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Abstract

A multivariate monitoring procedure is presented to detect changes in the parameter vector

of the Dynamic Conditional Correlation (DCC) model. The procedure can be used to detect

changes in both the conditional and unconditional variances as well as in the correlation structure

of the model. The detector is based on the contributions of individual observations to the

gradient of the quasi-log-likelihood function. More precisely, standardized derivatives of quasi-

log-likelihood contributions at time points in the monitoring period are evaluated at parameter

estimates calculated from a historical period. The null hypothesis of a constant parameter vector

is rejected if these standardized terms differ too much from zero. Critical values are obtained

via a parametric bootstrap type procedure. Size and power properties of the procedure are

examined in a simulation study. Finally, the behavior of the proposed monitoring scheme is

illustrated with a group of asset returns.
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1 Introduction

In recent years a lot of research has been focused on modeling volatilities and correlations as well as

on testing for structural breaks. Research in the intersection between these fields is motivated by the

importance of being informed about changes in the variances and covariances or in the parameters

that determine these characteristics, as soon as possible after their occurrence. In particular, in

financial applications, analysts may need the aforementioned information to construct optimal

portfolios or to anticipate crises since volatilities and correlations tend to increase in turbulent

market phases, see for instance Sandoval Jr. and De Paula Franca (2012) or Charles and Darné

(2014).

While former monitoring methods for multiple asset returns often focus either on variances or

correlations, see for instance, Wied and Galeano (2013) and Pape et al. (2016), among others,

we aim at monitoring structural changes in both volatilities and correlations jointly. For this

purpose, we consider the popular Dynamic Conditional Correlation (DCC) model by Engle (2002)

and provide a method to monitor its parameters which steer the conditional and unconditional

volatilities and correlations.1 So, in contrast to Wied and Galeano (2013) and Pape et al. (2016),

who propose methods which do not use a specific model assumption, our approach is model-based.

This could in principle lead to efficiency gains as long as the model assumptions fit the data.

If the parameters are not constant in the observed period, then parameter estimates based on

the constancy assumption are no longer reliable, as they yield biased volatility and correlation

forecasts. Furthermore, the sum of the estimated autoregressive parameters of the conditional

variance converges to one in univariate Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) models if a parameter change is ignored, see Hillebrand (2005). This result should be

kept in mind while dealing with multiple return series.

In contrast to the technique of Aue et al. (2009), who use a retrospective method to detect changes

in the covariance structure of multivariate time series, we prefer a sequential monitoring procedure.

That is, based on an historical period of observations, we obtain new data points bit by bit and
1This means that we do not consider models such as Audrino and Trojani (2011) in which time-varying parameters

are included from the beginning on.
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use them to refresh our detector in order to determine the presence of a changepoint in the model

parameters as soon as possible once it has happened. Our approach is motivated by the work of

Chu et al. (1996) and Berkes et al. (2004). First, Chu et al. (1996) suggest to use the information of

a historical sample, that is entirely available when the monitoring starts and is assumed to be free

from structural breaks. Then, a size controlled sequential test is developed to check the structural

stability of linear models based on cumulated recursive residuals. Building on this procedure,

Berkes et al. (2004) propose a sequential monitoring scheme to detect changes in the parameters of

the GARCH model. For this purpose, a detector that depends on quasi-likelihood scores is used.

The historical sample is used to estimate the model parameters, that are used to evaluate the

contributions of the data from the monitoring period to the Gaussian quasi-log-likelihood (QLL)

function. Hence, under the alternative of a parameter change in the monitoring period, it is

expected that the absolute gradient contributions of post-break observations tend to infinity.

The procedure proposed in this paper is used to monitor changes in the parameters of the DCC

model and can be seen as a multivariate extension of the monitoring scheme proposed by Berkes

et al. (2004). Nonetheless, the extension is much more complex than it may seem. Models that allow

for dynamic modelling of both the variances and correlations possess a far more complex structure

than other multivariate extensions of the univariate GARCH model. The challenge of handling

the model and its quasi-likelihood scores gets even more demanding if a multiplicative structure

of the conditional covariance matrix is postulated as in the DCC model. Also, the DCC models

and their properties are far less well investigated than univariate GARCH models and especially

the classical GARCH model considered by Berkes et al. (2004). For the models with dynamic

conditional correlations, important results like conditions for the existence and uniqueness of a

stationary solution or for the existence of unconditional moments of higher order have just been

proposed recently, see Fermanian and Malongo (2017), or remain to be established, which makes

this type of model quite challenging in applications.

Even if we focus on the DCC model due to its enormous popularity for modeling multiple financial

returns, the results of this paper may be extended to models with structure similar to the one

of the DCC model of Engle (2002), e.g., the Constant Conditional Correlation (CCC) model of
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Bollerslev (1990), the Varying Conditional Correlation (VCC) model of Tse and Tsui (2002) and

the Asymmetric Generalized Dynamic Conditional Correlation (AG-DCC) model of Capiello et al.

(2006), among others. On the contrary, the extension to other popular multivariate volatility

models, e.g., the multivariate extensions of the GARCH models as proposed by Bollerslev et al.

(1988) or the BEKK model proposed by Engle and Kroner (1995), that ensures the nonnegative

definiteness of the conditional covariance matrix under milder conditions on the parameters, is more

complex as the structure of these models is quite different than the structure of dynamic correlation

models.

The rest of the paper is organized as follows. Section 2 briefly introduces the DCC model proposed

by Engle (2002), presents necessary assumptions for the existence of a unique stationary solution

of the DCC model, and explains quasi maximum likelihood estimation (QMLE) of the DCC model

parameters. Then, Section 3 presents the monitoring problem and the proposed monitoring scheme.

The performance of the procedure in finite time samples is investigated with the help of simulations

and an application to a time series of returns in Sections 4 and 5, respectively. Finally, some

concluding statements can be found in Section 6.

2 The Dynamic Conditional Correlation Model

2.1 The Model and Basic Assumptions

Let {yt, t ∈ Z} be a sequence of p dimensional random vectors, yt = (y1t, . . . , ypt)′, following a

multivariate GARCH model given by

yt = H
1/2
t εt (2.1)

where

Ht = Cov (yt|Ft−1) (2.2)

is the positive definite conditional covariance matrix of yt given the information set Ft−1 =

σ {yt−1, yt−2, . . .} and {εt, t ∈ Z} a standard white noise sequence in Rp, i.e. E (εt) = 0p, Cov (εt) =

Ip, ∀t ∈ Z, and the vectors εt are mutually independent. In the following, 0p, 0p×p and Ip denote the
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p dimensional vector of zeros, the (p× p) dimensional matrix of zeros, and the (p× p) dimensional

identity matrix, respectively.

Of all the available specifications of the conditional covariance matrix Ht, we focus on the one

presented by Engle (2002) for its high popularity. That is, we assume

Ht = DtRtDt (2.3)

with Dt = diag
{
h

1/2
1t , . . . , h

1/2
pt

}
, where hit, i = 1, . . . , p, are the individual variances, that can be

specified for instance according to univariate GARCH(1,1) models:

hit = ωi + αiy
2
i,t−1 + βihi,t−1, i = 1, . . . , p, (2.4)

for certain parameters ωi, αi and βi. Furthermore, Rt := Cor (yt|Ft−1) is the conditional correlation

matrix of yt, which can be decomposed as

Rt = Q∗tQtQ
∗
t , (2.5)

where Qt is a (p× p) matrix that is recursively determined as

Qt = (1− α− β) Q̄+ αzt−1z
′
t−1 + βQt−1 (2.6)

with zt = D−1
t yt the standardized vectors. The parameters α and β are nonnegative scalars,

which satisfy α + β < 1. Q̄ = [q̄ij ]i,j=1,...,p is both the unconditional covariance and correlation

matrix of zt in the special case of constant conditional correlations, see Aielli (2013). Motivated

by this, we impose the restriction that the main diagonal elements are one, which is common in

the literature. Consequently, the unknown parameters in the matrix Q̄ are the entries of ψ =

vecl
(
Q̄
)

= (q̄21, . . . , q̄p,p−1)′, where vecl(·) is the operator that stacks the lower diagonal elements

of a matrix into a vector. Finally, the normalizing matrix Q∗t is given by

Q∗t := diag
{

[Qt]−1/2
11 , . . . , [Qt]−1/2

pp

}
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where [Qt]ii denotes the i-th main diagonal entry of the matrix Qt, for i = 1, . . . , p.

