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Abstract

We propose a model-independent multivariate sequential procedure to monitor changes

in the vector of componentwise unconditional variances in a sequence of p-variate random

vectors. The asymptotic behavior of the detector is derived and consistency of the pro-

cedure stated. A detailed simulation study illustrates the performance of the procedure

confronted with different types of data generating processes. We conclude with an appli-

cation to the log returns of a group of DAX listed assets.
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1. Introduction

Variances and volatilities are of major interest in financial contexts since they can be used

to evaluate the risk of financial instruments. From an empirical point of view, it is clear

that, in general, variances of stock returns cannot be taken as constant over a long period of

time and as they tend to increase heavily in times of instability, see, e.g., Schwert (2011) or

Charles and Darné (2014). There are many papers which deal with models for time-varying

conditional variances; a prominent one is Bollerslev (1986) which proposes the well-known

GARCH(p, q) model. However, it is far from clear whether also the unconditional variances

should be modeled in a constant or time-varying way. For example, there might be a big, long-

lasting increase in the fluctuations of financial returns which cannot be captured by a standard

GARCH model with constant parameters.

This paper is concerned with possible structural changes in variances. Also, the question of dat-

ing the breakpoint arises once such a possible change in the unconditional variance is detected.

In particular, our aim is to monitor the vector of variances of a series of random vectors of

moderate dimension p. In practice, it is important to get informed about changes in the model

structure as soon as possible after their appearance, to be able to react to the change. Hence,

a monitoring procedure could be of more practical relevance than a retrospective test. Specifi-

cally, we focus on changes in the individual variances. One reason for this is that, in financial

contexts, the variances exhibit information about the idiosyncratic risk of the individual assets.

Bissantz et al. (2011) show that the impact of fluctuations is distinctively larger for volatilities

than for correlations. Furthermore, if constancy of the correlations is tested, constancy of the

variances is a crucial issue. For example, the test by Wied et al. (2012b) does not allow for

arbitrarily changing variances, while a test in the spirit of Dette et al. (2015) does. On the other

hand, one can expect that Wied et al. (2012b) is more efficient than Dette et al. (2015) since

the latter is based on nonparametric estimation. Additionally, the inclusion of the covariances

would strongly increase the dimension of vectors and matrices that have to be estimated, which

leads to a remarkable weakening of the procedure. This made us refrain from monitoring the

whole covariance matrix as proposed by Aue et al. (2009b) in the retrospective case. If the

2



covariances were monitored as well, the vector of moments that are supervised would tend to

be of unpropitious high dimension even if the time series itself were of moderate dimension.

This would lead to unsatisfactory size and power properties.

The procedure is based on the monitoring technique proposed by Chu et al. (1996) who used

a similar but univariate sequential method based on fluctuations to detect structural breaks in

the parameter vector of a linear regression model. Their approach was refined and further in-

vestigated by Horváth et al. (2004), Aue et al. (2006) and Aue et al. (2009a), among others.

Groen et al. (2013) expanded the approach to the multivariate case. Nevertheless, even if the

main goal in Groen et al. (2013) is to monitor structural changes in multivariate sequences, as

it is in our case, the focus is put on the parameters of the linear regression model and not in the

individual variances of the components of the sequence, thus making their approach different

to our own. While Berkes et al. (2004) and Aue et al. (2011) extended the field of applications

to the monitoring of parameters in univariate GARCH(p, q) models and high frequency port-

folio betas, respectively, Wied and Galeano (2013) presented a model-independent monitoring

procedure to detect changes in the correlation of bivariate time series. Retrospective methods

to detect changes in the covariance or correlation structure of random vectors were proposed

by Aue et al. (2009b) respectively by Wied (2015). Since we investigate the performance of the

proposed procedure confronted with a special type of multivariate GARCH model, it remains

to mention that methods which address this model class have been proposed by Amado and

Teräsvirta (2014) and Silvennoinen and Teräsvirta (2016), among others. They suggest to test

constancy of the unconditional variance in univariate GARCH(p, q) models using LM tests in a

retrospective setting. We combine the sequential approach with the attempt to survey moments

of multivariate processes.

