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1. INTRODUCTION

Analyzing time-variant parameters in models for financial data is a research topic of wide

importance. In this paper, we consider factor copula models which have been recently

proposed by Oh and Patton (2017) and Krupskii and Joe (2013), and we focus on the first

approach. In such models, the joint copula between random variables is given by the copula

of random variables which arise from a factor model. The time-varying parameters are factor

loadings and the parameters describing the distributions of the common and idiosynchratic

factors.

The advantage of these models is that they can be used in relatively high dimensional

applications and nevertheless capture the dependence structure by a fairly low number of

parameters. Alternative copula models suitable for high-dimensional data are hierarchical

Archimedean copulas (see Savu and Trede, 2010) and vine copulas (see Bedford and Cooke,

2002). We focus on factor copula models to have both considerable model flexibility and

parsimonious parametrizations that allow for reliable statistical inference.

For the estimation of the model parameters, we use the simulated method of moments

(SMM) as suggested by Oh and Patton (2013), which is different to standard method of

moments applications, since the theoretical moment-counterparts are simulated and not

as usual analytically derived. This makes asymptotic theory such as deriving consistency

and asymptotic distribution results of the estimators more difficult. The reason is that the

objective function is not continuous and furthermore not differentiable in the parameters and

standard asymptotic approaches cannot be used here.

There are many papers which deal with monitoring procedures for detecting structural

changes; some go back to the seminal paper by Chu, Stinchcombe, and White (1996) on

monitoring the regression parameters in a linear regression model. The basic idea is that an

initial training sample with constant parameters is available and the goal is to monitor for

changes in the correlation as new data become available. A more recent paper concerned
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with this problem is Kurozumi (2017) who considers endogenous regressors. In the context

of univariate financial time series Garthoff (2014) provides a sequential analysis of financial

time series, where mean and variance of time series are simultaneously monitored. Hoga

and Wied (2017) construct a sequential monitoring procedure for changes in the tail index

and extreme quantiles of beta-mixing random variables, which can be based on a large

class of tail index estimators. Furthermore, Pape, Wied, and Galeano (2017) propose a

model-independent multivariate sequential procedure to monitor changes in the vector of

component wise unconditional variances in a sequence of p-variate random vectors. In the

context of monitoring dependence measures, Galeano and Wied (2013) develop a monitoring

procedure to test for the constancy of the correlation coefficient of a sequence of random

variables. Na and Lee (2014) propose a monitoring test for stability of copula parameter

in time series. Finally, Dette and Goesmann (2018) propose a new approach for sequential

monitoring a parameter of a d-dimensional time series, where a closed-end-method motivated

by the likelihood ratio testing principle is considered.

The aim of this paper is to construct a new parametric monitoring procedure, based on moving

sums (MOSUM), for the parameters in factor copula models. Rolling window parameter

estimates are compared to the parameter estimates of an initial training sample for which we

can assume constant parameter values. Concerning the assumption of constant parameters for

the initial training period, we suggest applying the retrospective changepoint test in Manner,

Stark, and Wied (2019) to pre-test this crucial assumption. These two tests complement

each other in the sense that the monitoring procedure proposed here is meant for real-time

monitoring of change-points, whereas the test in Manner et al. (2019) detects structural

change in factor copulas in a retrospective way.

We study the asymptotic properties of the test and suggest a bootstrap procedure to

approximate its resulting asymptotic distribution. We then analyze size and power properties

of our procedure in single and multi break situations in Monte Carlo simulations. Finally, we
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use the monitoring procedure in a real-data application for a data set covering the last financial

crisis. We also propose an online procedure for predicting the 1-day ahead Value-at-risk using

simulations from the considered factor model accounting for the detected change-points.

The rest of the paper is structured as follows: Section 2 presents the model and the monitoring

procedure, whereas in Section 3 we study its asymptotic distribution under the setting of

simulated method of moments estimation. Results from the Monte Carlo simulations can be

found in Section 4. Section 5 presents our empirical application and Section 6 concludes the

paper. The main proof can be found in the appendix.

2. MODEL, NULL HYPOTHESIS, DETECTORS AND MONITORING

In this section we present the factor copula model (Section 2.1), followed by our testing

problem and the monitoring procedure (Section 2.2).

2.1. Factor copula model

We consider the same class of data-generating process as in Manner et al. (2019), i.e. the

factor copula model proposed by Oh and Patton (2017). In this class the dynamics of the

marginal distributions are determined by a parameter vector φ0 ∈ Rr. We have d cross

sectional dimensions and each variable can have time varying conditional mean µµµt(φ0) :=

[µ1t(φ0), . . . , µdt(φ0)]′ and variance σσσt(φ0) := diag{σ1t(φ0), . . . , σdt(φ0)}. The dependence

function of the joint distribution of the innovations ηηηt, namely the copula C(·, θt), depends

on the unknown parameter vector θt for t = 1, . . . , T , which we allow to be time-varying in

general. The data-generating process is given by

[Y1t, . . . , Ydt]′ =: YYY t = µµµt(φ0) + σσσt(φ0)ηηηt,

where [η1t, . . . , ηdt] =: ηηηt with distribution function FFF η = C(F1(η1), . . . , Fd(ηd); θt) by Sklar’s

theorem. This means that the joint distribution of the innovations is given by the copula
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C, capturing the contemporaneous dependence, evaluated at the marginal distributions

Fi, i = 1, . . . , d. Moreover µµµt and σσσt are Ft−1-measurable and independent of ηηηt. Ft−1 is the

sigma field containing information from the past {YYY t−1,YYY t−2, . . . }. Note that φ0 is assumed

to be
√
T consistently estimable, which is fulfilled by most commonly used time series models,

e.g. ARMA and GARCH models (see, e.g., Francq and Zakoian, 2004), and the corresponding

estimator is denoted as φ̂. For the contemporaneous dependence of the vector ηηηt, estimated

using standardized residuals η̂ηηt, we assume the factor copula model C(·, θt), which is implied

by the following linear factor structure

[X1t, . . . , Xdt]′ =: XXX t = βββtZZZt + qqqt, (2.1)

i.e., Xit =
K∑
k=1

βtikZkt + qit with idiosyncratic factors qit iid∼ Fq(αt) and common factors

Zkt
iid∼ Fzk(γkt), for i = 1, . . . , d, t = 1, . . . , T and k = 1, . . . , K. Here K denotes the number

of factors. Note that Zkt and qit are independent ∀i, k, t. The distribution function of XXX t, Fx

implies the factor copula C(·, θt), i.e.,

Fx(x1t, . . . , xdt; θt) = C(G1(x1t; θt), . . . , Gd(xdt; θt); θt) (2.2)

with continuous marginal distributions Gi(·, θt) and θt = [vec(βββt)′, α′t, γ′1t, . . . , γ′Kt]
′. Note

that in this model we are only interested in the implied factor copula C(·, θt) from the

(latent) factor structure (2.1). We completely ignore the marginal distributions Gi(·, θt) of the

factor model, which are in general different from Fi(·), the marginal distributions of ηηηt. The

advantage of these models is that they can be applied in high dimensions and nevertheless

capture the dependence structure by a relatively low numbers of parameters. Through the

choice of the distributions of the common factor Fzk and the idiosyncratic error distribution

Fq one can adapt asymmetry and tail dependence properties to the copula, which is useful

when dealing with financial data. A (block-) equidependence structure can be accommodated

by placing appropriate restrictions on θt. See Oh and Patton (2017) for more details on the
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properties of factor copulas. The estimation of the p× 1 vectors θt ∈ Θ of the copula is based

on the simulated method of moments described in Section 3.1 below.

As the notation suggests, we consider a constant model structure and allow the parameters

to be time-varying, having a piece-wise constant model in mind, i.e. Fq(αt) and Fzk(γkt) are

only time-varying through their parameter vectors αt and γkt. We make this more precise in

the next subsection.

2.2. Null Hypothesis and Detectors

In this paper we want to test the null hypothesis of no parameter change of the factor copula

model that is assumed to describe the residual dependence. The main idea is to compare

parameter estimates from a training sample of size bmT c(that we call “initial sample” for the

remainder of the paper), for which constant dependence is assumed, to sequentially estimated

parameters from a rolling data window of the same size. Thus, we are considering a moving

sums (MOSUM) type procedure; see Chu, Hornik, and Kuan (1995). Here T is the length

of the monitored time series and m a value in (0, 1]. Since we are interested in sequentially

monitoring whether or not the parameter θt changes in t = bmT c+ 1, . . . , T , we assume that

the parameters remain constant over the initial sample t = 1, . . . , bmT c, meaning that:

Assumption 1.

θ1 = · · · = θmT . (2.3)

In practice, if a sufficient amount of initial data is available, this assumption can be tested

by using the test for parmeter constancy in factor copulas proposed in Manner et al. (2019).

We are interested in testing the null hypothesis

H0 : θ1 = · · · = θmT = θmT+1 = . . .