In summary, the vector of parameters of the DCC model is given as

θ = (ω1, α1, β1, . . . , ωp, αp, βp, α, β, q̄21, . . . , q̄p,p−1)′

which leads to a total number of d := 1
2 (p+ 1) (p+ 4) unknown parameters in the model. Note

that θ can be decomposed into θ =
(
θ′1,θ

′
2
)′, where

θ1 = (ω1, α1, β1, . . . , ωp, αp, βp)′ =
(
φ′1, . . . , φ

′
p

)′

with φi := (ωi, αi, βi)′, for i = 1, . . . , p, is the vector of variance parameters and

θ2 = (α, β, q̄21, . . . , q̄p,p−1)′ =
(
α, β, ψ′

)′
,

is the vector of correlation parameters.

An important issue in multivariate models with dynamic variances and correlations is that the

positive definiteness of the conditional covariance matrix Ht has to be guaranteed for all t ∈ Z

almost surely. Proposition 2 in Engle and Sheppard (2001) gives sufficient conditions for this

property. Particularly, the matrix Ht, as specified in (2.3)-(2.6), is positive definite for all t ∈ Z

almost surely, if Assumption 2.1 is satisfied:

Assumption 2.1. 1. ωi > 0, ∀i ∈ {1, . . . , p}.

2. αi > 0 and βi > 0 with αi + βi < 1, ∀i ∈ {1, . . . , p}, see also Nelson and Cao (1992).

3. hi0 > 0, ∀i ∈ {1, . . . , p}.

4. α > 0 and β > 0 with α+ β < 1.

5. There exists δ1 > 0 with λmin(Q̄) > δ1, where λmin(·) is the smallest eigenvalue of a square

matrix.

Particularly, Assumption 2.1 ensures that Qt is positive definite for all t ∈ Z because of the
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decomposition

Qt = 1− α− β
1− β Q̄+ α

∞∑
n=0

βnzt−n−1z
′
t−n−1

and 6.70.(a) in Seber (2008):

λmin (Qt)
a.s.
≥ λmin

(1− α− β
1− β Q̄

)
+ λmin

(
α
∞∑
n=0

βnzt−n−1z
′
t−n−1

)
a.s.
≥ 1− α− β

1− β λmin
(
Q̄
)
>

1− α− β
1− β δ1 > 0.

Let p− := 1
2p (p− 1) be the number of unknown parameters in the constant matrix Q̄. Analogously

to Berkes et al. (2003) and Berkes et al. (2004), we consider the parameter space U ,

U :=
{
u : max

{
t1, . . . , tp, b, a+ b, |q1| , . . . ,

∣∣qp−∣∣} ≤ ρ, λmin
(
FQ̄(u)

)
> δ1,

and u < min {x1, s1, t1, . . . , xp, sp, tp, a, b} ≤ max {x1, s1, t1, . . . xp, sp, tp, a, b} ≤ u}

where u =
(
x1, s1, t1, . . . , xp, sp, tp, a, b, q1, . . . , qp−

)′ is a generic element of the constrained parame-

ter space U and

FQ̄(u) :=



1 q1 q2 . . . qp−1

q1 1 qp . . .
...

... qp
. . . qp−−1

...
... 1 qp−

qp−1 . . . qp−−1 qp− 1


.

Moreover, 0 < u < u and 0 < ρ < 1 are fixed constants. Throughout the paper, we assume that

the true parameter θ (both before and after potential breaks) is contained in this parameter space.

2.2 Existence of a Unique Stationary Solution

To verify the existence of a stationary and unique solution satisfying the DCC model, some addi-

tional assumptions have to be imposed. More precisely, as in Fermanian and Malongo (2017), the
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model equations (2.1)-(2.6) can be written in autoregressive form as

Xt = TtXt−1 + ζt (2.7)

with

Xt :=
(
h1t, . . . , hpt, y

2
1t, . . . , y

2
pt, vecl (Qt)′ , vecl

(
ztz
′
t

)′)′
,

ζt :=
(
ω1, . . . , ωp, ω1z

2
1t, . . . , ωpz

2
pt, (1− α− β) vecl

(
Q̄
)′
, vecl

(
ztz
′
t

)′)′

and

Tt =



β1 0 α1 0
. . . . . . 0p×p− 0p×p−

0 βp 0 αp

β1z
2
1t 0 α1z

2
1t 0

. . . . . . 0p×p− 0p×p−

0 βpz
2
pt 0 αpz

2
pt

0p−×p 0p−×p β Ip− α Ip−

0p−×p 0p−×p 0p−×p− 0p−×p−



.

Denote as I := {It, t ∈ Z} the filtration of the process {Xt, t ∈ Z} in (2.7), i.e., It = σ (Xt, Xt−1, . . .)

is the information set at time t. In the following, consider the process {ηt, t ∈ Z} with ηt := R
−1/2
t zt.

Conditional upon the information up to time t− 1, ηt behaves like an innovation vector and will be

called conditional innovation. Analogously to Assumptions A0 and U0 and Assumptions U1-U3 in

Fermanian and Malongo (2017), we assume:

Assumption 2.2. The process {ηt, t ∈ Z} possesses the Markov property with respect to the filtra-

tion I. In particular, we have E (ηt|It−1) = E (ηt|Xt−1) , ∀t ∈ Z. Furthermore, {ηt, t ∈ Z} is ergodic

and stationary.

Assumption 2.3. max
1≤i≤p

αi + max
1≤i≤p

βi < 1 and |β| < 1.

Then, under assumptions 2.2 and 2.3, Fermanian and Malongo (2017) have shown that the strict
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stationarity of {Xt, t ∈ Z} and thus of the DCC process {yt, t ∈ Z} can be obtained with Tweedie’s

Theorem, see Tweedie (1988), which implies the existence of a time invariant measure for the

transition probabilities of the linear Markov chain given by (2.7). In addition, the uniqueness of

the stationary solution can be obtained under the following assumption, which is equivalent to (14)

in Fermanian and Malongo (2017):

Assumption 2.4.

E
[
ln

(
β2 + α2 4(2p+ 1)√p√

CλCq
‖ηt‖22

)]
< 0,

where Cλ = (1−α−β)λmin(Q̄)
1−β2 and Cq =

(1−α−β) min
1≤i≤p

q̄ii

1−β2 are constants.

Assumption 2.4 brings up a restriction for the variance of ηt given the model parameters. It is more

likely fulfilled the smaller α and β are. As Fermanian and Malongo (2017) state, the expectation

can be simulated. So, it would be possible to check whether the assumption might be fulfilled

by estimating the model parameters given the distribution of ηt, simulating the expectation and

checking whether it is smaller than 0.

2.3 Estimation of the Model Parameters

Given an observed multivariate time series y1, . . . , yT , the QMLE of θ is a consistent parameter

estimator that is obtained by maximizing the Gaussian QLL function

LT (θ) := LT (θ|y1, . . . , yT ) =
T∑
t=1

lt (θ|y1, . . . , yT ) , (2.8)

with individual QLL contributions

lt(θ) := lt (θ|y1, . . . , yT ) = −1
2
(
p · log 2π + log det (Ht) + y′tH

−1
t yt

)
. (2.9)

Direct computation of the QMLE in one step is computationally expensive even for moderate di-

mensions of yt. Alternatively, Engle and Sheppard (2001) proposed a two-step QMLE estimator
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to reduce the calculation time2. The two-step one is based on maximizing the part of the likeli-

hood that only depends on the volatility parameters, θ1, and, after plug-in the estimates of these

parameters and of the matrix Q̄, maximize the rest of the likelihood that will only depends on

the correlation parameters, θ2. The step of estimating Q̄ is called variance targeting, but this

does not work in general, so that this procedure is in general not consistent (Aielli, 2013). Indeed,

preliminary simulations showed that the one step QMLE yields distinctly better estimates than

the two step one for the considered parameters values. Hence, we use the one step QMLE for our

simulations and applications.3 In the following, we denote this estimator calculated from a sample

of T observations as θ̂T .

