})

P (Xn ∈ B)

n→∞−→ P (X0 ∈ {g−1(A) ∩B})
P (X0 ∈ B)

=P (g(X0) ∈ A|X0 ∈ B).

So we get g(Xn)|{Xn ∈ B}
d−→ g(X0)|{X0 ∈ B} and Lemma 8 is proved.

With this lemma the proof of Theorem 1 is clear. Per definition it holds

FH·n

(
H·n

∣∣∣ H·n > 0
) ∣∣∣ {H·n > 0

}
∼ U(0, 1)

and with Lemma 8 it follows easily

FH·n

(
Ĥ·n

∣∣∣ H·n > 0
) ∣∣∣ {Ĥ·n > 0

}
d−→ U(0, 1).

�

Proof of Theorem 6

To prove this theorem, we use a copula theorem from Lindner and Szimayer (2005):

Theorem 9.

Let (Xn)n∈N and X be m-dimensional random vectors, where Xn = (Xn,1, . . . , Xn,m)′ and

X = (X1, . . . , Xm)′.

Then Xn converges weakly to X as n→∞, if and only if the margins Xn,j converge weakly

to Xj as n → ∞ for j = 1, . . . ,m, and if the copulas Cn of Xn converge pointwisely to

the copula C of X on RanF1× . . .×RanFm as n→∞, where Fj denotes the distribution

function of Xj.
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Thus the proof will be done in two steps: First we show that if T → ∞, n → ∞ and

n/T → 0 all margins

Φ−1(FH·n|H·n>0(Ĥ·n,j))
∣∣∣{Ĥ·n,j > 0, ∀j

}
, j = 1, . . . ,m,

have standard normal limit distribution. In the second step we show that the copula of

(Φ−1(FH·n|H·n>0(Ĥ·n,1)), . . . ,Φ−1(FH·n|H·n>0(Ĥ·n,m)))′ converge pointwisely to a Gaussian

copula.

If n tends to infinity, we observe sup
x∈R

|FH·n|H·n>0(x) − FH·n(x)| −→ 0 and

P (Ĥ·n,j > 0,∀j) −→ 1. Thus the conditions {Ĥ·n,j > 0, ∀j} have no effect on

the asymptotic behavior and we continue the proof without them. But note that in

finite samples this condition is needed to estimate the dependence structure.

H·n,j is under Assumption 3 a sum of independent random variables, therefore the central

limit theorem holds:

lim
n→∞

sup
x∈R

∣∣∣FH·n(x)− Φ

(
x− np/2√
n(p/3− p2/4)

)∣∣∣ = 0.

Moreover for c ∈ R fixed and ε ∈ (0, 0.5) it holds:

lim
n→∞

sup
x∈R

∣∣∣FH·n(x+ c · nε)− Φ
(x+ c · nε − np/2√

n(p/3− p2/4)

)∣∣∣ = 0

⇔ lim
n→∞

sup
x∈R

∣∣∣FH·n(x+ c · nε)− Φ
( x− np/2√

n(p/3− p2/4)
+

c√
n1−2ε(p/3− p2/4)︸ ︷︷ ︸

→0

)∣∣∣ = 0

⇔ lim
n→∞

sup
x∈R

∣∣∣FH·n(x+ c · nε)− Φ
( x− np/2√

n(p/3− p2/4)

)∣∣∣ = 0.

So if cn = oP (
√
n) we observe

lim
n→∞

sup
x∈R

∣∣∣FH·n(x)− FH·n(x+ cn)
∣∣∣ = 0 (a.s.).
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We now consider dn := Ĥ·n −H·n. Du and Escanciano (2016) mentioned that

1√
n
dn =

1√
n

n∑
t=1

E(Ĥt(p)−Ht(p)|Ft−1) + oP (1),

which follows directly from previous results from Escanciano and Olmo (2010). With

similar arguments and the mean value theorem we get:

dn =
n∑
t=1

(Ĥt(p)−Ht(p))

=
√
n
[ 1√

n

n∑
t=1

E(Ĥt(p)−Ht(p)|Ft−1) + oP (1)
]

=
n∑
t=1

(θ̂T − θ0)′ · ∂E(Ht(p)|Ft−1)

∂θ

∣∣∣
θ=θ̃

+ oP (
√
n)

=
[√

T (θ̂T − θ0)′︸ ︷︷ ︸
OP (1)

· n√
T
· 1

n

n∑
t=1

∂E(Ht(p)|Ft−1)

∂θ

∣∣∣
θ=θ̃︸ ︷︷ ︸

OP (1) with Assumption 5.2

+oP (
√
n),
]

with θ̃ between θ̂T and θ0.