6



versus the alternative

H1 : θ1 = · · · = θmT = · · · = θmT+k∗−1 6= θmT+k∗ = θmT+k∗+1 = . . . ,

by using the detector

DT (s) :=m2T (θ̂1+(s−m)T :sT − θ̂1:mT )′(θ̂1+(s−m)T :sT − θ̂1:mT ), (2.4)

where s ∈ [m, 1], k∗ ≥ 1 and bmT c+ k∗ is the unknown change point and θ̂t1:t2 a consistent

estimator for θ that is based on the subsample ranging from t1 to t2. Note that for the sake

of thrift, we use the same parameter m for the initial period and further rolling window

periods. Furthermore, we do not need a certain weighted deviation factor, due to the fact we

consider a MOSUM-type test statistic in contrast to for example Pape et al. (2017), where

an expanding window is used. The monitoring procedure is stopped if the MOSUM-type

detector defined in (2.4) exceeds the appropriately chosen constant critical value c for the

first time k. This yields the stopping rule

τT := inf
k

{
k ≤ T : DT

(
k

T

)
> c

}
,

where τT is the stopping time of the monitoring procedure. Here c is chosen in a way that

under H0 the monitoring procedure holds the size level lim
T,S→∞

P (τT < ∞|H0) = α, with

α ∈ (0, 1). The quantity S refers to the number of simulations used to approximate the

moments, see Section 3.1.

We write τT < ∞ to indicate that the monitoring has been terminated during the testing

period, meaning that the detector crossed the boundary value c at a time point k ≤ T .

On the other hand, we write τT =∞, if DT does not cross the boundary value during the

testing period. Note that the detected stopping time τT is not meant to be an estimator of

change point, as the actual change point is likely to be earlier. This is due to the fact the

monitoring procedure needs a sufficient number of observations after a change point before it
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can be detected. In the next chapter we present a procedure for estimating the change point

conditional on H0 having been rejected.

Similar to the detector defined in (2.4) we consider an alternative detector that is based

directly on the moment conditions used to estimate the model.

MT (s) :=m2T (m̂1+(s−m)T :sT − m̂1:mT )′(m̂1+(s−m)T :sT − m̂1:mT ) (2.5)

This allows for monitoring the corresponding dependence measures in a model-free way.

Under the assumed factor copula model it can be used to monitor the stability of the model

parameters. Furthermore, it has the added advantage of being computationally much less

demanding since no model parameters have to be estimated and it does not depend on any

simulated quantities.

3. ESTIMATION AND ASYMPTOTICS

In this section we describe our theoretical results. The estimation of the factor copula

model by the simulated method of moments (SMM) is reviewed in Section 3.1, whereas the

asymptotic behavior of our monitoring procedures is studied in Section 3.2. A bootstrap

algorithm to approximate the asymptotic distribution is presented in Section 3.3 and a

procedure for detecting multiple breaks is described in Section 3.4.

3.1. SMM Estimation

We are interested in estimating the parameter vector θuT :vT for the subsample ranging from

buT c to bvT c, where u < v and u, v ∈ [ε, 1], with ε > 0. The value ε is chosen by the

applicant; typical values are 0.1 or 0.2. This is achieved by using the simulated method of

moments (SMM), where the estimator is defined as

θ̂uT :vT,S := arg min
θ∈Θ

QuT :vT,S(θ),
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where QuT :vT,S(θ) := guT :vT,S(θ)′Ŵ(uT :vT )guT :vT,S(θ) is the objective function,

ga:b,S(θ) := m̂a:b − m̃S(θ), a < b, (3.1)

and Ŵ(uT :vT ) a positive definite weight matrix which convergence in probability to W . For

simplicity one can chose the k × k identity matrix. The moment conditions m̂uT :vT are k × 1

vectors of appropriately chosen pairwise dependence measures m̂ij
uT :vT (possibly averaged

over equidependent pairs), computed from the residuals {η̂t}bvT ct=buT c, whereas m̃S(θ) is an

approximation for the corresponding vector of true dependence measures. Note that the

dependence measures implied by the factor copula model are typically not available in closed

form and they have to be obtained by simulation. Therefore, the classical method of moments

(MM) or generalized method of moments (GMM) cannot be used here. The true dependence

measures are approximated using S simulations {η̃t}St=1 from Fx from equation (2.2), and

hence the objective function, the estimator, and consequently our detector defined in equation

(2.4) depend on the number of simulations S. Following the simulation studies in Oh and

Patton (2013), we chose S = 25 ·(vT −uT ) and we need to ensure that the sub-sample ranging

from buT c to bvT c is large enough to receive reasonable SMM estimates. In our simulation

studies we find that our procedure still results in reasonable size and power properties by

choosing buT c − bvT c = mT = 250 data points. For the dependence measures of the pair

(ηi, ηj), we use Spearman’s rank correlation ρij and the quantile dependence λijq . These are

defined as

ρij :=12
∫ 1

0

∫ 1

0
Cij(ui, vj)duidvj − 3

λijq :=


P [Fi(ηi) ≤ q|Fj(ηj) ≤ q] = Cij(q,q)

q
, q ∈ (0, 0.5]

P [Fi(ηi) > q|Fj(ηj) > q] = 1−2q+Cij(q,q)
1−q , q ∈ (0.5, 1)

.
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The sample counterparts for the observations between buT c and bvT c are defined as

ρ̂ij := 12
bvT − uT c

bvT c∑
t=buT c

F̂ uT :vT
i (η̂it)F̂ uT :vT

j (η̂jt)− 3

λ̂ijq :=


ĈuT :vT
ij (q,q)

q
, q ∈ (0, 0.5]

1−2q+ĈuT :vT
ij (q,q)

1−q , q ∈ (0.5, 1)
,

where F̂ uT :vT
i (y) := 1

bvT−uT c

bvT c∑
t=buT c

1{η̂it ≤ y} and ĈuT :vT
ij (u, v) := 1

bvT−uT c

bvT c∑
t=buT c

1{F̂ uT :vT
i (η̂it) ≤

u, F̂ uT :vT
j (η̂jt) ≤ v}. The simulated counterparts of these dependence measures based on the

simulations {η̃t}St=1 are defined analogically and are denoted by ρ̃ij and λ̃ijq .

In summary, the SMM estimator minimizes the weighted difference between suitable sample

dependence measures and their model counterparts obtained by simulation. Depending on the

precise model specification, the pairwise dependence measures are averaged for groups, which

have the same factor loadings. For more information on SMM estimation and a suitable way

to average the pairwise dependence measures for equidependence or block equidependence

models see Oh and Patton (2013) and Oh and Patton (2017).

3.2. Asymptotics

To derive the asymptotic distribution of our detector (2.4), we consider Assumption 1 and

Assumptions 3-6 (given in the appendix), which are fullfilled by the considered ARMA-

GARCH factor copula model, see Oh and Patton (2013) and references therein. We follow

similar steps as in Manner et al. (2019) where the difference is that we replace the scale

factor s
√
T by m

√
T and that we derive the following distributional limit for the process
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s 7→ m
√
Tg1+(s−m)T :sT,S(θ) with g·:·,S(θ) from equation (3.1), S

T
→ k ∈ (0,∞] and T, S →∞:

m
√
Tg1+(s−m)T :sT,S(θ) = m

√
T
(
m̂1+(s−m)T :sT − m̃S(θ)

)
=m
√
T
(
m̂1+(s−m)T :sT −m0(θ)

)
−m
√
T (m̃S(θ)−m0(θ))

=m
√
T
(
m̂1+(s−m)T :sT −m0(θ)

)
−
√
T

S
m
√
S (m̃S(θ)−m0(θ))

d=⇒A(s)− m√
k
B.

Here and in the following, =⇒ denotes convergence of stochastic processes in certain metric

spaces. In this particular case, the convergence takes place in the Cádlág space D[m, 1] for

m ≥ ε > 0. Moreover, A(s) is a Gaussian process defined in the proof of Theorem 1 in the

Appendix and B := N(0,Σ0) a centered Gaussian distribution with covariance matrix Σ0,

for details see Oh and Patton (2013). The limit result follows by using the independence of

the moment process calculated from the data and the moment process corresponding to the

simulated data. Note that the term m√
k
B cancels out in later considerations, e.g to determine

the critical value c using the bootstrap procedure proposed in section 3.3.

Theorem 1. Under the null hypothesis H0 : θ1 = · · · = θmT = θmT+1 = . . . and under

Assumption 1 in Section 2.2 and Assumptions 2-5 in the Appendix, we obtain for m ≥ ε > 0

m
√
T
(
θ̂1+(s−m)T :sT,S − θ0

)
d=⇒ A∗(s)

as T, S → ∞ in the space of Càdlàg functions on the interval [m, 1] and S
T
→ k ∈ (0,∞].