3 The Monitoring Procedure

Next, we are interested in the hypothesis of model parameter stability of the sequence {yt, t ∈ Z}.

For that, let θt ∈ Rd be the parameter vector of the DCC model at time t. Assume that we have

observed a sequence of yt of length m, y1, . . . , ym, that is not affected by any structural change over

such historical period, i.e.:

Assumption 3.1. θ1 = . . . = θm with m a positive integer.

Then, we are interested in testing the null hypothesis of a constant parameter vector

H0 : θt = θ, t = 1, . . . ,m,m+ 1, . . .

against the alternative of a change in the vector of parameters at an unknown point in the moni-

toring period

H1 : θt =


θ, t = 1, . . . ,m,m+ 1, . . . ,m+ k∗ − 1

θ∗, t = m+ k∗,m+ k∗ + 1, . . .

2There is an alternative approach for estimating the model equation by equation (Francq and Zakoïan, 2016),
which we have not used.

3Another possibility would have been to consider the cDCC-model proposed by Aielli (2013) and to use the
estimator proposed there.
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with θ =
(
φ′1, . . . , φ

′
p, α, β, ψ

′
)′

the parameter vector before and θ∗ =
(
φ∗′1 , . . . , φ

∗′
p , α

∗, β∗, ψ∗′
)′

the

parameter vector after the change, where φ∗i = (ω∗i , α∗i , β∗i )′, i = 1, . . . , p, and ψ∗ = vecl
(
Q̄∗
)
with

Q̄∗ =
[
q̄∗ij

]
i,j=1,...,p

. Note that the change takes place at the k∗-th point of the monitoring period

which is the (m+ k∗)-th point in the entire time series.

To test H0 against H1, we will make use of a monitoring scheme. One option is to construct a

procedure similar to the method proposed by Berkes et al. (2004) for univariate GARCH models.

We take initially this option and then denote as ∇lt(θ) the gradient of the QLL contributions lt (θ)

with infinite past in (2.9) and ∇l̂t(θ) the gradient with finite past, i.e. the gradient computed with

initial value of the sequence y0 and initial volatilities h10, . . . , hp0.

For a more appropriate comparison of the simulation results for different lengths of the historical

period, we denote the length of the monitoring period as mB. Therefore, B indicates how long the

monitoring period is compared to the historical period. Furthermore, for any θ, define

D(θ) := E∇lt(θ)∇lt(θ)′

and assume:

Assumption 3.2. D := D (θ) is a finite and nonsingular matrix.

For the observed sequence, y1, . . . , ym, D can be estimated with:

D̂m = 1
m

m∑
t=1
∇l̂t(θ̂m)∇l̂t(θ̂m)′

and the monitoring procedure can be based on the detector:

Vk =
m+k∑
t=m+1

D̂
− 1

2
m ∇l̂t(θ̂m)

with stopping rule

τm = min
{
k ≤ mB : |Vk| > m

1
2

(
1 + k

m

)
b
(
k

m

)}
, (3.1)
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where b(·) is a threshold function and | · | the norm that yields the maximum absolute entry of a

vector and matrix. If τm <∞, a change in the parameters is indicated at some time point between

m + 1 and m + τm. If the detector did not cross the threshold function in the monitoring period

and no changepoint could be detected, the set on the right side of (3.1) would be the empty set

and τm =∞ as min ∅ =∞. As in Berkes et al. (2004), some moderate conditions are imposed on

the form of the threshold function b(·):

Assumption 3.3. b (·) is continuous on (0,∞) and inf
0<t<∞

b(t) > 0.

To avoid confusion with the model parameters, let α̃ ∈ (0, 1) be the significance level for testing

the null hypothesis of no parameter change versus the alternative hypothesis of a change during

the monitoring period. Therefore, the threshold function b (·) or at least the variable parts of the

function should be chosen such that

lim
m→∞

PH0 {τm <∞} = α̃ and lim
m→∞

PH1 {τm <∞} = 1.

Berkes et al. (2004) choose the threshold function b (·) as a constant that is obtained via simulation.

Preliminary simulations suggested that the empirical size of the proposed multivariate procedure

depends strongly on the length of the monitoring period, that is on the parameter B, just as in the

univariate case presented by Berkes et al. (2004). To reduce this effect, we include the length of

the monitoring period into the stopping rule (3.1). Moreover, we prefer a curved threshold function

to the linear one that results from choosing b (·) as a constant function. In detail, we use the one

proposed by Horváth et al. (2004) and also used by Wied and Galeano (2013) among others, i.e.

b (x) = max
{(

x

1 + x

)γ
, ε

}

where γ ∈ [0, 1/2) is a tuning parameter and ε > 0 a constant, that can be chosen arbitrarily small

in applications. A larger value of γ results in a steeper threshold function that tends to detect early

changes in the parameters with a higher probability. In contrast, a smaller value of the tuning

parameter leads to a lower slope of the threshold function, which results in a higher probability to
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detect changes that occur later in the monitoring period.

Additionally, we scale this threshold function by multiplying a constant c = c (α̃) that is obtained

via Monte Carlo simulations, such that the probability that the detector crosses the threshold

function in the monitoring period equals the theoretical size α̃.

Under several high-level assumptions, it is possible to derive a theorem regarding the asymptotic

distribution of the detector. The proof is deferred to the appendix. Pape et al. (2017) shows

that these high-level assumption also hold under lower-level assumptions, but the proofs need the

assumption of bounded innovations.

Assumption 3.4. 1. The limit function L(·) of Lm(·) has a unique maximum in θ.

2. For all t = 1, . . . ,mB, it holds

E
[

sup
u∈U

lt(u)
]
<∞.

3. For all t = 1, . . . ,mB, the matrix of second derivatives of lt(u), ∇2lt(u), exists and it holds

E
[

sup
u∈U
∇2lt(u)

]
<∞.

4. Let A (θ) := lim
m→∞

E
[

1
m
∂2Lm(θ)
∂θ∂θ′

∣∣∣
θ=θ

]
be a finite and nonsingular matrix and {θ∗m,m ∈ N} a

sequence with θ∗m
p→ θ for m→∞. For m→∞, we have:

1
m

∂2Lm(θ)
∂θ∂θ′

∣∣∣∣∣
θ=θ∗m

p→ A (θ) .

5. Let B (θ) := lim
m→∞

E
[

1
m
∂Lm(θ)
∂θ

∣∣∣
θ=θ

∂Lm(θ)
∂θ′

∣∣∣
θ=θ

]
be a finite and nonsingular matrix. For T →

∞, we have:
1√
m

∂Lm(θ)
∂θ

d→ N (0d,B (θ)) .

6. The estimator D̂ is consistent for D.

7. It holds

sup
u∈U

∣∣∣∣∣
n∑
i=1

(
∇l̂i(u)−∇li(u)

)∣∣∣∣∣ a.s.= O(1).
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Theorem 3.1. Under the null hypothesis and Assumptions 3.1, 3.2, 3.3 and 3.4 it holds

lim
m→∞

PH0 {τm <∞} = lim
m→∞

PH0

 sup
1<k≤mB

|Vk|
m1/2

(
1 + k

m

)
b
(
k
m

) ≥ c
 = PH0

(
sup

t∈(0,B]

|G(t)|
(1 + t) b (t) ≥ c

)

where
{
G(t) = (G1(t), . . . , Gd(t))′ , t ∈ [0, B]

}
is a d-variate stochastic process whose component

processes are d independent mean zero Gaussian processes {Gj(t), t ∈ [0, B]} with covariance func-

tion E (Gj(k)Gj(l)) = min {k, l}+ kl, for j = 1, . . . , d, where d is the number of parameters in the

DCC model.