Since whole random vectors often provide more information than single random variables, the

additional information should be used to develop a procedure which enables monitoring the

vector of variances of the individual components. Although we are only interested in the vector

of variances, such a procedure could be able to detect changes in one or several variances

more efficiently than using several univariate procedures similar to the correlation monitoring
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procedure proposed by Wied and Galeano (2013) that could be adapted to the situation by using

the Bonferroni-Holm method.

The rest of the paper is organized as follows. Section 2 introduces the proposed monitoring pro-

cedure for detecting a changepoint in the vector of variances of a multivariate random variable

as soon as possible, and derives the asymptotic properties of the chosen detector. Sections 3

and 4 present a detailed simulation study and an application to real data that illustrate the beha-

vior of the procedure in finite settings. Finally, section 5 provides some conclusions. All proofs

are presented in Appendix A of the supplementary material. Appendix B of the supplementary

material contains simulation results for the i.i.d.-setting, while Appendix C contains tables with

the simulation results from Section 3.

2. The monitoring procedure

Let (Xt, t ∈ Z) be a sequence of p dimensional random vectors whose elements possess finite

fourth moments and cross moments. W.l.o.g. we assume that E (Xt) = 0, t ∈ Z. This assump-

tion is natural in financial contexts when one considers daily log returns of financial assets. The

value of interest is the vector of variances associated with the single components of the random

vector Xt =
(
Xt1, . . . , Xtp

)′
denoted by

σ2
t =

(
σ2

t1, . . . , σ
2
tp

)′
with σ2

t j = Var
(
Xt j

)
= E

(
X2

t j

)
, for j = 1, . . . , p.

Since often a non time-varying variance structure cannot be assumed, we are interested in a

monitoring procedure that supervises the vector of variances and reports a potential structural

break as soon as possible after it has occurred. We estimate the variances from growing sub-

samples and compare them with estimators obtained from a reference data set that is assumed

not being affected by a variance change. In the context of sequential testing, this implies using

a historical sample to obtain a first estimator of the vector of variances. In the monitoring pe-

riod the historical sample is successively extended by p dimensional data points that are used

to update the chosen detector. This reflects the fact that data like daily asset or index prices is
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observed step by step. The formal constancy assumption for the historical period of length m is

Assumption 1. σ2
1 = . . . = σ2

m, where m is a positive integer.

The validity of this assumption can be checked by performing retrospective changepoint detec-

tion procedures on the historical data set, for instance a procedure similar to the one proposed

by Wied et al. (2012b). In practice, it is usually possible to find a sufficient amount of historical

data points with a stable variance structure.

In the following, we consider the null hypothesis of equal vectors of variances

H0 : σ2
1 = . . . = σ2

m = σ2
m+1 = . . .

versus the alternative H1 that σ2
t changes at one or several unknown points in the monitoring

period. Let FB be the set of functions f : [0,∞ ) → R that are bounded and integrable on the

interval [0, B + 1] such that

lim
m→∞

1
m

[m(B+1)]∑
t=1

f
( t
m

)
=

∫ B+1

0
f (z)dz.

Throughout the paper the variable B indicates how much longer the monitoring period is com-

pared to the historical data set. We consider the alternative H1 that the individual variances can

be decomposed as

Var
(
Xt j

)
= σ2

t j = σ̄2
j + g j

( t
m

)
, j = 1, . . . , p, t ∈ Z, (1)

with σ̄2
j , j = 1, . . . , p, time-invariant constants and structural stability determining functions

g j(·) ∈ FB, j = 1, . . . , p. Then, g j(z) = 0, for z ∈ [0, 1] and for all j = 1, . . . , p. However, for

at least one j ∈ {1, . . . , p},
∫ B+1

1

∣∣∣g j(z)
∣∣∣ dz > 0. i.e., the variance of the j-th vector component is

affected by a structural change.