Here, A∗(s) = (G′WG)−1G′W (A(s)− m√
k
B) and θ0 is the (constant) value of θt under the

null. Note that G is the derivative matrix of g0(θ) with g1:mT,S(θ)→p g0(θ) for T, S →∞.
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With Theorem 1 we obtain for T, S →∞

m
√
T (θ̂1+(s−m)T :sT,S − θ̂1:mT,S)

=m
√
T (θ̂1+(s−m)T :sT,S − θ0)−m

√
T (θ̂1:mT,S − θ0)

d=⇒A∗(s)− A∗(m).

From this we can conclude the asymptotic behavior of our parameter detector (2.4) under

H0, which we state in Corollary 1.

Corollary 1. Under the null hypothesis H0 : θ1 = · · · = θmT = θmT+1 = . . . and if the

assumptions from Theorem 1 hold, we obtain for our detector

DT,S(s) =m2T (θ̂1+(s−m)T :sT,S − θ̂1:mT,S)′(θ̂1+(s−m)T :sT,S − θ̂1:mT,S)

d=⇒(A∗(s)−A∗(m))′(A∗(s)−A∗(m)) =: Q(s)

as T, S →∞ and S
T → k ∈ (0,∞].

The asymptotic behavior of our moment detector (2.5) can be found in Corollary 2.

Corollary 2. Under the null hypothesis H0 : θ1 = · · · = θmT = θmT+1 = . . . and if the

assumptions from Theorem 1 hold, we obtain

MT (s) =m2T (m̂1+(s−m)T :sT − m̂1:mT )′(m̂1+(s−m)T :sT − m̂1:mT )

d=⇒(A(s)−A(m))′(A(s)−A(m)) =: R(s)

as T →∞.

With the limit distribution of our detector Q(s), we define the boundary value c in our

monitoring procedure as the upper α-quantile of

sup
s∈[m,1]

Q(s) = sup
s∈[m,1]

(A∗(s)− A∗(m))′(A∗(s)− A∗(m)), m ≥ ε > 0. (3.2)

Thus, lim
T,S→∞

P (τT <∞|H0) = lim
T,S→∞

P (inf
k
{k ≤ T : DT,S(k) > c} <∞|H0) = α.

In the same way the critical value of the moment monitoring procedure is determined as the
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upper α-quantile of sup
s∈[m,1]

R(s).

For the estimation of the break point mT + k∗, once H0 is rejected, we propose mT + k̂, with

k̂ := argmax
bγ(τT−mT )c≤i≤τT−mT

i2

τT −mT
(θ̂1+mT :mT+i−1,S − θ̂1+mT :τT−1,S)′(θ̂1+mT :mT+i−1,S − θ̂1+mT :τT−1,S),

(3.3)

where we only consider the information from mT + 1 to τm − 1. Note that we need to trim a

sufficient fraction bγ(τT −mT )c of the beginning, where γ > 0 to receive reasonable SMM

estimates. In a similar way, the size of the rolling window mT should not be chosen to

small. Note that the stopping time and the break point estimator for the moment monitoring

procedure are defined analogically to the parameter monitoring procedure. As mentioned

above, the moment based monitoring procedure is easy to implement and can be calculated

fast, but in general it has lower power than the parametric procedure. Furthermore, as

outlined in Manner et al. (2019), another disadvantage is that it does not allow testing the

constancy of a subset of the parameters, but only can detect breaks in the whole copula. It

may, however, be used to test for breaks in the dependence in selected regions of the support

such as the lower tail. We leave this possibility for future research.

The limit distributions of DT,S and MT are not known in closed form. To overcome this issue

we have to simulate the critical values using an i.i.d. bootstrap procedure, which is described

in the next section.

3.3. Bootstrap Distribution

First note that the limit result mainly consists of the limit distribution of the moment vectors,

which can be computed relatively fast, compared to the detector that requires solving a

minimization problem. This fact is used for the construction of the bootstrap. In order to

approximate the limiting distribution under the null we use a parametric i.i.d. bootstrap

consisting of the following steps:
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i) Sample with replacement from {η̃i}Ti=1 to obtain B bootstrap samples {η̃(b)
i }Ti=1, for

b = 1, . . . , B, where {η̃i}Ti=1 stacks the initial residual data {η̂i}mTi=1 and simulated data

{η̃∗i }Ti=mT+1 from the assumed model, using the parameter estimate θ̂1:mT,S from the

initial sample period.

ii) Use {η̃(b)
i }ti=1+t−mT to compute m̂(b)

1+t−mT :t for t = mT, . . . , T and use {η̃(b)
i }Ti=1 to obtain

m̂
(b)
1:T , for b = 1, . . . , B.

iii) For obtaining the critical values of Q(s), calculate the bootstrap version of the limiting

distribution of our detector

K(b) := max
t∈{mT,...,T}

(
A∗(b)

(
t

T

)
− A∗(b) (m)

)′ (
A∗(b)

(
t

T

)
− A∗(b) (m)

)
,

with A∗(b)
(
t
T

)
:= (Ĝ′ŴT Ĝ)−1Ĝ′ŴTA

(b)( t
T

) and A(b)( t
T

) = m
√
T
(
m̂

(b)
1+t−mT :t − m̂

(b)
1:T

)
,

where Ĝ is the two sided numerical derivative estimator of G, evaluated at point θ1:mT,S,

computed with the historical sample {η̂i}mTi=1. We can compute the k-th column of Ĝ by

Ĝk = gT,S(θ̂1:mT,S + ekεT,S)− gT,S(θ̂1:mT,S − ekεT,S)
2εT,S

, k ∈ {1, . . . , p},

where ek is the k-th unit vector, whose dimension is p× 1 and εT,S has to be chosen in

a way that it fulfils εT,S → 0 and min{
√
T ,
√
S}εT,S →∞.

For obtaining the critical values of R(s), replace A∗(b) with A(b).

iv) Compute B versions of K(b) and determine the boundary value c such that

1
B

B∑
b=1

1{K(b) > c} != 0.05.

This bootstrap method is similar to the bootstrap used in Manner et al. (2019), where iii) is

adapted to the monitoring situation. Under the following assumption we obtain that both

detectors are valid under the null hypothesis and a suitable alternative.
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Assumption 2. Both the parametric factor copula model and the rank-based estimators fulfill

the regularity conditions in Genest and Rémillard (2008) (Definition 1 and 4).

Theorem 2. Let cBQ be the bootstrapped critical value for Q(s) and cBR the bootstrapped critical

value for R(s), based on B bootstrap replications, respectively. Consider the hypotheses

H0 : θ1 = · · · = θmT = θmT+1 = . . . and H1 : θ1 = · · · = θmT = . . . = θrT 6= θrT+1 = . . . for

some m < r < 1. Moreover, let Assumption 1 in Section 2.2, Assumption 2 and Assumptions

3-6 in the Appendix be true. Then,

lim
T,S,B→∞

P (inf
k

{
k ≤ T : DT,S(k) > cBQ

}
<∞|H0)

= lim
T,B→∞

P (inf
k

{
k ≤ T : MT (k) > cBR

}
<∞|H0) = α

and

lim
T,S,B→∞

P (inf
k

{
k ≤ T : DT,S(k) > cBQ

}
<∞|H1)

= lim
T,B→∞

P (inf
k

{
k ≤ T : MT (k) > cBR

}
<∞|H1) = 1,

whereas, for the last equation, we impose the additional assumption that mmT+1 = . . . =

mrT 6= mrT+1 = . . ., where mt is the vector of true dependence measures at time t.

Clearly, Assumption 2 is high-level, but Genest and Rémillard (2008) and subsequent papers

such as Rémillard (2017) showed that this holds for a wide range of models and estimators.

Our Monte Carlo simulations below confirm that the bootstrap indeed results in reasonably

sized tests and we leave it as a task for further research to show that the assumption also

holds under lower-level assumptions.

3.4. Multiple Break Testing

In practice if one is interested in detecting multiple structural breaks in factor copula models

in real time, we propose the following procedure that consists of steps applying the monitoring

procedure proposed in this paper and the retrospective change point test for factor copulas
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from Manner et al. (2019). In particular, the retrospective test is used to test for the constant

parameter assumption (2.3) in the initial sample period and to detect the break point location

once the monitoring procedure stops.

1) Compute the retrospective change point statistic sup
s∈[ε,m]

PsT,S from Manner et al. (2019)

for the initial mT observation. If a changepoint is detected go to step 2a). If no

changepoint is detected go to step 2b).

2a) Estimate the breakpoint location and remove all pre-change observations. Restock

the subsample to mT observations and return to step 1). If there are not enough

observations left to restock the subsample to mT observations go to step 4).

2b) Take the sample as initial sample period. Apply the monitoring procedure to the

residuals, i.e. compute DT,S(s) for s ∈ (m, 1]. Compute the bootstrap critical value c

as described in Section 3.3. If a changepoint is detected go to step 3). If no changepoint

is detected go to step 4).