If n/
√
T = o(

√
n)⇔ n/T → 0, we get dn = oP (

√
n) and

FH·n(Ĥ·nj)
d−→ FH·n(H·nj) ∼ U(0, 1), j = 1 . . . ,m,

and the first step of the proof is completed with the continuous mapping theorem:

Φ−1(FH·n(Ĥ·nj))→ Φ−1(FH·n(H·nj)) ∼ N (0, 1), j = 1 . . . ,m.

To complete the proof we determine the dependence structure. Under Hm
0 and Assump-

tion 3 we get with the central limit theorem for H := (H1, . . . , Hm)′:

H̃n :=
√
n
(
H− µ

) d−→ N (0,Σ),

24



with µ = p
2
· 1m and a positive definite matrix Σ ∈ Rm×m.

With Theorem 9 the copula Cn of H̃n converges pointwisely to a Gaussian copula with

a correlation matrix R that corresponds to Σ.

We define gn : Rm → Rm, gn((x1, . . . , xm)′)→ (g1,n(x1), . . . , gm,n(xn))′, with

gi,n(xi) = Φ−1(FH·n|H·n>0(
√
nxi + np/2)), i = 1, . . . ,m.

It is easy to see that gi,n is strictly increasing for all i = 1, . . . ,m and n > 0 and therefore

the distribution of gn(H̃n) is also determined by the marginal distributions and the same

Copula Cn as before (see eg. Schweizer and Wolff, 1981). Thus we get directly that the

copula of (Φ−1(FH·n|H·n>0(Ĥ·n,1)), . . . ,Φ−1(FH·n|H·n>0(Ĥ·n,m)))′ is also given by Cn and

converges to the Gaussian Copula C. Applying Theorem 9 one more time it holds

gn(H̃n)
d−→ N (0m, R)

and

1′m gn(H̃n) =
m∑
j=1

Φ−1(FH·n(Ĥ·n,j))
d−→ N (0, 1′mR1m).

As mentioned before, using the conditional cdf and the condition {Ĥ·n,j > 0, ∀j} does

not change the asymptotic behavior. Returning to the conditional case and using the

consistent estimator

σ̂2 =
m∑
i=1

m∑
j=1

∑n
t=1(Ĥt,i −H i)(Ĥt,j −Hj)√∑n

t=1(Ĥt,i −H i)
√∑n

t=1(Ĥt,j −Hj)
,

for 1′mR1m, we derive the limit distribution of the test statistic:

1

σ̂

m∑
i=1

Φ−1(FH·n|H·n>0(Ĥ·n,i))|
{
Ĥ·n,j > 0, ∀j

}
d−→ N (0, 1).
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B Remark on Assumption 5.2

In this section, we want to discuss the validity of Assumption 5.2. which states that

the first moments of the random variables sup
θ∈Θ

∂E(Ht(p)|Ft−1)
∂θ

are uniformly bounded over

t ∈ N.

For example, this assumption holds under the sufficient conditions

i) (Yt)t∈Z is a strict stationary process

ii) (Yt)t∈Z follows a location scale model Yt = µt(θ0,Ft−1)+σt(θ0,Ft−1)·εt, θ0 ∈ Θ ⊂ Rp

iii) the cdf of εt is given by Fε and its density by fε

iv) fε is bounded: sup
x∈R

fε(x) <∞ ∀t

v) The terms Yt, sup
θ∈Θ
|
(
∂µt(θ,Ft−1)

∂θ

)
|, sup
θ∈Θ
|
(
∂σt(θ,Ft−1)

∂θ

)
|,µt(θ0,Ft−1) and σt(θ0,Ft−1) have

finite second moments, uniformly over t

vi) P (σt(θ,Ft−1) > c) = 1 for some c > 0.