In order to derive asymptotic results concerning size and power of the procedure that will be

presented below, some assumptions have to be imposed first. They are counterparts of the

assumptions (A1)-(A3) in Wied et al. (2012a) and to (A2)-(A4) in Wied and Galeano (2013),

5



respectively.

Assumption 2. For Ut :=
(
X2

t1 − E
(
X2

t1

)
, . . . , X2

tp − E
(
X2

tp

))′
and S j :=

∑ j
t=1 Ut, j ∈ N, we have

lim
m→∞

E
(

1
m

S mS ′m

)
=: Dp

where Dp is a finite and positive definite matrix.

Assumption 3. The r-th absolute moments of the components of Ut are uniformly bounded for

some r > 2.

Assumption 4. The process (Xt, t ∈ Z) is L2-near epoch dependent, see e.g.Davidson (1994),

with size − r−1
r−2 , where r is from Assumption 3, and constants (ct), t ∈ Z, on a sequence (Yt), t ∈ Z,

which is α-mixing of size φ∗ := − r
r−2 , i.e.

||Xt − E (Xt|σ(Yt−l, . . . ,Yt+l))||2 ≤ ctvl

with lim
l→∞

vl = 0, such that ct ≤ 2||Ut||2 with Ut from Assumption 3 and || · ||2 the L2-norm.

Assumption 4 allows for serial dependence insofar as it decays sufficiently fast. Compared to

pure α-mixing, near epoch dependence with respect to an α-mixing process is the more general

concept. Near epoch dependence can be stated for different types of processes, e.g. Gallant

and White (1988) verified this property for finite order ARMA(p, q) processes with roots lying

outside the unit circle and Hansen (1991) for GARCH(1, 1) processes.

The proposed procedure is inspired by the model-independent fluctuation test proposed by

Wied and Galeano (2013) for the detection of changes in the correlation of two sequences of

random variables. The fluctuations arise from the comparison of variance estimates calculated

from several subsamples of the available data. Denote by
[
σ̂2

]l

k
the estimate of the vector of

variances calculated from Xk to Xl, k < l:

[
σ̂2

]l

k
=

([
X2

1

]l

k
,
. . . ,

[
X2

p

]l

k

)
with

[
X2

j

]l

k
=

1
l − k + 1

l∑
t=k

X2
t j, for j = 1, . . . , p.
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Then, estimates of the vector of variances from growing samples are compared to estimates re-

sulting from the historical data. Under the hypothesis of equal vectors of variances the estimate

vectors should not differ too much. In Wied and Galeano (2013) the fluctuations could easily be

defined as the absolute differences of the two correlation estimates. In the multivariate setting

two vectors have to be compared. Let

Vk =
k
√

m
D̂−

1
2

p

([
σ̂2

]m+k

m+1
−

[
σ̂2

]m

1

)
=

k
√

m
D̂−

1
2

p



[
X2

1

]m+k

m+1
−

[
X2

1

]m

1
...[

X2
p

]m+k

m+1
−

[
X2

p

]m

1


, k ∈ N,

with D̂p a kernel-based estimator of the matrix Dp defined in Assumption 2 that is calculated

from the first m observations. Define

Ṽt =
1
√

m
Ũt with Ũt =

(
X2

t1 −

[
X2

1

]m

1
, . . . , X2

tp −
[
X2

p

]m

1

)′
.

As m→ ∞, a consistent estimator of Dp is given by

D̂p =

r∑
t=1

r∑
u=1

k
(
t − u
δr

)
ṼtṼu

′ with k(x) =


1 − |x|, |x| ≤ 1

0, otherwise.