3) Estimate the location of the changepoint. Then, remove the pre-change observations,

use the first mT observations of the resulting dataset as the new initial sample and

return to step 1). If there are not enough observations left to restock the subsample to

mT observations go to step 4).

4) Terminate the procedure.

In the same way this procedure can be adapted for the moment monitoring procedure.

Simulation results for single and multiple break testing, using the moment or the parameter

monitoring procedure can be found in the next section. An obvious issue with this procedure

is its multiple testing nature, in particular given that a pre-test has to be applied to the

initial sample period to ensure that Assumption 1 holds. One should adapt the significance

levels accordingly and be aware of this when interpreting testing results. In our simulation
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study and the empirical analysis below we adapt the significance levels to αk = 1− (1− α0) 1
k

for the kth hypothesis test, where α0 is some initially chosen significance level.

4. SIMULATIONS

We now want to investigate the size and power and the estimation of the break point location

of our monitoring procedure. We consider the simple one factor copula model, i.e. the copula

implied by

[X1t, . . . , Xdt]′ =: Xt = βββtZt + qqqt, (4.1)

where βββt = (βt, . . . βt)′ and qqqt = (qt, . . . qt)′ are d × 1 vectors, Zt ∼ Skew t (σ2, ν−1, λ) and

qt
iid∼ t (ν−1) for t = 1, . . . , T . We fix σ2 = 1, ν−1 = 0.25 and λ = −0.5, so that our model is

parametrized by the factor loading parameter βt.

The sequential parameter estimates β̂t = β̂1−mT+t:t for t = mT, . . . , T in the detector are

computed using the SMM approach with S = 25 · mT simulations. For this we use five

dependence measures, namely Spearman’s rank correlation and the 0.05, 0.10, 0.90, 0.95

quantile dependence measures, averaged across all pairs. Critical values for the monitoring

procedure are computed using B = 500 bootstrap replications.

The nominal size of the tests is chosen to be 5%. We use 700 Monte Carlo replications to

compute the size of the test and 301 Monte Carlo replications for all other settings.1

Before reporting the simulation results, we report the computation times (in hours) of the

procedure in Table 1. It shows the time it takes to perform the monitoring procedure for
1The computational complexity of the simulations was extremely high due to the fact that for every

monitoring procedure the parameter values need to be estimated a large number of times using the computa-
tionally heavy SMM estimator and because critical values have to be bootstrapped. This explains why we
had to restrict ourselves to a limited number of situations for a fairly simple model. Furthermore, numerical
instabilities were present in more complex models when repeatedly estimating the model parameters. Such
problems can be dealt with in empirical applications, but further restrict the potential model complexity in
simulations. The computations were implemented in Matlab, parallelized and performed using CHEOPS,
a scientific High Performance Computer at the Regional Computing Center of the University of Cologne
(RRZK) funded by the DFG.
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d = 5 d = 10 d = 20 d = 40
β T = 1000 0.11 0.22 0.53 1.43

T = 1500 0.23 0.47 1.10 2.91
T = 2000 0.40 0.82 1.86 4.88
T = 4000 1.51 3.27 8.23 19.86

mT T = 1000 0.03 0.07 0.21 0.70
T = 1500 0.05 0.12 0.37 1.26
T = 2000 0.08 0.20 0.59 1.95
T = 4000 0.23 0.64 1.92 6.13

Table 1: Computation times in hours for monitoring the breakpoint based on the parameter
(β) and the vector of dependence measure (mT ) for different combinations of T and d with
β0 = 1.0 and m = 0.25. Procedures implemented and performed in MATLAB. Calculations
parallelized on four kernels with Intel(R) Core(TM) i7-6700 CPU 3.40GHz.

a single break, including the computation of the bootstrap distribution on a standard PC

using parallel computation on four cores. It can be seen that the computations are feasible

for all reported cases and that the parameter based detector runs approximately two to four

times longer than the moment detector.

4.1. Size and Single Break Case

We begin with the case of testing against a single break. The rejection rates under the null

are presented in Table 2 for βt = 1 for t = 1, . . . , T , for various combinations of the length of

the initial sample mT and dimension d, where the critical values are calculated using one of

the following two possibilities:

i) Calculate the critical value c using the whole, in general not known, data up to time T .

This mimics the situation that the test is used in a retrospective fashion, i.e. once all T

observations are available.

ii) Calculate the critical value c using the initial data set together with the data from

mT + 1 up to T , based on the estimated parameter β̂1:mT,S.
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d = 10 d = 20 d = 30
mT = 250 0.051 0.052 0.051

i) mT = 400 0.055 0.054 0.050
mT = 500 0.057 0.047 0.054
mT = 250 0.062 0.064 0.061

ii) mT = 400 0.062 0.065 0.065
mT = 500 0.061 0.054 0.055

Table 2: Empirical size for β0 = 1.0, T = 1500 and 700 simulations, using i) the whole sample
up to time point T and using ii) the initial data set and simulated data from mT + 1 up to T .

The test shows acceptable size for both settings. The empirical size is slightly higher than

the nominal level for the second procedure ii), most likely due to the fluctuation in the

parameter estimation in the SMM procedure. The size of the testing period is always fixed

to be T = 1500.

To study the power of the procedure, we generate data with a break point at T
2 , where the data

is simulated with βt = 1 for t ∈ {1, . . . , T2 }, denoted as β0 and with βt = {1.2, 1.4, 1.6, 1.8, 3.0}

for t ∈ {T2 + 1, . . . , T}, denoted as β1. The dimension d is set equal to 10 in this case. With

power we mean the probability that our monitoring procedure stops with in the monitored

testing period (τT <∞). The upper panel of Table 3 reveals that the power of the procedure

increases with the size of the initial sample for the two possibilities i) and ii). The moment

monitoring procedure based on MT has similar size characteristics but lower power compared

to the parameter-based procedure. This result is in line with the results for the retrospective

test in Manner et al. (2019).

The second and third panels of the table present the (average) relative stopping times and

break point estimates using (3.3). The table reveals that the averaged stopping time, given

that a break has been detected, occurs with a significant delay after the true break point. It

is closer to the true location 1
2 for a smaller monitoring window, due to the greater impact of

new data and, of course, for an increase of the step size between β0 and β1. If the step size is
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β0 = 1.0 β1 = 1.2 β1 = 1.4 β1 = 1.6 β1 = 1.8 β1 = 3.0
mT = 250 0.047 0.375 0.787 0.973 1.000 1.000

i) mT = 400 0.059 0.435 0.877 0.993 1.000 1.000
mT = 500 0.053 0.465 0.910 1.000 1.000 1.000
mT = 250 0.059 0.409 0.787 0.967 1.000 1.000

rej ii) mT = 400 0.053 0.468 0.860 0.990 1.000 1.000
mT = 500 0.053 0.485 0.894 1.000 1.000 1.000
mT = 250 0.057 0.193 0.482 0.780 0.944 1.000

mT mT = 400 0.049 0.223 0.671 0.944 0.993 1.000
mT = 500 0.051 0.306 0.738 0.960 1.000 1.000
mT = 250 0.715 0.667 0.625 0.579 0.513

i) mT = 400 0.751 0.689 0.629 0.588 0.523
mT = 500 0.767 0.677 0.639 0.596 0.525
mT = 250 0.698 0.660 0.619 0.581 0.518

τT
T

ii) mT = 400 0.733 0.675 0.626 0.587 0.525
mT = 500 0.759 0.699 0.638 0.595 0.527
mT = 250 0.718 0.695 0.662 0.627 0.525

mT mT = 400 0.738 0.725 0.672 0.625 0.528
mT = 500 0.765 0.741 0.679 0.626 0.530
mT = 250 0.516 0.487 0.483 0.473 0.457

i) mT = 400 0.544 0.508 0.493 0.487 0.479
mT = 500 0.562 0.522 0.497 0.492 0.487
mT = 250 0.511 0.484 0.479 0.471 0.464

k̂
T

ii) mT = 400 0.538 0.502 0.491 0.485 0.483
mT = 500 0.562 0.518 0.497 0.491 0.489
mT = 250 0.517 0.495 0.487 0.486 0.485

mT mT = 400 0.541 0.518 0.500 0.495 0.492
mT = 500 0.561 0.534 0.507 0.499 0.496

Table 3: Rejection frequency (rej), average stopping time τT
T

and average breakpoint estimate
k̂
T
for β0 = 1, T = 1500 d = 10 and 301 simulations for the parameter monitoring procedure,

where critical values c computed with the two possibilities i) and ii) and for the moment
monitoring procedure. Data was generated with a break at T

2 and post-break parameter β1.

large enough (β1 = 3.0) the monitoring procedure consistently stops shortly after the true

break point.