Sketch of the proof in five steps:

1. In the following steps we show that under conditions i)-vi) the first moment of the

term

sup
θ∈Θ

∣∣∣ ∂
∂θ
Ht(p)

∣∣∣
is finite and therefore

∂E(Ht(p)|Ft−1)

∂θ
= E

(
∂Ht(p)

∂θ
|Ft−1

)
.
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2. Because of ∂
∂θ
1(Gt(Yt|θ,Ft−1) < p) = 0 (a.s) we obtain by product differentiation

∂Ht(p)

∂θ

∣∣∣Ft−1 =
∂

∂θ

[
1

p
(p−Gt(Yt|θ,Ft−1)) · 1(Gt(Yt|θ,Ft−1) < p)

]
a.s.
= −

[
∂

∂θ
Gt(Yt|θ,Ft−1)

]
· 1(Gt(Yt|θ,Ft−1) < p).

3. The gradient is given by

∂

∂θ
Gt(Yt|θt,Ft−1) =

∂

∂θ
Fε

(
Yt − µt(θ,Ft−1)

σt(θ,Ft−1)

)

=
−σt(θ,Ft−1)

(
∂µt(θ,Ft−1)

∂θ

)
− (Yt − µt(θ,Ft−1))

(
∂σt(θ,Ft−1)

∂θ

)
σ2
t (θ,Ft−1)

· fε
(
Yt − µt(θ,Ft−1)

σt(θ,Ft−1)

)
.

4. Under the given conditions and by applications of the Cauchy-Schwarz-inequality

above it holds that the first moment of

sup
θ∈Θ

∣∣∣ ∂
∂θ
Gt(Yt|θ,Ft−1)

∣∣∣
is finite and therefore

sup
θ∈Θ

∣∣∣ ∂
∂θ
Ht(p)

∣∣∣ = Op(1).

5. With sup
θ∈Θ

∣∣∣ ∂∂θHt(p)
∣∣∣ = Op(1) we can interchange derivation and expectation

(as mentioned in step 1.) and Assumptions 5.2 follows by applications of the

Cauchy-Schwarz-inequality and the uniform boundedness of the second moments.
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C Figures and Tables
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Figure 1: Kernel smoothed density function of UES with out-of-sample-size n = 250 and
n = 500.

Table 1: Comparison between simulated quantiles and the theoretical quantiles for the
univariate test, n = 250.

quantile 1− α 0.95 0.96 0.97 0.98 0.99

simulated 1− α- quantile 5.68 5.87 6.11 6.43 6.96

F−1
H·n

(1− α) 5.67 5.86 6.10 6.43 6.95

np/2 +
√

(n(p/3− p2/4))Φ−1(1− α) 5.48 5.63 5.81 6.06 6.45

Table 2: Empirical rejection probabilities for the univariate t-test and the new finite
sample backtest with in-sample size T = 2500, α ∈ {0.01, 0.05} and scenario 1 (structural
break).

α = 0.05 α = 0.01
n = 250 n = 500 n = 250 n = 500

ν UC-Test t-test corr. UC-Test t-test corr. UC-Test t-test corr. UC-Test t-test corr.
∞ 0.06 0.07 0.05 0.05 0.06 0.05 0.01 0.03 0.01 0.01 0.03 0.01
30 0.17 0.19 0.15 0.23 0.25 0.21 0.06 0.09 0.05 0.09 0.12 0.07
15 0.34 0.37 0.32 0.48 0.51 0.46 0.17 0.23 0.14 0.28 0.34 0.24
10 0.54 0.57 0.51 0.75 0.77 0.73 0.32 0.39 0.29 0.56 0.63 0.52
7 0.73 0.76 0.71 0.92 0.93 0.91 0.53 0.62 0.49 0.81 0.85 0.78
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Table 3: Empirical rejection probabilities for the univariate t-test and the new finite
sample backtest with in-sample size T = 500, α ∈ {0.01, 0.05} and scenario 1 (structural
break).

α = 0.05 α = 0.01
n = 250 n = 500 n = 250 n = 500

ν UC-test t-test corr. UC-test t-test corr. UC-test t-test corr. UC-test t-test corr.
∞ 0.09 0.11 0.05 0.11 0.13 0.05 0.04 0.06 0.01 0.05 0.06 0.01
30 0.21 0.24 0.11 0.32 0.35 0.17 0.09 0.12 0.03 0.17 0.21 0.06
15 0.40 0.43 0.26 0.53 0.56 0.36 0.22 0.28 0.09 0.36 0.40 0.16
10 0.57 0.60 0.44 0.77 0.78 0.61 0.39 0.46 0.20 0.61 0.66 0.36
7 0.75 0.78 0.63 0.92 0.93 0.83 0.59 0.65 0.38 0.82 0.85 0.60

Table 4: Empirical rejection probabilities for the Bonferroni-Holm test and the new
multivariate test for m = 10 business lines, in-sample size T = 2500, different degrees
of freedom ν for the t-distribution, different out-of-sample sizes n, α ∈ {0.01, 0.05} and
scenario 1 (structural break).