Along the lines of Berkes et al. (2004) or Galeano and Wied (2014) and denoting {Wi(t), t ∈ [0,∞)}

for i = 1, . . . , d as d independent one dimensional standard Brownian motions, we have that |G(t)|

possesses the same distribution as max
1≤i≤p

∣∣∣(1 + t)Wi

(
t

1+t

)∣∣∣ for all t ∈ Z, which yields

sup
t∈(0,B]

|G(t)|
(1 + t)b(t)

d= sup
t∈(0,B]

max
1≤i≤d

∣∣∣Wi

(
t

1+t

)∣∣∣
b (t)

d= sup
t∈(0,B]

max
1≤i≤d

∣∣∣Wi

(
t

1+t

)∣∣∣
max

{(
t

1+t

)γ
, ε
}

d= sup
s̃∈(0, B

1+B ]
max

1≤i≤d

|Wi (s̃)|
max {s̃γ , ε}

if t = s̃
1−s̃ is substituted. Furthermore, choosing s̃ = sB

1+B yields

sup
t∈(0,B]

|G(t)|
(1 + t)b(t)

d= sup
s∈( 0,1]

max
1≤i≤d

∣∣∣Wi

(
sB

1+B

)∣∣∣
max

{(
sB

1+B

)γ
, ε
} d=

(
B

1 +B

)1/2−γ
sup

s∈( 0,1]
max

1≤i≤d

|Wi (s)|
max

{
sγ , ε

(
1+B
B

)γ} .
Thus, we can use Monte Carlo simulations to obtain critical values c = c (α̃) in dependence of the

significance level α̃ based on the equality

PH0

( B

1 +B

)1/2−γ
sup

s∈( 0,1]
max

1≤i≤d

|Wi (s)|
max

{
sγ , ε

(
1+B
B

)γ} ≥ c (α̃)


= 1−

PH0

 sup
s∈(0,1]

|W1(s)|
max

{
sγ , ε

(
1+B
B

)γ} <

(1 +B

B

)1/2−γ
c (α̃)

d = α̃

14



or alternatively

PH0

 sup
s∈(0,1]

|W1(s)|
max

{
sγ , ε

(
1+B
B

)γ} <

(1 +B

B

)1/2−γ
c (α̃)

 = (1− α̃)1/d.

Simulations showed that the critical values obtained by the use of the limit distribution of the

detector yield infeasible high size distortions even for large-sized historical periods in finite samples.

As a consequence the detector values tend to exceed the values of the scaled threshold function

soon after the beginning of the monitoring period, whether a parameter change occurs or not.

Nevertheless, to extenuate the resulting size distortions, the critical values can be obtained via

a parametric Bootstrap type procedure. Recall that θ̂m is the estimate of the parameter vector

calculated from the historical sample. We assume that the underlying DCC process features a

similar behavior as the process determined by the parameters estimated from the historical period,

if the latter one is sufficiently large. Hence, bBT = 199 realizations of a DCC process whose structure

is controlled by θ̂m (and the innovations follow a multivariate standard normal distribution) are

simulated and denoted as Y ∗(i) :=
{
y
∗(i)
1 , . . . , y

∗(i)
m(B+1)

}
, for i ∈ {1, . . . , bBT }.

An intuitive approach may be to calculate the detector values

∣∣∣V ∗(i)k

∣∣∣ =
∣∣∣∣∣
m+k∑
t=m+1

[
D̂∗(i)m

]−1/2
∇l̂∗(i)t

(
θ̂m
)∣∣∣∣∣

from each sample Y ∗(i) with ∇l̂∗(i)t

(
θ̂m
)
the QLL contributions and

D̂∗(i)m = 1
m

m∑
t=1
∇l̂∗(i)t

(
θ̂m
) [
∇l̂∗(i)t

(
θ̂m
)]T

the estimate of the matrix D from Assumption 3.2 based on the first m observations of Y ∗(i). But

since we are not interested in using the exact limit distribution of the detector, the matrix D is

substituted by the identity matrix to avoid the additional uncertainty that goes along with the

matrix estimation. Further simulations that are not part of this article showed that this approach

yields a remarkable decrease of the size distortions compared to the use of an estimate of D. Of
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course, other choices can be used instead of the identity matrix such a matrix closer to D, such as

an estimate of the diagonal of D. In any case, this would mean having to perform an estimation

process that is precisely what we try to avoid.

Denote the resulting detector as
∣∣∣Ṽ ∗(i)k

∣∣∣ and the maximum of the scaled detector values gained from

sample Y ∗(i) as

T ∗(i) := max
1≤k≤[mB]

∣∣∣V ∗(i)k

∣∣∣
m1/2

(
1 + k

m

)
b
(
k
m

) , for i ∈ {1, . . . , bBT } .

The (1 − α̃) quantile of
{
T ∗(1), . . . , T ∗(bBT )

}
can be used as a critical value in finite sample appli-

cations. Although a detailed analysis of these critical values and their properties lies beyond the

scope of this article, they show a satisfying behavior in simulations.

Lastly, we investigate the asymptotic distribution of the detector under a parameter change. Recall

that under the alternative of a structural break at an unknown position in the monitoring period,

the parameter vector changes from θ to θ∗ at the k∗-th point of the monitoring period. Under

similar assumptions as for Theorem 3.1, we can show that the detector is consistent, i.e.

Theorem 3.2. Under the alternative of a structural break and Assumptions 3.1, 3.2, 3.3 and 3.4,

we have

lim
m→∞

PH1 {τm <∞} = 1.

However, since it takes some time until the influence of the post break observations on the detector

is strong enough to report the presence of a changepoint, it has to be assumed that in general the

changepoint location is not consistent with the first hitting time τm. Once the presence of a change

in the parameter vector is indicated, the position of the changepoint has to be estimated. For that,

a plausible estimator, analogous to those in Wied et al. (2012) and in Wied and Galeano (2013), is

defined as

k̂ := arg max
1≤k≤τm−1

k
√
τm

∣∣∣∣∣ 1
τm − 1

m+τm−1∑
t=m+1

∇l̂t
(
θ̂m
)
− 1
k

m+k∑
t=m+1

∇l̂t
(
θ̂m
)∣∣∣∣∣ . (3.2)
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Although a detailed analysis of the properties of the estimator in (3.2) lies beyond the scope of this

paper, estimators of this type showed satisfactory behavior in simulations and applications. That

is why we use (3.2) to estimate the location of the changepoint throughout the next sections.

4 Simulations

This section is devoted to the investigation of the performance of the procedure under various

simulation settings. Under the null as well as under alternative hypotheses, some parameters have

to be specified. First, we choose the length of the historical period as m ∈ {500, 1000, 2000}. In

terms of trading days, this roughly equals 2, 4 and 8 years, respectively. We assume that the

length of the monitoring period is considerably smaller than the length of the historical period with

B ∈ {0.1, 0.2, . . . , 0.5}. The dimension of the random vectors is p ∈ {3, 5} and the tuning parameter

is chosen as γ ∈ {0, 0.2, 0.4}. These values support the ability of the monitoring procedure to detect

early or later appearing structural breaks. In any case, we simulated 1000 time series and applied

our procedure to them. Note that all of the simulations are carried out for a significance level

of α̃ = 0.05 and critical values are obtained with the parametric Bootstrap type procedure. The

innovations of the DCC models follow a multivariate standard normal distribution.

4.1 Simulations Under the Null Hypothesis

First, we investigate the performance of the monitoring scheme under the null hypothesis of no

structural break in the parameter vector. For each vector component, the variance parameters are

chosen either as φi = (0.01, 0.05, 0.9)′ or as φi = (0.01, 0.2, 0.7)′, for all i ∈ {1, . . . , p}. Therefore,

the second case indicates a stronger effect of single shocks on the volatility of future observations.

The correlation structure is determined by the parameters (α, β) = (0.05, 0.9) and the constant

unconditional correlation matrix Q̄p which is defined as
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Q̄3 =


1 0.5 0.1

0.5 1 0.5

0.1 0.5 1

 and Q̄5 =



1 0.5 0.3 0.2 0.1

0.5 1 0.5 0.3 0.2

0.3 0.5 1 0.5 0.3

0.2 0.3 0.5 1 0.5

0.1 0.2 0.3 0.5 1


.

The results in Table 1, that shows the empirical sizes for all parameter combinations, suggest that

the empirical size increases with B, which is plausible since larger values of this parameter imply

a growing length of the monitoring period and thus more uncertainty. While larger values of m

and γ reduce the size distortions, higher dimensions tend to increase the probability to commit a

type I error. Importantly, the influence of variations in the length of the historical period and the

dimension are as expected. Furthermore, the empirical size is distinctly higher when the variance

parameters are chosen as φi = (0.01, 0.05, 0.9)′. This result was expected since the sum αi + βi is

closer to 1 in the first scenario than in the second.