The averaged estimated break point locations based on equation (3.3) are closer to the true

break point. It always detects the break before the stopping time. For small shifts in θ it
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estimates the break too late, whereas for large shifts in θ break are estimated a little too

early. It seems that a larger initial sample always results in slightly later stopping times,

which can be explained due to the greater impact on the detector by new observed data in

small rolling window sample sizes. However the usage of smaller window sizes imply lower

power of the procedure. Note that the moment monitoring tends to result in later stopping

times and break point estimates in all cases.

Next, we consider a setting similar to that in Table 3, but where we now consider a break in

the skewness parameter to study whether the test is able to detection breaks in the shape of

the copula. We fix βt = 2 and vary the skewness parameter λ under the alternative. Similarly

to the previous case, we denote its value before the break as λ0 = −0.5 and its value after

the break as λ1 = {−0.4,−0.3,−0.2,−0.1, 0}. The results in Table 4 show that the test is

close in size to its nominal value and the power increases with the size of the break in λ.

Furthermore, the parameter based test again has higher power than the one based on the

moments.

Additionally, we consider a heterogeneous two-factor model with several parameters, i.e.

[
X1t, . . . , X d

2 t

]′
= βββt11Z1t + βββt12Z2t + qqqt (4.2)[

X( d2 +1)t, . . . , Xdt

]′
= βββt21Z1t + βββt22Z2t + qqqt,

where βββt11 = βββt21 = (βt1, . . . , βt1), βββt12 = (βt12, . . . , β
t
12), βββt22 = (βt22, . . . , β

t
22) and the factors

again follow a Skew t distribution with fixed parameters as above. Thus there are two factors

and two groups of variables that have the same loading for the first factor, but a different

factor loading for the second factor. The value βt1 is fixed to 0.5 and only the parameters

βt12 and βt22 are estimated. We consider breaks only in βt12, i.e., the loading of the second

factor for the first group. It changes from β0
12 = 1.5 to β1

12 = {1.7, 1.9, 2.1, 2.3, 2.5}. The

results in Table 5 show some small size distortions, likely due to the increased estimation

error as a consequence of the increased model complexity. The power increases with the
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λ0 = −0.5 λ1 = −0.4 λ1 = −0.3 λ1 = −0.2 λ1 = −0.1 λ1 = 0
i) mT = 500 0.053 0.130 0.468 0.837 0.967 1.000

rej ii) mT = 500 0.059 0.249 0.591 0.870 0.973 1.000
mT mT = 500 0.064 0.116 0.362 0.661 0.924 0.977
i) mT = 500 0.822 0.797 0.767 0.718 0.682

τT
T

ii) mT = 500 0.782 0.761 0.717 0.677 0.645
mT mT = 500 0.787 0.811 0.773 0.744 0.707
i) mT = 500 0.624 0.570 0.550 0.530 0.522

k̂
T

ii) mT = 500 0.585 0.563 0.538 0.520 0.506
mT mT = 500 0.590 0.577 0.549 0.534 0.519

Table 4: Rejection frequency (rej), average stopping time τT
T

and average breakpoint estimate
k̂
T

for λ0 = −0.5, T = 1500 d = 10 and 301 simulations for the parameter monitoring
procedure, where critical values c computed with the two possibilities i) and ii) and for
the moment monitoring procedure. Data was generated with a break at T

2 and post-break
parameter λ1. We fixed β = 2 and ν = 4

β0
12 = 1.5 β1

12 = 1.7 β1
12 = 1.9 β1

12 = 2.1 β1
12 = 2.3 β1

12 = 2.5
i) mT = 500 0.078 0.123 0.216 0.455 0.691 0.864

rej ii) mT = 500 0.073 0.120 0.196 0.429 0.665 0.891
mT mT = 500 0.062 0.093 0.123 0.209 0.392 0.518
i) mT = 500 0.646 0.690 0.697 0.688 0.673

τT
T

ii) mT = 500 0.653 0.682 0.698 0.691 0.681
mT mT = 500 0.852 0.799 0.797 0.814 0.801
i) mT = 500 0.515 0.545 0.531 0.525 0.514

k̂
T

ii) mT = 500 0.514 0.534 0.526 0.522 0.514
mT mT = 500 0.601 0.593 0.569 0.574 0.564

Table 5: Rejection frequency (rej), average stopping time τT
T

and average breakpoint estimate
k̂
T
for the null parameter β0

12 = 1.5, T = 1500 d = 10 and 301 simulations for the parameter
monitoring procedure, where critical values c computed with the two possibilities i) and
ii) and for the moment monitoring procedure. Data was generated with a break at T

2 and
post-break parameter β1

12.

break size as expected. As before, the moment-based test performs worse compared to the

parameter-based test.
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no breaks one break more breaks
d = 10 d = 20 d = 10 d = 20 d = 10 d = 20

β mT = 250 0.226 0.193 0.641 0.651 0.133 0.156
mT = 400 0.120 0.093 0.794 0.811 0.086 0.096

mT mT = 250 0.535 0.492 0.439 0.475 0.027 0.033
mT = 400 0.326 0.309 0.645 0.641 0.030 0.050

Table 6: Fraction of no, exact one or more found breaks in a single break setting. Constructed
break at 2T

3 with β0 = 1.0 and β1 = 1.5, T = 1500 and 301 simulations, using ii) the initial
data set and simulated data from mT + 1 up to T . Results are based on the parameter based
detector DT,S (top panel) and the moment based detector (bottom panel).

Next, we consider the problem of detecting the correct number of breaks using the procedure

proposed in Section 3.4 in the case a single break occurs at time 2T/3 with the parameter

changing from β0 = 1 to β1 = 1.5. For every conducted test k = 1, 2, . . . we adapted the

significance levels to αk = 1− (1− α0)
1
k with α0 = 0.05 for correcting the multiple testing

setup of our procedure based on Galeano and Wied (2014). The results in Table 6 reveal that

in most cases the correct number of breaks is identified. The parameter based test detector

performs much better here, whereas the test based on mT suffers from the general weakness

of low power and therefor often does not detect a single break. The results improve slightly

going from d = 10 to d = 20, whereas a larger size of moving window has a strong effect on

the results.

4.2. Two Breaks

For the analysis of two breaks we allow for breaks at T
3 and 2T

3 with sample size T = 1500,

and dimensions d = 10 and d = 20. The parameter varies from β0 = 1.0 for t ∈ {1, . . . , T3 }

to β1 = 1.5 for t ∈ {T3 + 1, . . . , 2T
3 } and β2 = 0.8 for t ∈ {2T

3 + 1, . . . , T}. As in the previous

section, we adapted the significance level of the test to αk = 1− (1− α0)
1
k for the kth test

using α0 = 0.05. The results using the procedure proposed in Section 3.4 can be found in
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τ1
T
T

k̂1

T rej1
τ2
T
T

k̂2

T rej2 ( τ
1
T
T

τ2
T
T ) ( k̂1

T
k̂2

T ) rejall

Parameter based
d = 10 mT = 250 0.476 0.351 0.833 0.822 0.671 0.724 (0.457 0.822) (0.341 0.671) 0.724

mT = 400 0.502 0.383 0.923 0.854 0.720 0.854 (0.479 0.856) (0.365 0.721) 0.841
d = 20 mT = 250 0.479 0.355 0.874 0.818 0.666 0.767 (0.457 0.818) (0.341 0.665) 0.764

mT = 400 0.494 0.378 0.927 0.849 0.718 0.900 (0.475 0.848) (0.364 0.720) 0.870

Moment based
d = 10 mT = 250 0.520 0.365 0.588 0.800 0.668 0.542 (0.497 0.797) (0.348 0.669) 0.528

mT = 400 0.551 0.395 0.777 0.858 0.733 0.744 (0.520 0.857) (0.373 0.736) 0.714
d = 20 mT = 250 0.522 0.362 0.648 0.809 0.665 0.588 (0.494 0.809) (0.342 0.667) 0.575

mT = 400 0.549 0.395 0.821 0.853 0.727 0.774 (0.513 0.852) (0.370 0.730) 0.741

Table 7: Average detected break point location k̂i

T
, stopping time τ iT

T
and rejection frequency

using 301 simulations for the parameter monitoring procedure. Data was generated with
breaks at T

3 and 2T
3 , with T = 1500, d = 10, 20, β0 = 1.0, β1 = 1.5, β2 = 0.8. Results are

based on the parameter based detector DT,S (top panel) and the moment based detector
(bottom panel).

Table 7. The tables report the averaged stopping times, averaged break point estimates and

rejection rates for the first, second, and the joint first and second break events.