α = 0.05 α = 0.01

n = 250 n = 500 n = 250 n = 500

ν UC10-Test t-test UC10-Test t-test UC10-Test t-test UC10-Test t-test

∞ 0.06 0.12 0.06 0.12 0.01 0.05 0.01 0.05

30 0.32 0.26 0.52 0.30 0.16 0.07 0.25 0.13

15 0.73 0.58 0.93 0.74 0.54 0.28 0.78 0.51

10 0.94 0.85 1.00 0.95 0.85 0.60 0.97 0.86

7 1.00 0.97 1.00 1.00 0.98 0.87 1.00 0.99

Table 5: Empirical rejection probabilities for the Bonferroni-Holm test and the new
multivariate test for m = 50 business lines, in-sample size T = 2500, different degrees
of freedom ν for the t-distribution, different out-of-sample sizes n, α ∈ {0.01, 0.05} and
scenario 1 (structural break).

α = 0.05 α = 0.01

n = 250 n = 500 n = 250 n = 500

ν UC50-test t-test UC50-test t-test UC50-test t-test UC50-test t-test

∞ 0.05 0.23 0.06 0.20 0.01 0.12 0.01 0.10

30 0.43 0.26 0.63 0.37 0.22 0.08 0.39 0.15

15 0.86 0.65 0.99 0.87 0.67 0.32 0.93 0.62

10 0.98 0.89 1.00 0.99 0.94 0.67 1.00 0.94

7 1.00 0.99 1.00 1.00 1.00 0.93 1.00 1.00

Table 6: Empirical rejection probabilities for the Bonferroni-Holm test and the new
multivariate test for m = 10 business lines, in-sample size T = 500, different degrees
of freedom ν for the t-distribution, different out-of-sample sizes n, α ∈ {0.01, 0.05} and
scenario 1 (structural break).

α = 0.05 α = 0.01

n = 250 n = 500 n = 250 n = 500

ν UC10-test t-test UC10-test t-test UC10-test t-test UC10-test t-test

∞ 0.11 0.30 0.15 0.35 0.03 0.17 0.06 0.22

30 0.32 0.21 0.43 0.23 0.14 0.04 0.14 0.05

15 0.72 0.46 0.85 0.57 0.48 0.14 0.59 0.18

10 0.92 0.73 0.98 0.85 0.79 0.36 0.90 0.46

7 0.99 0.93 1.00 0.98 0.97 0.64 1.00 0.83
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Table 7: Empirical rejection probabilities for the Bonferroni-Holm test and the new
multivariate test for m = 50 business lines, in-sample size T = 500, different degrees
of freedom ν for the t-distribution, different out-of-sample sizes n, α ∈ {0.01, 0.05} and
scenario 1 (structural break).

α = 0.05 α = 0.01
n = 250 n = 500 n = 250 n = 500

ν UC50-test t-test UC50-test t-test UC50-test t-test UC50-test t-test
∞ 0.14 0.53 0.15 0.60 0.05 0.39 0.06 0.47
30 0.35 0.18 0.56 0.27 0.16 0.05 0.30 0.08
15 0.78 0.44 0.95 0.66 0.58 0.21 0.84 0.32
10 0.97 0.77 1.00 0.94 0.90 0.48 1.00 0.71
7 1.00 0.95 1.00 1.00 0.99 0.79 1.00 0.96

Table 8: Size and power for the univariate t-test and the new test with in-sample size
T = 2500, α ∈ {0.01, 0.05} and scenario 2 (model misspecification).