4.2 Simulations Under Various Alternatives

In this section, we investigate the performance of the proposed procedure in view of different types

of structural breaks. More precisely, we first simulate changes in the variance parameters followed

by changes in the unconditional correlation matrix Q̄.

Since the results under the null showed a strong dependency on the length of the monitoring period,

the simulations under alternative scenarios will be limited to the case of monitoring periods with

length 0.2m. This choice of B yields small deviations between the empirical and the theoretical

size as the results from Table 1 suggest. As the length of the monitoring period depends on m, we

define the location of the changepoint k∗ in terms of m as k∗ = [mBλ∗], where [·] is the largest

integer smaller than a given real number and the fraction λ∗ is chosen from {0.05, 0.3, 0.5}. This

indicates changes located at the beginning or later in the monitoring period.
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φi = (0.01, 0.05, 0.9)′ φi = (0.01, 0.2, 0.7)′
m = 500 m = 1000 m = 2000 m = 500 m = 1000 m = 2000

p = 3

B = 0.1
γ = 0 0.124 0.088 0.068 0.068 0.077 0.047
γ = 0.2 0.133 0.084 0.074 0.067 0.070 0.052
γ = 0.4 0.116 0.082 0.070 0.064 0.058 0.066

B = 0.2
γ = 0 0.150 0.101 .0.094 0.069 0.057 0.088
γ = 0.2 0.151 0.086 0.091 0.069 0.077 0.087
γ = 0.4 0.118 0.080 0.083 0.065 0.060 0.060

B = 0.3
γ = 0 0.177 0.111 0.089 0.120 0.087 0.081
γ = 0.2 0.151 0.094 0.073 0.095 0.075 0.083
γ = 0.4 0.143 0.084 0.086 0.071 0.054 0.069

B = 0.4
γ = 0 0.213 0.113 0.118 0.106 0.109 0.104
γ = 0.2 0.193 0.120 0.105 0.110 0.098 0.106
γ = 0.4 0.147 0.094 0.072 0.077 0.066 0.063

B = 0.5
γ = 0 0.197 0.118 0.141 0.129 0.110 0.122
γ = 0.2 0.179 0.135 0.097 0.100 0.109 0.115
γ = 0.4 0.166 0.111 0.090 0.086 0.073 0.073

p = 5

B = 0.1
γ = 0 0.139 0.093 0.079 0.080 0.085 0.062
γ = 0.2 0.141 0.104 0.067 0.071 0.066 0.047
γ = 0.4 0.117 0.093 0.072 0.070 0.048 0.060

B = 0.2
γ = 0 0.153 0.099 0.083 0.079 0.080 0.082
γ = 0.2 0.161 0.112 0.085 0.088 0.081 0.068
γ = 0.4 0.148 0.083 0.073 0.074 0.069 0.059

B = 0.3
γ = 0 0.181 0.109 0.087 0.102 0.118 0.116
γ = 0.2 0.161 0.110 0.098 0.087 0.098 0.090
γ = 0.4 0.148 0.087 0.085 0.074 0.064 0.071

B = 0.4
γ = 0 0.181 0.117 0.122 0.121 0.106 0.125
γ = 0.2 0.199 0.109 0.111 0.102 0.108 0.101
γ = 0.4 0.151 0.114 0.088 0.073 0.079 0.086

B = 0.5
γ = 0 0.198 0.111 0.131 0.152 0.126 0.140
γ = 0.2 0.186 0.111 0.123 0.122 0.120 0.118
γ = 0.4 0.182 0.107 0.107 0.092 0.084 0.059

Table 1: Empirical size for all parameter combinations.

4.2.1 Changes in the Variance Parameters

We investigate two different settings of changes in the variance parameters. First, we assume

that φi changes, first, from φi = (0.01, 0.05, 0.9)′ to φ∗i = (0.005, 0.2, 0.7)′ and, second, from φ∗i =

(0.005, 0.2, 0.7)′ to φi = (0.01, 0.05, 0.9)′, for all i ∈ {1, . . . , p}. These settings will be denoted as

Scenario 1 and 2, respectively. Note that apart from the obvious change in parameters that causes

a change in the conditional variance structure, Scenario 1 implies a decrease in the unconditional

variances of all components while Scenario 2 involves a variance increase.

The results for Scenario 1 in Tables 2 and 3 and those for Scenario 2 in Tables 4 and 5 suggest that

the power depends positively on the length of the historical period and negatively on the dimension
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of the random vectors. While the first result is as expected, the negative influence of p on the

power may be explained by the fact that the share of the 3p variance parameters in the group of

all parameters decreases with growing dimension. Thus, changes in the variance parameters might

be harder to detect if p gets large.

The ability to detect parameter changes is distinctly higher for changes located at the beginning

of the monitoring period than for later ones which is a typical property of sequential monitoring

schemes based on the information of a historical sample, see for instance Berkes et al. (2004),

Wied and Galeano (2013) or Pape et al. (2016). Furthermore, parameter changes that lead to

decreased unconditional variance can be detected much more reliably than changes that entail

variance increases. This property underlines the results under the null, which suggest a stronger

tendency of the detector to cross the threshold function if the initial variance parameters are chosen

as φi = (0.01, 0.05, 0.9)′ rather than φi = (0.01, 0.2, 0.7)′.

In addition and consistently with the results under the null, the power decreases with the tuning

parameter γ. This effect occurs even if the structural break is located at a later point in the

monitoring period and should be detected more frequently if a higher value of γ is used.

The results concerning the estimated changepoint locations in Tables 2-5 suggest that the position

of changepoints located at a fraction of λ∗ = 0.3 of the monitoring period, can be estimated without

large distortions while earlier and later changes, respectively, are systematically placed too early

and late, respectively, in the dataset. Note that the results for the estimated changepoint locations

depend strongly on the properties of the first hitting times since these define the length of the

subsample, that is used to locate the changepoint.

4.2.2 Changes in the Correlation Parameters

Another possible alternative scenario is a change in the correlation structure. We assume that the

variance parameters as well as α and β stay constant, whereas the matrix Q̄ changes from Ip to Q̄∗.

The latter one is a matrix whose main diagonal entries are equal to one, while all of the diagonal

entries are ∆ with ∆ ∈ {0.1, . . . , 0.9}. The variance parameters and α and β are chosen as in

Section 4.1.
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Empirical first hitting times Location estimator
λ∗ m γ Power Mean SD Q0.25 Q0.5 Q0.75 Mean SD Q0.25 Q0.5 Q0.75

0.05

500 0 0.973 44.87 14.49 35 42 51 18.05 10.39 11 16 23

(k∗ = 5) 0.2 0.971 40.28 15.77 30 38 48 16.08 9.76 9 14 21
0.4 0.971 40.24 18.28 29 38 50 16.03 10.32 9 14 21

1000 0 1.000 60.40 15.46 51 57 68 24.40 11.71 17 22 29

(k∗ = 10) 0.2 0.999 52.88 16.09 42 50 60 21.18 10.53 14 19 26
0.4 1.000 47.09 19.83 36 45 56 19.20 11.89 12 17 24

0.3

500 0 0.916 66.47 15.56 58 66 77 31.62 9.50 27 31 36

(k∗ = 30) 0.2 0.891 63.86 17.27 54 64 75 30.46 10.17 26 30 35
0.4 0.849 64.25 22.60 54 68 79 31 12.26 26 31 38

1000 0 0.998 110.78 20.19 97 109 122 60.59 12.06 55 60 66

(k∗ = 60) 0.2 0.998 107.62 22.10 94 106 119 59.84 13.31 55 60 66
0.4 0.994 107.05 29.89 94 108 123 58.73 17.64 54 60 66

0.5

500 0 0.724 77.82 17.47 70.75 81 91 43.54 13.39 38 47 51

(k∗ = 50) 0.2 0.703 76.83 19.48 70 81 90 42.58 14.30 36 47 52
0.4 0.558 71.13 28.28 66 80 91 39.39 17.75 31 46 52

1000 0 0.965 148.56 22.61 135 149 163 92.07 20.31 87 97 103

(k∗ = 100) 0.2 0.972 148.36 24.02 136 149 162 93.03 19.56 88 97 103
0.4 0.931 150.02 36.68 140 156 172 92.43 24.40 90 98 104

Table 2: Power against changes in the parameters that imply a variance decrease (Scenario 1) and
properties of the first hitting times τm and estimated changepoints k̂ for p = 3.