The rejection rates increase with the size of the initial sample period mT . Power increases

in the dimension d, although this effect is only moderate for both tests. As before, the

tests based on DT,S has larger power than the one based on MT . We also note that the

second break point is detected more frequently than the first one, which can be explained

by the higher magnitude of the second break compared to the first break. Furthermore, if

the monitoring procedure detects the first break point it is very likely that the second break

point is detected as well, which can be seen by the almost identical rejection rates of rej1 and

rejall. Again, the average stopping time is much later than the true break, but the estimated

break point k̂ is able to detect the breaks reasonably well. Thus, we can conclude that the

procedure works fairly well for the case of two breaks and that both the power of detecting

changes and estimating the break locations can be achieved in a reasonably reliable manner.
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5. EMPIRICAL APPLICATION

In this section we apply our test to a real data set. We use daily log returns of stock prices

over a time span ranging from 29.01.2002 to 01.07.2013 of ten large firms, namely Citigroup,

HSBC Holdings ($), UBS-R, Barclays, BNP Paribas, HSBC Holdings (ORD), Mitsubishi,

Royal Bank, Credit Agricole and Bank of America. This implies a monitored period of size

T = 2980 and d = 10. Figure 5.1 is a plot of the stock prices in US-$ of the ten assets over

the whole monitored period.

We use the same factor copula model as in (4.1) and we fix the parameters ν = 2.855

and λ = −0.0057 for the monitoring procedure, i.e. we only monitor the factor loading

parameter. These fixed values correspond the parameter estimates from the initial sample

period of size mT = 400. For the conditional mean and variance we specify the following

AR(1)-GARCH(1,1).

ri,t = α + βri,t−1 + σi,tηit,

σ2
it = γ0 + γ1σ

2
i,t−1 + γ2η

2
i,t−1,

for t = 2, . . . , 2980, and i = 1, . . . , 10. Note that for the monitoring procedure the parameters

of the conditional mean and variance models are always reestimated on the same rolling

window sample of size mT .

5.1. Monitoring Procedure

Figure 5.2 shows the factor loading parameter estimated over a rolling window of size 400.

From this one can see some notable parameter changes between 2006 and 2009. The results

of the monitoring procedure of the whole considered period can be seen in Table 8, where

again we used a significance level of αk = 1− (1− α0) 1
k for the kth test with α0 = 0.05. We
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Figure 5.1: Asset values Sit in US-$ in our considered portfolio for data between 29.01.2002
and 01.07.2013, T = 2980 and d = 10.

choose the initial sample as mT = 400 from 29.01.2002 to 11.08.2003, where we first estimate

the marginal AR(1)-GARCH(1,1) model to obtain the residuals. We use the retrospective

test from Manner et al. (2019) to test the hypothesis of no parameter change in the initial

sample and the null hypothesis cannot be rejected. Note that for the retrospective parameter

test a burn in period of 20 % of the behold data is used. We then apply our constructed
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monitoring procedure. The monitoring procedure stops at the 18.09.2008 and the estimated

break point location is found at the 19.07.2007, where we used the retrospective parameter

break point estimate with data from the end of the historical data set 12.08.2003 to the

stopping time 18.09.2008.

Figure 5.3 is a plot of DT,S for every time point between mT +1 (12.08.2003) and the stopping

point, where DT,S exceeds the critical value of (3.2) equal to 3.4566.

Figure 5.2: Rolling window estimate of θmT for mT = 400 and d = 10 between 11.08.2003
and 01.07.2013, with parameter values estimated from break to break. Each parameter value
is associated to the end time point of the rolling window.

We then cut of all the data in front of the estimated break point location (19.07.2007) and test

for the null hypothesis of no parameter change in the period from 20.07.2007 to 29.01.2009 of
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Figure 5.3: DT,S(s) for T = 2980, mT = 400 and d = 10. Stopping date at 18.09.2008 and
c = 3.4566.

Monitored/Testing Period τT k̂ T
29.01.2002-11.08.2003 400
12.08.2003-01.07.2013 18.09.2008 19.07.2007 2580
20.07.2007-29.01.2009 08.08.2008 400
11.08.2008-22.02.2010 400
23.02.2010-01.07.2013 875

Table 8: Stopping time τT , estimated break point location k̂ and associated sample size T for
monitored or tested periods using the monitoring procedure or the retrospective parameter
test.

size mT = 400, using again the retrospective parameter test and the null is rejected. The

estimated break point is found at the 08.08.2008.

For the next subsample we try the period from 11.08.2008 to 22.02.2010 and get a retrospective

test statistic value ST,S of 2.0269 with a critical value of 4.1138. Hence, the null hypothesis

cannot be rejected and we choose this period as our new historical period and restart our

monitoring procedure from 23.02.2010 to 01.07.2013. The detector DT,S does not cross the

boundary value c = 15.5073 and the procedure stops at the end of the monitored period,

without rejecting the null. The piecewise constant factor loadings can be seen in Figure 5.2
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and we observe that they track the evolution of the rolling window estimates fairly well.

5.2. Value-at-Risk Predictions

Given the growing need for managing financial risk, risk prediction plays an increasing role

in banking and finance. The value-at-risk (VaR) is one of the most prominent measure

of financial risk. Despite it having been criticized as being theoretically not efficient and

numerically problematic (see Dowd and Blake, 2006), it is still the most widely used risk

measure in practice. The number of methods for its computation continues to increase. The

theoretical and computational complexity of VaR models for calculating capital requirements

is also increasing. Some examples include the use of extreme value theory (McNeil and Frey,

2000), quantile regression methods (Manganelli and Engle, 2004), and Markov switching

techniques (Gray, 1996 and Klaassen, 2002).

First, we want to define the Value at Risk (VaR). We define the log return of a single asset i

at time t as rit = ln(Sit)− ln(Sit−1), where Sit is the time t stock price of asset i. The change

in the portfolio value over the time interval [t− 1, t] is then

∆Vt =
d∑
i=1

wir
i
t,

where wi are portfolio weights. The (negative) α-quantile of the distribution of ∆V :=

{∆Vt}Tt=1 is the day t Value-at-risk at level α.

Here we want to show that our monitoring procedure can help improve the day-ahead

predictions of the VaR based on a factor copula model. The VaR predictions based on the

monitoring procedure for the factor copula model are computed as follows. In general, based

on Ft, the information available at time t, we want to predict the VaR for period t+ 1. The

prediction of the VaR is always based on the following four steps.

1. SimulateM draws from the copula model ũt+1 ∼ C(·, θ̂t), where ũt+1 = [ũ1,t+1, . . . , ũd,t+1]

is anM×d matrix of simulated observation and θ̂t is an appropriate parameter estimate
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based on information up to time t.

2. Use the inverse marginal distribution function of the standardized residuals η to

transform every component of ũt+1 to η̃̃η̃ηt+1 =
[
F−1

1 (ũ1,t+1), . . . , F−1
d (ũd,t+1)

]
, where

F−1
i (·) is estimated by the inverse integrated kernel density estimator of the residuals η̂̂η̂η

with a sufficiently large number of evaluation points.

3. Compute the simulated returns r̃t+1 := [r̃1
t+1, . . . , r̃

d
t+1]′ = µµµ(φ̂t) + σσσ(φ̂t)η̃̃η̃ηt+1, where φ̂t

are the estimated parameters from models for the conditional mean and variance using

information up to time t.

4. Form the portfolio of interest from the simulated returns and compute the appropriate

quantile from the distribution of the portfolio to obtain the VaR prediction for time

t+ 1.

This procedure for predicting the VaR is generic. The monitoring procedure for the copula

parameter θt is used to determine the appropriate information set on which the parameter

estimate in Step 1 is based. The basic idea is to use as much information as possible as long as

no changepoint is detected. In case a changepoint is found only the most recent observations

should be used to estimate θt. Recall that mT observations for which the dependence is

assumed to be constant are available at the beginning of the sample. Further, denote θ̂s:t the

estimator of the copula parameter based on the observations from time s to t. At each point

in time t, compute DT,S(t).

i. Before a changepoint is detected, i.e. as long as DT,S(t) < c the draws from the copula

in Step 1 above are based on θ̂1:t

ii. Assume the monitoring procedure stops at time t = τ̂ , i.e. when DT,S(t) > c. Compute

the breakpoint estimate k̂ using (3.3). Use the estimate θ̂k̂:t in Step 1 above. If

k̂ − t < 400, i.e. if less than 400 observations are available use θ̂t−400:t. In other words,
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after a breakpoint is identified use either all observations after the breakpoint estimate

or the most recent 400 observations to estimate the copula parameter.2

iii. If k̂ − t ≤ mT proceed as in Step ii. Otherwise use the window [k̂, k̂ +mT ] as the new

initial sample and apply the monitoring procedure. As long as no further breakpoint is

detected the parameter estimate θ̂k̂:t is used. When the monitoring procedure stops

again return to Step ii.