α = 0.05 α = 0.01
n = 250 n = 500 n = 250 n = 500

γ UC-test t-test corr. UC-test t-test corr. UC-test t-test corr. UC-test t-test corr.
0.0 0.06 0.07 0.05 0.06 0.07 0.05 0.01 0.02 0.01 0.01 0.02 0.01
0.1 0.11 0.13 0.10 0.14 0.16 0.12 0.03 0.06 0.03 0.05 0.07 0.04
0.2 0.17 0.19 0.16 0.25 0.27 0.22 0.06 0.10 0.07 0.11 0.15 0.10
0.3 0.25 0.27 0.24 0.33 0.36 0.30 0.11 0.16 0.12 0.17 0.22 0.16
0.4 0.31 0.34 0.30 0.45 0.48 0.42 0.16 0.21 0.17 0.26 0.30 0.25
0.5 0.36 0.40 0.34 0.54 0.56 0.50 0.19 0.24 0.20 0.32 0.39 0.31

Table 9: Size and power for the univariate t-test and the new test with in-sample size
T = 500 , α ∈ {0.01, 0.05} and scenario 2 (model misspecification).

α = 0.05 α = 0.01
n = 250 n = 500 n = 250 n = 500

γ UC-test t-test corr. UC-test t-test corr. UC-test t-test corr. UC-test t-test corr.
0.0 0.08 0.10 0.05 0.10 0.12 0.05 0.02 0.04 0.01 0.03 0.05 0.01
0.1 0.16 0.19 0.12 0.19 0.22 0.12 0.07 0.09 0.04 0.09 0.12 0.03
0.2 0.21 0.24 0.16 0.31 0.33 0.21 0.10 0.14 0.06 0.18 0.21 0.07
0.3 0.29 0.32 0.24 0.41 0.43 0.31 0.15 0.20 0.10 0.26 0.31 0.13
0.4 0.36 0.38 0.30 0.49 0.52 0.38 0.19 0.25 0.13 0.32 0.37 0.17
0.5 0.40 0.43 0.34 0.55 0.57 0.42 0.23 0.29 0.16 0.38 0.42 0.21

Table 10: Empirical rejection probabilities for the Bonferroni-Holm test and the new
multivariate test for m = 10 business lines, in-sample size T = 2500, out-of-sample sizes
n ∈ {250, 500}, α ∈ {0.01, 0.05}, different values of γ and scenario 2 (model misspecifi-
cation).

α = 0.05 α = 0.01
n = 250 n = 500 n = 250 n = 500

γ UC10-test t-test UC10-test t-test UC10-test t-test UC10-test t-test
0.0 0.05 0.13 0.05 0.13 0.01 0.05 0.01 0.05
0.1 0.17 0.16 0.26 0.21 0.06 0.06 0.08 0.08
0.2 0.36 0.32 0.57 0.41 0.18 0.16 0.27 0.19
0.3 0.54 0.46 0.81 0.62 0.34 0.27 0.55 0.36
0.4 0.71 0.56 0.92 0.77 0.49 0.36 0.75 0.51
0.5 0.83 0.68 0.97 0.88 0.65 0.45 0.89 0.67
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Table 11: Empirical rejection probabilities for the Bonferroni-Holm test and the new
multivariate test for m = 50 business lines, in-sample size T = 2500, out-of-sample sizes
n ∈ {250, 500}, α ∈ {0.01, 0.05}, different values of γ and scenario 2 (model misspecifi-
cation).

α = 0.05 α = 0.01
n = 250 n = 500 n = 250 n = 500

γ UC50-test t-test UC50-test t-test UC50-test t-test UC50-test t-test
0.0 0.06 0.22 0.05 0.20 0.01 0.12 0.01 0.09
0.1 0.19 0.21 0.32 0.24 0.06 0.08 0.12 0.08
0.2 0.45 0.43 0.71 0.53 0.22 0.23 0.48 0.27
0.3 0.72 0.62 0.93 0.78 0.46 0.39 0.80 0.48
0.4 0.86 0.74 0.99 0.90 0.65 0.50 0.95 0.67
0.5 0.95 0.84 1.00 0.97 0.84 0.63 0.99 0.82

Table 12: Empirical rejection probabilities for the Bonferroni-Holm test and the new
multivariate test for m = 10 business lines, in-sample size T = 500, out-of-sample sizes
n ∈ {250, 500}, α ∈ {0.01, 0.05}, different values of γ and scenario 2 (model misspecifi-
cation).