Empirical first hitting times Location estimator
λ∗ m γ Power Mean SD Q0.25 Q0.5 Q0.75 Mean SD Q0.25 Q0.5 Q0.75

0.05

500 0 0.927 44.46 13.82 36 42 50 17.23 9.07 11 15 22

(k∗ = 5) 0.2 0.913 39.51 15.13 30 37 45 15.31 8.99 9 13 19
0.4 0.892 38.88 16.83 29 37 48 15.46 10.01 9 13 20

1000 0 0.997 60.62 14.83 51 58 67 23.61 11.11 16 21 28

(k∗ = 10) 0.2 0.997 51.60 14.42 42 49 59 20.66 10.31 14 18 25
0.4 0.996 47.04 18.90 37 45 57 18.85 11.01 12 17 24

0.3

500 0 0.859 66.82 15.25 58 67 77 32.15 9.05 27 31 37

(k∗ = 30) 0.2 0.848 64.89 16.99 56 65 76 31.01 10.60 26 30 37
0.4 0.806 64.09 22.07 55 66 78 30.23 11.81 25.25 30 37

1000 0 0.993 108.95 17.86 97 107 119 59.93 12.89 54 60 65

(k∗ = 60) 0.2 0.992 106.35 20.53 94 106 118 58.72 13.69 54 59 64
0.4 0.992 107.68 28.43 97 109 123 58.45 16.38 54 60 66

0.5

500 0 0.680 79.04 16.92 73 82 91 43.53 12.98 37 46 51

(k∗ = 50) 0.2 0.673 76.54 20.58 70 82 91 42.48 14.36 37 46 51
0.4 0.553 70.67 30.36 65 82 93 38.90 18.00 31 46 51

1000 0 0.973 147.58 22.32 136 148 161 91.81 19.18 86 96 102

(k∗ = 100) 0.2 0.972 145.77 25.43 135 148 161 90.26 21.93 84 97 102
0.4 0.947 148.30 38.44 139 155 169 90.00 25.49 87 97 103

Table 3: Power against changes in the parameters that imply a variance decrease (Scenario 1) and
properties of the first hitting times τm and estimated changepoints k̂ for p = 5.
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Empirical first hitting times Location estimator
λ∗ m γ Power Mean SD Q0.25 Q0.5 Q0.75 Mean SD Q0.25 Q0.5 Q0.75

0.05

500 0 0.768 64.97 19.92 51 66 80 24.62 16.68 12 20 32

(k∗ = 5) 0.2 0.702 56.90 23.55 39.25 57 75 21.57 15.39 10 17 29
0.4 0.558 49.34 29.99 21.25 48 75.75 20.44 17.00 7 15 29

1000 0 0.974 116.05 32.61 95 114 138 39.92 30.82 16 29 55

(k∗ = 10) 0.2 0.955 107.65 38.44 80 107 133 36.77 30.67 14 26 49
0.4 0.810 107.81 49.94 72 109.5 146 39.06 35.14 14 25 53

0.3

500 0 0.527 76.44 15.92 65 79 90 32.30 11.46 27 32 37

(k∗ = 30) 0.2 0.482 73.28 18.45 61 76 88 31.38 12.84 25 31 36
0.4 0.271 62.76 27.40 46 68 85 29.00 14.92 20 30 36

1000 0 0.809 151.87 28.70 130 155 176 58.77 15.35 52 60 65

(k∗ = 60) 0.2 0.727 145.37 33.39 121 149 172 55.86 16.11 48 59 65
0.4 0.457 142.46 47.80 122 153 179 54.78 22.12 46 59 65

0.5

500 0 0.346 81.76 14.91 72 84 95 44.04 15.42 36 48.5 54

(k∗ = 50) 0.2 0.292 76.91 19.49 70 81 92 40.72 16.24 29 46 52
0.4 0.172 58.26 35.67 18 72 87.25 32.97 23.10 6.75 39.5 52

1000 0 0.505 167.32 24.59 153 172 187 86.40 22.86 74 94 102

(k∗ = 100) 0.2 0.445 161.34 32.89 146 168 184 83.36 25.98 71 91 101
0.4 0.221 138.81 61.53 122 164 182 74.26 37.55 52 90 101

Table 4: Power against changes in the parameters that imply a variance increase (Scenario 2) and
properties of the first hitting times τm and estimated changepoints k̂ for p = 3.

λ∗ m γ Power Mean SD Q0.25 Q0.5 Q0.75 Mean SD Q0.25 Q0.5 Q0.75

0.05

500 0 0.738 67.80 19.61 54 70.50 83 25.32 17.10 12.25 20 34

(k∗ = 5) 0.2 0.644 60.38 23.72 43 62.5 80 23.15 17.21 11 18 31
0.4 0.409 46.89 30.46 15 49 72 18.67 16.67 6 13 26

1000 0 0.964 127.63 32.68 105 127 151 43.43 31.97 18 33 62

(k∗ = 10) 0.2 0.935 117.04 39.51 90 116 145 38.39 31.36 15 27 54
0.4 0.704 112.02 55.44 73 120 157.25 41.77 37.69 14 27 59

0.3

500 0 0.491 76.75 16.17 66 80 89 30.91 11.62 25.5 31 36

(k∗ = 30) 0.2 0.394 72.05 20.39 59.25 73 89 30.59 12.72 24 31.5 36
0.4 0.193 56.33 34.87 30 64 88 25.09 17.89 8 29 34

1000 0 0.742 155.38 29.41 137 159 178 58.46 15.89 53 60 65

(k∗ = 60) 0.2 0.671 149.38 33.91 128 154 176 57.44 15.32 51 60 65
0.4 0.363 135.31 58.76 114.5 151 181 53.02 26.20 43.5 59 65

0.5

500 0 0.292 79.91 14.59 70 82 92 41.55 15.36 31 46.5 53

(k∗ = 50) 0.2 0.265 76.12 19.48 65 81 91 39.81 15.82 29 46 52
0.4 0.127 46.23 36.34 4.5 56 78 25.44 21.42 2 24 48

1000 0 0.461 166.82 23.85 150 171 186 83.79 21.66 71 91 100

(k∗ = 100) 0.2 0.384 160.36 33.85 144.75 169 185 82.73 24.10 68.75 90.5 101
0.4 0.175 125.46 71.73 64.5 156 182 65.53 39.96 31.5 80 99

Table 5: Power against changes in the parameters that imply a variance increase (Scenario 2) and
properties of the first hitting times τm and estimated changepoints k̂ for p = 5.
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Figure 1: Power against correlation changes. Black: ωi = 0.01, αi = 0.05, βi = 0.9, for i = 1, . . . , p,
Gray: ωi = 0.01, αi = 0.2, βi = 0.7, for i = 1, . . . , p.

The power results for changes at fraction λ∗ = 0.05 of the monitoring period are illustrated in

Figure 1 for simulated time series of dimension 3 or 5, a historical period consisting of 1000 data

points and tuning parameter γ = 0.2. Please note that we focus on γ = 0.2 here because the simu-

lation results for changes in the variance parameters suggest that this value yields a good balance

between high power (obtained for larger γ) and early breakpoint detection (smaller γ). The results

reveal problems to detect correlation changes of moderate magnitude for both choices of the vector

of variance parameters. However, the power curve has a large slope for higher values and converges

to one. While smaller changes in the correlation parameters can be detected more frequently if
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the variance parameters are chosen as φi = (0.01, 0.05, 0.9)′ rather than φi = (0.01, 0.2, 0.7)′, the

opposite is true for larger values of ∆.

The fact that some of the power results are quite low, suggests that the QLL function seems to be

very flat in some regions, so parameter changes of small magnitude are hard to detect.