The results for the online VaR evaluation based on M = 1500 simulations for each period

and for α = 0.05 can be seen in Figure 5.4. As an alternative, we consider the same model

without the monitoring procedure. In that case the copula parameter is estimated using the

full sample available at time t using an expanding window. The model for the margins is

an AR(1)-GARCH(1,1) in both cases. Visually, the online procedure tracks the 5 % VaR

well. The empirical VaR exceedance rate is, in fact, 5.39% (139 exceedances in 2580 days)

and therefore reasonably close to 5 %. In the model without structural breaks, where the

parameters are estimated from the beginning of the sample on, the exceedance rate is higher

with 6.78% (175 exceedances). With a binomial test (compare Berens, Wied, Weiß, and

Ziggel, 2014), we test the null hypothesis of unconditional coverage, i.e.,

E
(

1
T

T∑
t=1

It(0.05)
)

= α = 0.05,

where α is the VaR coverage probability and

It(0.05) =


0, if ∆Vt ≥ −V aR0.05

1, if ∆Vt < −V aR0.05.

One expects 129 exceedances under H0 and at the 1% significance level the critical value of

the test is 158 exceedances. This implies that the null of unconditional coverage is rejected
2The minimum number of observations required for model estimation depends on the complexity of the

chosen model. However, for the type of model we are considering here we found that one needs at least 400
observations to obtain reliable and numerically stable parameter estimates.
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in the model without structural breaks, but not in the model with structural breaks.

Figure 5.4: Portfolio returns ∆Vt and the α = 0.05 predicted Value-at-Risk based on the
monitoring procedure, allowing for structural breaks (upper panel) and without (lower panel)
for the period between 29.01.2002 and 01.07.2013.

6. CONCLUSION

We propose a new monitoring procedure for detecting structural breaks in factor copula models

and analyse the behaviour under the null hypothesis of no change. Due to the discontinuity

of the SMM objective function this requires additional effort to derive a functional limit

theorem for the model parameters. The presence of nuisance parameters in the asymptotic

distribution of the two proposed detectors requires a bootstrap approximation for parts of

the asymptotic distribution. The case of detecting two breaks is also treated. In simulations,
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the proposed procedures show good size and power properties in single and multiple break

settings in finite samples. An empirical application to a set of 10 stock returns of large

financial firms indicates the presence of break points around July 2007 and August 2008, time

points of the heights of the last financial crisis. The proposed online Value-at-Risk procedure

shows the usefulness of the monitoring procedure in portfolio management.

7. ASSUMPTIONS AND PROOF

7.1. Assumption

Assumption 3 and Assumption 4 ensure that the estimated rank correlation and quantile

dependencies converge to their respective population counterparts.

Assumption 3. i) The distribution function of the innovations Fη and the joint distri-

bution function of the factors FX(θ) are continuous.

ii) Every bivariate marginal copula Cij(ui, uj; θ) of C(u; θ) has continuous partial deriva-

tives with respect to ui ∈ (0, 1) and uj ∈ (0, 1).

The assumption is similar to Assumption 1 in (Oh and Patton, 2013), but the assumption

on the copula is relaxed in the sense that the restriction of ui and vi is relaxed to the open

interval (0, 1).

Assumption 4. The first order derivatives of the functions φ 7→ µt(φ) and φ 7→ σt(φ) exist

and are given by .
µt(φ) := ∂µt(φ)

∂φ′
and .

σkt(φ) := ∂[σt(φ)]k-th column
∂φ′

for k = 1, . . . , d. Moreover,

define γ0t := σ−1
t (φ̂) .µt(φ̂) and γ1kt := σ−1

t (φ̂) .σkt(φ̂) such as

dt := ηt − η̂t −
(
γ0t +

d∑
k=1

ηktγ1kt

)
(φ̂− φ0),

with ηkt is the k-th row of ηt and γ0t such as γ1kt are Et−1-measurable, where Et−1 contains

information from the past as well as possible information from exogenous variables.
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i) 1
T

bsT c∑
t=1

γ0t
p=⇒ sΓ0 and 1

T

bsT c∑
t=1

γ1kt
p−→ sΓ1k, uniformly in s ∈ [ε, 1], ε > 0, where Γ0 and

Γ1k are deterministic for k = 1, . . . , d.

ii) 1
T

T∑
t=1

E(‖γ0t‖), 1
T

T∑
t=1

E(‖γ0t‖2), 1
T

T∑
t=1

E(‖γ1kt‖) and 1
T

T∑
t=1

E(‖γ1kt‖2) are bounded for

k = 1, . . . , d.

iii) There exists a sequence of positive numbers rt > 0 with
∞∑
i=1

rt < ∞, such that the

sequence max
1≤t≤T

‖dt‖
rt

is tight.

iv) max
1≤t≤T

‖γ0t‖√
T

= op(1) and max
1≤t≤T

|ηkt|‖γ1kt‖√
T

= op(1) for k = 1, . . . , d.

v) (αT (s,u),
√
T (φ̂− φ0)) weakly converges to a continuous Gaussian process in D((0, 1]×

[0, 1]d)×Rr, where D((0, 1]× [0, 1]d) is the space of all Càdlàg-functions on (0, 1]× [0, 1]d,

with

αT (s,u) := 1√
T

bsT c∑
t=1

{
d∏

k=1
1{Ukt ≤ uk} −C(u; θ)

}
.

vi) ∂Fη
∂ηk

and ηk ∂Fη∂ηk
are bounded and continuous on Rd = [−∞,∞]d for k = 1, . . . , d.

vii) For u ∈ [0, 1]d, s ∈ [m, 1] and F̂
1+(s−m)T :st

(η̂t) = (F̂ 1+(s−m)T :st
1 (η̂1t), . . . , F̂ 1+(s−m)T :st

d (η̂dt)),

the sequential empirical copula process

1√
T

 bsT c∑
t=1+b(s−m)T c

1{F̂
1+(s−m)T :st

(η̂t) ≤ u} − C(u)


converges in distribution to some limit process A∗(s,u) on [0, 1]d × [m, 1]

Parts i) to vi) of this assumption are similar to Assumption 2 in (Oh and Patton, 2013), only

part i) and v) are more restrictive. We need this because we consider successively estimated

parameters. Part vii) ensures that the empirical copula process of the residuals has some well

defined limit. Note that Assumption vii) is plausible and follows from a combination of the

results in Bücher, Kojadinovic, Rohmer, and Segers (2014) and Rémillard (2017).
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The next assumption is needed for consistency of the successively estimated parameters. It

is the same as Assumption 3 in (Oh and Patton, 2013) with the difference that part (iv) is

adapted to our situation and that a regularity condition on the moment simulating function

(which is missing both in (Oh and Patton, 2013) and (Manner et al., 2019) is added in part

(v). Note that part i) ensures the identifiability of the factor model.

Assumption 5. i) For g0(θ), defined by the limit g1:mT,S(θ)→p g0(θ) for T, S →∞, it

holds that g0(θ) = 0 only for θ = θ0 (the value of all θt under the null).

ii) The space Θ of all θ is compact.

iii) Every bivariate marginal copula Cij(ui, uj; θ) of C(u; θ) is Lipschitz-continuous

for (ui, uj) ∈ (0, 1)× (0, 1) on Θ.

iv) The sequential weighting matrix Ŵ(s−m)T :sT is Op(1) and sup
s∈[m,1]

‖Ŵ(s−m)T :sT −W‖
p−→ 0

for m ≥ ε > 0.

v) It holds for the moment simulating function m̃S(θ) that, for θ1, θ2 ∈ Θ,

|m̃S(θ1)− m̃S(θ2)| ≤ CS|θ1 − θ2|

with a random variable CS that is independent of θ1 − θ2 and that fulfills E(C2+δ
S ) <∞

for some δ > 0.

The compactness of Θ is not too restrictive and the parameter space can be determined

from outside information such as constraints from economic arguments. Further, we checked

Assumption 5 v) for the case of m̂ij = ρ̂ij and m̂ij = λ̂ij0.1 using Model 4.1. We considered

θ1 = θ2 + h where h = 1
i
for i = 1, . . . , 1000, θ2 = 1.0 and d = 10. We varied S =

{250, 500, 1000, 2000, 4000} and the Results can be seen in Figure 7.5.

Figure 7.5 reveals that the quotient q(h) := |m̃S(θ1)−m̃S(θ2)|
|θ1−θ2| seems to be bounded for increasing

S independently of the parameter difference 1
i
.
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Finally, we need an assumption for distributional results, which is the same as Assumption 4

in (Oh and Patton, 2013) with a difference in part iii).

Figure 7.5: Quotient q(h) for h = 1
i
for i = 1, . . . , 1000, θ2 = 1.0 and d = 10 such as

S = {250(blue), 500(orange), 1000(yellow), 2000(purple), 4000(green)}. Results for m̂ij = ρ̂ij
(upper panel) and m̂ij = λ̂ij0.1 (lower panel) using Model 4.1.
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Assumption 6. i) θ0 is an interior point of Θ.

ii) g0(θ) is differentiable at θ0 with derivative G such that G′WG is non singular.

iii) ∀s ∈ [m, 1], ε > 0 : g.,S(θ(s−m)T :sT,S)′Ŵg.,S(θ(s−m)T :sT,S) ≤ inf
θ∈Θ

g.,S(θ)′Ŵg.,S(θ) + dT ,

where dT = o∗p((m2T )−1) and dT ≥ 0.