α = 0.05 α = 0.01
n = 250 n = 500 n = 250 n = 500

γ UC10-test t-test UC10-test t-test UC10-test t-test UC10-test t-test
0.0 0.10 0.25 0.12 0.30 0.03 0.14 0.04 0.17
0.1 0.18 0.13 0.25 0.17 0.06 0.04 0.09 0.06
0.2 0.34 0.25 0.51 0.32 0.14 0.10 0.27 0.11
0.3 0.51 0.37 0.71 0.48 0.27 0.16 0.48 0.21
0.4 0.66 0.46 0.87 0.65 0.42 0.21 0.70 0.34
0.5 0.77 0.55 0.94 0.74 0.55 0.27 0.82 0.39

Table 13: Empirical rejection probabilities for the Bonferroni-Holm test and the new
multivariate test for m = 50 business lines, in-sample size T = 500, out-of-sample sizes
n ∈ {250, 500}, α ∈ {0.01, 0.05}, different values of γ and scenario 2 (model misspecifi-
cation).

α = 0.05 α = 0.01
n = 250 n = 500 n = 250 n = 500

γ UC50-test t-test UC50-test t-test UC50-test t-test UC50-test t-test
0.0 0.13 0.46 0.16 0.54 0.03 0.33 0.06 0.39
0.1 0.19 0.19 0.26 0.15 0.08 0.05 0.11 0.04
0.2 0.43 0.32 0.61 0.30 0.22 0.10 0.36 0.10
0.3 0.65 0.46 0.86 0.49 0.43 0.18 0.66 0.19
0.4 0.82 0.58 0.95 0.67 0.64 0.27 0.85 0.28
0.5 0.92 0.70 0.98 0.75 0.78 0.33 0.94 0.38

31



Table 14: Some yearly summary statistics for the empirical study and the corresponding
results for the two multivariate backtests.

Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Return per day 0.10 % -0.07 % -0.42 % 0.12 % -0.05 % -0.22 % 0.11 % 0.10 % -0.03 % -0.06 % -0.02 %
Volatility per day 1.19 % 1.69 % 5.30 % 5.26 % 2.56 % 3.44 % 2.68 % 1.73 % 1.43 % 1.71 % 2.59 %

S-GARCH
Number -Hits 61 120 117 102 113 133 85 99 99 111 88
mean Ht 0.96 % 1.77 % 1.86 % 1.53 % 1.71 % 1.98 % 1.22 % 1.56 % 1.39 % 1.77 % 1.34 %
max H̄n 1.72 % 2.54 % 2.34 % 2.64 % 1.95 % 2.68 % 1.96 % 2.43 % 1.96 % 2.43 % 1.73 %
p-value m-test 82.24 % 7.24 % 3.30 % 18.11 % 9.71 % 1.18 % 52.13 % 15.21 % 27.82 % 8.19 % 38.13 %

P̃ -value t-test 95.47 % 13.92 % 33.83 % 8.30 % 53.39 % 8.56 % 94.73 % 6.79 % 82.27 % 23.10 % 80.48 %
E-GARCH

Number -Hits 61 103 115 114 106 122 77 90 84 91 69
mean Ht 0.96 % 1.49 % 1.86 % 1.78 % 1.50 % 1.54 % 1.13 % 1.49 % 1.18 % 1.41 % 1.08
max H̄ 1.90 % 2.32 % 2.63 % 3.06 % 2.05 % 2.35 % 1.94 % 2.26 % 1.76 % 2.09 % 1.44
P -value m-test 82.20 % 23.25 % 3.40 % 4.73 % 21.77 % 12.68 % 64.41 % 20.38 % 55.96 % 30.24 % 63.04

P̃ -value t-test 96.72 % 35.82 % 8.65 % 0.80 % 88.86 % 32.65 % 94.33 % 46.94 % 83.02 % 71.49 % 93.32 %
GJR-GARCH

Number -Hits 63 104 112 108 107 120 83 99 88 96 70
mean Ht 0.91 % 1.57 % 1.76 % 1.60 % 1.57 % 1.70 % 1.22 % 1.61 % 1.26 % 1.50 % 1.12
max H̄ 1.71 % 2.30 % 2.37 % 2.49 % 2.18 % 2.56 % 1.78 % 2.57 % 1.76 % 2.06 % 1.60
Pvalue m-test 85.86 % 17.10 % 5.81 % 10.75 % 16.26 % 5.97 % 51.30 % 12.06 % 43.23 % 22.46 % 59.47

P̃ -value t-test 95.65 % 39.10 % 29.56 % 17.38 % 61.95 % 12.85 % 93.31 % 11.75 % 79.96 % 59.71 % 94.47 %
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