5 Empirical Results

To investigate the performance of the proposed monitoring scheme under real conditions, the pro-

cedure is applied to a group of asset returns. Due to the fact that a conjoint modeling seems to be

appropriate for the returns of assets from the same industrial sector and monetary area, we choose

the assets of several insurance companies, which are listed at different stock exchanges throughout

Europe. More precisely, we monitor the log returns of the assets of Allianz (abbreviated by All),

AXA, Generali (Gen), ING and Munich Re (MRe) in the time from 2003-01-03 to 2016-10-25.

The data set is available upon request. Engle (2002) argued that the DCC model is in principle

well-suited to model the typical features of multivariate return time series. Furthermore, Bollerslev

(1986) pointed out, that even GARCH models of order (1, 1) are capable of explaining the behavior

of log returns very well. Thus, we use GARCH(1, 1) models for the univariate conditional variance

equations (2.4), which is in line with our approach in Section 2. The starting date (which lies after

the peak of the dotcom bubble) is chosen such that the assumption of constant parameters in the

initial period is reasonable.

As the results in Table 1 suggest that the size increases considerably with the length of the mon-

itoring period and hence with B, we monitor the data by the use of a stepwise approach, which

works as follows:

1. Use the first m observations as historical period and monitor the following Bm observations

for a parameter change.

2. There are two possibilities:

(a) If a changepoint is detected in the subsample, estimate the location of the changepoint
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and cut-off all of the pre-change observations. Then, restock the subsample to m ob-

servations and return to step 1. If there are not enough observations left to restock

the historical sample to m observations or the monitoring dataset to mB observations,

terminate the procedure.

(b) If no changepoint is detected in the subsample, cut-off the first mB data points of the

historical sample and add the data of the previous monitoring period to the historical

dataset. Then, return to step 1. If there are not enough observations left to restock

the historical sample to m observations or the monitoring dataset to mB observations,

terminate the procedure.

The procedure is similar to that used in Pape et al. (2016). Clearly, during this procedure, it

is not ruled out that there might be false changepoint detections (type I errors) which influence

subsequent results of the tests. The development of similar procedure which keep a predetermined

size seems a challenging problem. One possibility might be to use a critical level that decreases

with each new changepoint detected, so that the size of the procedure remains fixed. However, this

process would require estimating a new critical value by simulation with each new change point

detected, which could make the computational cost of the procedure prohibitive. Therefore, we

prefer to leave this problem for future research.

The results for m ∈ {500, 1000}, B = 0.2 and γ ∈ {0, 0.2, 0, 4} can be seen in Table 6. While in

general, γ = 0.2 yields a good balance between high power and early breakpoint detection, the

break dates do not depend on γ in this example. On the other hand, there is one breakpoint

more for m = 500 and we focus on this case in the following, as it seems to be more informative

about the true data generating process. Interestingly, the first stopping time is the same for both

m = 500 and m = 1000. The estimated changepoint locations are shown in Figure 2 with two of the

monitored time series. The time series of asset returns are split up into calm and more turbulent

phases. The estimated break point locations in Table 6 can be linked to important economic events

of the last two decades. The calmer period from 2002 on was interrupted in 2008 by the financial

crisis followed by the debt crisis. Some years later, we observe the beginning of a recovery phase
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of the stock markets.

Estimates of the model parameters calculated from the data between two successive changepoints

can be seen in Table 7. To measure the magnitude of the changes in the estimated parameters, the

table also contains the squared Euclidean norm of the persistence parameters estimated from the

subsamples. One observes considerable differences, whereas the parameters are in general larger in

the period after the climax of the financial crisis in 2008 compared to the periods directly before

and in particular after. This can be linked to the often observed phenomenon that correlations and

variances of asset returns tend to increase in times of crisis, see Sandoval Jr. and De Paula Franca

(2012) among others.

6 Conclusion

We present a method to detect changes in the parameter vector of the DCC model proposed by

Engle (2002) which is based on quasi-log-likelihood scores and allows to detect changes in the

conditional and unconditional variance and covariance structure. We analyze the size and power

properties of the presented procedure and apply it to a group of log returns that belong to the

assets of several insurance companies. In applications it turns out as a difficult problem that

the assumption of a historical period which is free from structural breaks cannot be checked with

a known retrospective method. The search for a solution for this problem is left as a task for

future research. Also, the statistic used is designed for situations in which many model parameters

change. Thus, this statistic may not useful for detecting changes in one or few model parameters.

Even if such changes are detected it would be complicated to distinguish which model parameters

have changed already. The development of statistics adapted to these situations is also left for

future research. Finally, note that we have focus on detecting the presence of changepoints. A

complete development and understanding of the implications of these changepoints in issues such

as forecasting or the estimation of risk measures deserve their own space.
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γ ∈ {0, 0.2, 0.4}, B = 0.2, m = 500
τm k̂

2008/01/17 2007/10/22
2010/02/03 2009/10/23
2015/07/13 2015/06/19
γ ∈ {0, 0.2, 0.4}, B = 0.2, m = 1000

τm k̂

2008/01/17 2008/01/15
2014/03/19 2013/09/09

Table 6: First hitting times and estimated changepoint locations.

2003/01/02 2007/10/23 2009/10/26 2015/06/22
-2007/10/22 -2009/10/23 -2015/06/19 2016/10/25

ω̂All < 0.00001 0.00003 0.00001 0.00006
ω̂AXA 0.00001 0.00002 0.00001 0.00028
ω̂Gen < 0.00001 < 0.00001 < 0.00003 0.00002
ω̂ING 0.00001 0.00004 0.00001 0.00007
ω̂MRe < 0.00001 0.00002 0.00001 0.00004
α̂All 0.078 0.142 0.077 0.111
α̂AXA 0.073 0.153 0.089 0.551
α̂Gen 0.065 0.099 0.052 0.057
α̂ING 0.101 0.182 0.069 0.223
α̂MRe 0.069 0.180 0.094 0.114
β̂All 0.904 0.836 0.901 0.683
β̂AXA 0.901 0.846 0.895 0.042
β̂Gen 0.908 0.898 0.936 0.917
β̂ING 0.877 0.817 0.918 0.676
β̂MRe 0.915 0.801 0.868 0.700
α̂ 0.010 0.027 0.034 0.035
β̂ 0.965 0.896 0.832 0.805∥∥θ̂∥∥

2
5.021 4.454 4.810 3.288

Table 7: Persistence parameters estimated from the data between successive detected changepoints
for m = 500 from Table 6 and the euclidical norm of the estimated parameter vectors.
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Figure 2: Log returns of the Allianz and Generali assets with the detected changepoints for m =
1000 from Table 6 (dashed gray lines).
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A Proofs

Proof of Theorem 3.1

The proof follows the arguments of the proof of Theorem 3.1 in Berkes et al. (2004). It makes use

of the fact that the process
{
∇l̂t

(
θ̂m
)
, t ∈ Z

}
behaves similarly as {∇lt (θ) , t ∈ Z}. This is a

stationary and ergodic martingale difference sequence, which yields the convergence to a Gaussian

limit process.

First, we have for m→∞ the following statement that equals Lemma 6.3 in Berkes et al. (2004):

sup
1≤k<∞

m+k∑
i=m+1

∇li
(
θ̂m
)
−
[
m+k∑
i=m+1

∇li (θ) +
(
θ̂m − θ

)
kE
(
∇2l0 (θ)

)]
√
m
(
1 + k

m

)
b
(
k
m

) = oP (1). (A.1)

The validity of (A.1) is implied by a Taylor approximation and the uniform convergence ∇2lt(·) to

E
[
∇2l0(·)

]
. The latter one is implied by Theorem A.2.2 in White (1994). Since U is a compact

set and ∇2lt(u) is continuous in u for all yt as well as measurable in yt for all u ∈ U , the domi-

nance condition remains to be verified. We choose the dominating function as sup
u∈U

∣∣∇2lt(u)
∣∣ whose

expectation if finite by Assumption 3.4.3.

Therefore, Theorem A.2.2 in White (1994) implies

sup
u∈U

∣∣∣∣∣ 1
m

m∑
i=1
∇2li(u)− E

[
∇2l0(u)

]∣∣∣∣∣ = 1
m

sup
u∈U

∣∣∣∣∣
m∑
i=1

(
∇2li(u)− E

[
∇2l0(u)

] )∣∣∣∣∣ a.s.→ 0.