7.2. Proofs

Proof of Theorem 1

We consider the dependence measures Spearman’s rho and quantile dependence measures,

which are functions only depending on bivariate copulas.

Under the null and all mentioned Assumptions, we first want to show

m
√
T (m̂(s−m)T :sT −m0(θ0)) d−→ A(s), T →∞, ∀s ∈ [m, 1],m ≥ ε > 0

where A(s) is a Gaussian process and θ0 the value of all θt under the null.

By Assumption iiv) (1) the sequential empirical copula of the d-dimensional random vectors

fulfills

CT :=m
√
T
[
Ĉ1+(s−m)T :sT (u)− C(u)

]
= 1√

T

 bsT c∑
t=1+b(s−m)T c

1{F̂
1+(s−m)T :sT (η̂t) ≤ u} − C(u)


d=⇒

(1)
= A∗(s,u), T →∞, ∀s ∈ [m, 1],m ≥ ε > 0,

where u ∈ [0, 1]d and F̂
1+(s−m)T :sT (η̂t) := (F̂ 1+(s−m)T :sT

1 (η̂1t), . . . , F̂ 1+(s−m)T :sT
d (η̂dt)). Here,

F̂
1+(s−m)T :sT
j denotes the marginal empirical distribution function of the j-th component and

Ĉ := Ĉ1+(s−m)T :sT (u) the empirical copula both calculated from the data between the time

point 1 + b(s−m)T c and time point bsT c. Note that Spearman’s rho between the i-th and
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j-th component is given by

12
∫ 1

0

∫ 1

0
C(1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1)duiduj − 3

and that the quantile dependencies are projections of the d-dimensional copula onto one

specific point divided by some prespecified constant. Define the function mij(C) as the

function which generates a vector of all considered dependence measures (Spearman’s rho

and/or quantile dependencies for different levels) between the i-th and j-th component out

of the copula C. Without loss of generality consider the equidependent case (averaging over

all possible pairs, for details see Oh and Patton (2017)), then the function

m(C) : D[0, 1]d → Rk

C → m(C) = 2
d(d− 1)

d−1∑
i=1

d∑
j=i+1

mij∗(C)

is continuous and we directly obtain

m
√
T (m̂1+(s−m)T :sT −m0(θ)) =m

√
T
[
m(Ĉ)−m(C)

]
d=⇒ 2
d(d− 1)

∑
i,j

mij(A∗(s,u))
 =: A(s)

as T →∞ with s ∈ [m, 1],m ≥ ε > 0. Here, mij(·) is the same function as mij∗(·) with the

only difference that the formula for Spearman’s rho between the i-th and j-th component is

replaced by

12
∫ 1

0

∫ 1

0
C(1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1)duiduj.

Then we receive for S
T
→ k ∈ (0,∞] and T, S →∞
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m
√
Tg1+(s−m)T :sT,S(θ) = m

√
T
(
m̂1+(s−m)T :sT − m̃S(θ)

)
=m
√
T
(
m̂1+(s−m)T :sT −m0(θ)

)
−m
√
T (m̃S −m0(θ))

=m
√
T
(
m̂1+(s−m)T :sT −m0(θ)

)
−
√
T

S
m
√
S (m̃S −m0(θ))

d=⇒A(s)− m√
k
B,

where B = N(0,Σ0) is a centered Gaussian distribution with covariance matrix Σ0, for details

see Oh and Patton (2013). The limit result then follows with the same proof steps as in

Manner et al. (2019), using the given limit result for m
√
Tg1+(s−m)T :sT,S(θ) and replacing the

scale factor s
√
T by m

√
T .

This completes the proof. �

Proof of Theorem 2

Due to Assumption 2, conditionally on the original data, as T →∞, the process

A(b)(s) = m
√
T
(
m̂

(b)
1+(s−m)T :sT − m̂

(b)
1:T

)

converges in distribution to the process A(s) defined in Theorem 1 in Manner et al. (2019), see

Proposition 4 in Genest and Rémillard (2008). Then, the results for the null hypothesis follow,

as all transformations of the process of the empirical moments from the proof of Theorem 1

are applicable for the bootstrap sample as well. Under the alternatives, it holds that, for

some s ∈ (0, 1) the quantities θ̂1+(s−m)T :sT,S and θ̂1:mT,S resp. m̂1+(s−m)T :sT and m̂1:mT have

different limits so that the detectors tend to ∞. On the other hand, the bootstrapped critical

values remain stochastically bounded, as they are generated under the assumption that the

model does not change over time. �

39



REFERENCES

Bedford, T. and R. Cooke (2002): “Vines - A New Graphical Model for Dependent

Random Variables,” Annals of Statistics, 30, 1031–1068.

Berens, T., D. Wied, G. Weiß, and D. Ziggel (2014): “A new set of improved

Value-at-Risk backtests,” Journal of Banking and Finance, 48, 29–41.

Bücher, A., I. Kojadinovic, T. Rohmer, and J. Segers (2014): “Detecting changes

in cross-sectional dependence in multivariate time series,” Journal of Multivariate Analysis,

132, 111–128.

Chu, C., M. Stinchcombe, and H. White (1996): “Monitoring structural change,”

Econometrica, 64 (5), 1045-1065.

Chu, C.-S. J., K. Hornik, and C.-M. Kuan (1995): “MOSUM Tests for Parameter

Constancy,” Biometrika, 82, 603–617.

Dette, H. and J. Goesmann (2018): “A likelihood ratio approach to sequential change

point detection,” Working paper.

Dowd, K. and D. Blake (2006): “After VaR: The theory, estimation and insurance

applications of quantile-based risk measures,” The journal of risk and insurance, 73,

193–229.

Francq, C. and J. Zakoian (2004): “Maximum likelihood estimation of pure GARCH

and ARMA-GARCH processes,” Bernoulli, 10(4), 605–637.

Galeano, P. and D. Wied (2013): “Monitoring correlation change in a sequence of random

variables,” Journal of Statistical Planning and Inference, 143, 186–196.

40



——— (2014): “Multiple Break Detection in the Correlation Structure of Random Variables,”

Computational Statistics and Data Analysis, 76, 262–282.

Garthoff, R. (2014): “Sequential analysis of financial time series using residual charts,”

Advances in Statistical Analysis, 8, 91–113.

Genest, C. and B. Rémillard (2008): “Validity of the Parametric Bootstrap for Goodness-

of-Fit Testing in Semiparametric Models,” Annales de l’Institut Henri Poincaré - Probabilités

et Statistiques, 44, 1096–1127.

Gray, S. (1996): “Modeling the conditional distribution of interest rates as a regime-switching

process,” Journal of Financial Economics, 42, 27–62.

Hoga, Y. and D. Wied (2017): “Sequential Monitoring of the Tail Behavior of Dependent

Data,” Journal of Statistical Planning and Inference, 182, 29–49.

Klaassen, F. (2002): “Improving GARCH volatility forecasts with regime- switching

GARCH,” Empirical Economics, 27, 363–394.

Krupskii, P. and H. Joe (2013): “Factor Copula Models for Multivariate Data,” Journal

of Multivariate Analysis, 120, 85–101.

Kurozumi, E. (2017): “Monitoring parameter constancy with endogenous regressors,”

Journal of Time Series Analysis, 38, 791–805.

Manganelli, S. and R. Engle (2004): “CAViaR: Conditional Autoregressive Value at

Risk by Regression Quantiles,” Journal of Business and Economic Statistics, 22, 4.

Manner, H., F. Stark, and D. Wied (2019): “Testing for structural breaks in factor

copula models,” Journal of Econometrics, 208, 324–345.

41



McNeil, A. and R. Frey (2000): “Estimation of tail-related risk measures for heteroscedas-

tic financial time series: an extreme value approach,” Journal of Empirical Finance, 7,

270–300.

Na, O. and J. Lee (2014): “Monitoring test for stability of copula parameter in time series,”

Journal of the Korean Statistical Society, 43, 483–501.

Oh, D. and A. Patton (2013): “Simulated Method of Moments Estimation for Copula-

Based Multivariate Models,” Journal of the American Statistical Association, 108.

——— (2017): “Modelling Dependence in High Dimensions with Factor Copulas,” Journal

of Business and Economic Statistics, 35, 139–154.

Pape, K., D. Wied, and P. Galeano (2017): “Monitoring Multivariate Variance Changes,”

Journal of Empirical Finance, 39(A), 54–68.

Rémillard, B. (2017): “Goodness-of-Fit Tests for Copulas of Multivariate Time Series,”

Econometrics, 35, 139–154.

Savu, C. and M. Trede (2010): “Hierarchies of Archimedean Copulas,” Quantitative

Finance, 10, 295–304.

42