Analogously to Lemma 6.4 in Berkes et al. (2004) and by the use of Assumptions 3.4.(1,2,4,5), we

have for m→∞: (
θ̂m − θ

)
= 1
m

m∑
i=1
∇li (θ)

[
E
(
∇2l0(θ)

)]−1
[1 + o(1)] .

Furthermore, Assumptions 3.4.(1,2,4,5) and 3.3 and Lemma 6.5 in Berkes et al. (2004) yield:

sup
1≤k<∞

∣∣∣∣∣ m+k∑
i=m+1

∇li
(
θ̂m
)
−
[
m+k∑
i=m+1

∇li (θ)− k
m

m∑
i=1
∇li (θ)

]∣∣∣∣∣
√
m
(
1 + k

m

)
b
(
k
m

) = oP (1).
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Then, by the use of Lemma 6.6 in Berkes et al. (2004) we have:

sup
1≤k<∞

∣∣∣∣∣ m+k∑
i=m+1

∇li (θ)− k
m

m∑
i=1
∇li (θ)

∣∣∣∣∣
√
m
(
1 + k

m

)
b
(
k
m

) d→ sup
0<t<∞

|WD(1 + t)− (1 + t)WD(1)|
(1 + t)b(t) (A.2)

where {WD(t), t ∈ [0, B]} is a d-variate Gaussian process with

E [WD(s)] = 0d, ∀ s ∈ [0, B), and E
[
W ′

D(k)WD(l)
]

= min {k, l}D, ∀ k, l ∈ [0, B].

As a consequence of (A.2) and Assumption 3.4.(6,7) we have:

sup
1≤k<mB

∣∣∣∣∣ m+k∑
i=m+1

D̂
− 1

2
m ∇l̂i

(
θ̂m
)∣∣∣∣∣

m
1
2
(
1 + k

m

)
b
(
k
m

) d→ sup
0<t≤B

∣∣∣D− 1
2 [WD(1 + t)− (1 + t)WD(1)]

∣∣∣
(1 + t)b (t) .

A simple recalculation of the properties of the resulting process indicates that{
D−

1
2 [WD(1 + t)− (1 + t)WD(1)] , t ∈ [0,∞)

}
and {G(t), t ∈ [0,∞)} possess the same distribution. �

Proof of Theorem 3.2

Under the alternative of a change in the vector of parameters, it is appropriate to decompose the

detector as in Berkes et al. (2004):

m+k∑
i=m+1

∇li
(
θ̂m
)

√
m
(
1 + k

m

)
b
(
k
m

) =

m+k∗−1∑
i=m+1

∇li
(
θ̂m
)

√
m
(
1 + k

m

)
b
(
k
m

) +

m+k∑
i=m+k∗

∇li
(
θ̂m
)

√
m
(
1 + k

m

)
b
(
k
m

) . (A.3)

The first summand on the righthand side of (A.3) is based on the gradient contributions of obser-

vations before the parameter change. It can be treated analogously to the proof of Theorem 3.1 or

to the proof of Theorem 3.1. in Berkes et al. (2004). Note that m → ∞ implies k∗ → ∞ and we
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have:

sup
k∗≤k<∞

∣∣∣∣∣m+k∗−1∑
i=m+1

∇li
(
θ̂m
)∣∣∣∣∣

√
m
(
1 + k

m

)
b
(
k
m

) d→ sup
t∈[λ∗B,∞)

|WD (1 + λ∗B)− (1 + λ∗B)WD(1)|
(1 + t)b (t) . (A.4)

The second summand on the righthand side of (A.3) is based on the gradient contributions of the

observations after the change which are driven by the parameter vector θ∗. Thus for m → ∞, a

taylor series expansion of l′i
(
θ̂m
)
centered in θ∗ yields:

sup
k∗≤k<∞

∣∣∣∣∣ m+k∑
i=m+k∗

∇li
(
θ̂m
)
−
[

m+k∑
i=m+k∗

∇li (θ∗) +
(
θ̂m − θ∗

)′ m+k∑
i=m+k∗

∇2li (θ∗)
]∣∣∣∣∣

√
m
(
1 + k

m

)
b
(
k
m

) = oP (1).

Analogously to the proof of Theorem 4.4 in Berkes et al. (2004) Assumptions 3.4.1,2,4,5 imply:

(
θ̂m − θ∗

)
=
(
θ̂m − θ

)
+
(
θ − θ∗

)
= − 1

m

m∑
i=1
∇li(θ)

[
E
(
∇2l0(θ)

)]−1 (
1 + oP (1)

)
+
(
θ − θ∗

)
.

Furthermore, as θ∗ is contained in the compact parameter space, there exists a neighborhood U2

of θ∗ where the function 1
m

m∑
i=1
∇2li(u) converges uniformly to its theoretical counterpart with The-

orem A.2.2 in White (1994). Additionally, the uniform convergence implies the convergence in

probability to zero of:

sup
k∗≤k<∞

∣∣∣∣∣(θ̂m − θ∗)′ m+k∑
i=m+k∗

∇2li (θ∗)

√
m
(
1 + k

m

)
b
(
k
m

)

−

[
−k−k∗+1

m

[
E
(
∇2l0(θ)

)]−1
E
(
∇2l0 (θ∗)

) m∑
i=1
∇li(θ) + (k − k∗ + 1) (θ − θ∗)′ E

(
∇2l0 (θ∗)

)]∣∣∣∣
√
m
(
1 + k

m

)
b
(
k
m

) .

Moreover, with the triangle inequality yields, we have:

sup
k∗≤k<∞

∣∣∣∣∣
[

m+k∑
i=m+k∗

∇li (θ∗)− k−k∗+1
m

[
E
(
∇2l0(θ)

)]−1
E
(
∇2l0 (θ∗)

) m∑
i=1
∇li(θ)

]
√
m
(
1 + k

m

)
b
(
k
m

)
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−
(k − k∗ + 1) (θ − θ∗)′ E

(
∇2l0 (θ∗)

)∣∣∣
√
m
(
1 + k

m

)
b
(
k
m

)

≥

∣∣∣∣∣∣∣∣∣∣
sup

k∗≤k<∞

∣∣∣∣∣ m+k∑
i=m+k∗

∇li (θ∗)− k−k∗+1
m

[
E
(
∇2l0(θ)

)]−1
E
(
∇2l0 (θ∗)

) m∑
i=1
∇li(θ)

∣∣∣∣∣
√
m
(
1 + k

m

)
b
(
k
m

) (A.5)

− sup
k∗≤k<∞

∣∣∣(k − k∗ + 1) (θ − θ∗)′ E
(
∇2l0 (θ∗)

)∣∣∣
√
m
(
1 + k

m

)
b
(
k
m

)
∣∣∣∣∣∣∣ . (A.6)

Thereby, for m→∞ and because of k∗ = λ∗mB also for k∗ →∞, the minuend in (A.5) converges

in distribution to:

sup
t∈(λ∗,∞)

∣∣∣∣WD∗(1 + t)−WD∗(1 + λ∗)− (t− λ∗)
[
E
(
∇2l0(θ)

)]−1
E
(
∇2l0 (θ∗)

)
WD(1)

∣∣∣∣
(1 + t) b (t) , (A.7)

where D∗ := Cov [∇l0 (θ∗)] and {WD∗(t), t ∈ [0,∞)} is a d-variate Gaussian process with:

E [WD∗(s)] = 0d, ∀ s ∈ [0, B), and E
[
W ′

D∗(k)WD∗(l)
]

= min {k, l}D∗, ∀ k, l ∈ [0, B).

Furthermore, for m→∞ we have for the subtrahend in (A.6):

√
m sup
k∗≤k<∞

∣∣∣k−k∗+1
m (θ − θ∗)′ E

(
∇2l0 (θ∗)

)∣∣∣(
1 + k

m

)
b
(
k
m

) a.s.→ ∞

Since the limits in (A.4) and (A.7) are stochastically bounded and the variable parts of the func-

tion b(·) are chosen such that the procedure keeps its size under the null hypothesis, the detector

values diverge form→∞. This implies that any change in the vector of parameters can be detected

if the historical period is long enough.
�
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