Here, k(x) is the Bartlett kernel and δr the bandwidth that determines up to which lag outer

products of the vectors Ṽt are used to calculate the estimator. The choice of the kernel is moti-

vated by the approach in Wied et al. (2012a). However, a different bandwidth was chosen since

simulations show that δr =
[
r

1
4

]
is the most suitable one compared to alternative bandwidths.

Consistency of the estimator D̂p is necessary for deriving the asymptotic distribution of the

detector that is presented later in Theorem 1.

As it is desirable to construct a one dimensional detector that can be compared to the values

of a univariate threshold function, possible solutions are to use either the Euclidian norm or a

quadratic form of the vector of differences. The latter was considered by Aue et al. (2009b)
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in the retrospective setting. The detector used by our monitoring procedure is the Euclidean

norm of Vk. The value of ||Vk||2 is calculated online for every k in the monitoring period.

The procedure stops when the detector exceeds the value of a scaled threshold function w(·).

As soon as this happens, the null hypothesis of no variance change cannot be taken as valid

anymore and is rejected. Accordingly, the stopping rule can be defined as

τm = min
{

k ≤ [mB] : ‖Vk‖2 > c · w
(

k
m

)}
, (2)

with w(·) a positive and continuous function and c a constant chosen such that under a valid

null hypothesis lim
m→∞

P(τm < ∞) = α ∈ (0, 1) is the test significance level. Along the lines of

Aue et al. (2011) we write τm < ∞ to indicate that the detector has exceeded the threshold

function cw(·) in the monitoring period which implies a rejection of the hypothesis of equal

vectors of variances. If ||Vk||2 does not exceed the corresponding value of the threshold function

in the whole monitoring period, we write τm = ∞, see Aue et al. (2011). This leads to our main

result:

Theorem 1. Under H0, Assumptions 1-4 and for any B > 0,

lim
m→∞

P (τm < ∞) = lim
m→∞

P
(

sup
b∈[0,B]

‖Vbm·bc+2‖2

w (b)
> c

)
= P

(
sup

b∈[0,B]

||G(b)||2
w (b)

> c
)
, (3)

where
{
G(b) =

(
G1(b), . . . ,Gp(b)

)′
, b ∈ [0, B]

}
is a p-variate stochastic process whose compo-

nent processes are p independent mean zero Gaussian processes
{
G j(b), b ∈ [0, B]

}
with co-

variance function E
(
G j(k)G j(l)

)
= min(k, l) + kl, for j = 1, . . . , p.

Theorem 1 establishes the asymptotic behavior of the monitoring procedure based on the stop-

ping rule τm in (2). As argued in detail in Aue et al. (2011) and Wied and Galeano (2013) the

limiting probability in (3) can be led back to the behavior of p independent standard Brownian

motions
{
W j (b) : b ∈ [0, 1]

}
, j = 1, . . . , p. Since

{
G j (b) : b ∈ [0, B]

}
has the same distribution
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as
{
(1 + b) W j (b/ (1 + b)) : b ∈ [0, B]

}
, for j = 1, . . . , p, we have

sup
b∈[0,B]

‖G(b)‖2
w (b)

= sup
b∈[0,B]

√∑p
j=1

[
G j(b)

]2

w (b)
L
= sup

b∈[0,B]

(1 + b)
√∑p

j=1

[
W j

(
b

1+b

)]2

w (b)
(4)

with A1
L
= A2 indicating that A1 and A2 possess the same distribution. As in Wied and Galeano

(2013) the threshold function w(·) can be chosen as

w (b) = (1 + b) ·max
{(

b
1 + b

)γ
, ε

}
(5)

with γ ∈
[
0, 1

2

)
and ε > 0 a fixed constant that solely serves to guarantee the divisibility by w(·)

and can be chosen arbitrarily small in applications. The parameter γ can be used to adjust the

procedure to have the best performance in a certain expected situation. As discussed in Wied

and Galeano (2013) in detail, there is a trade off between the aim to detect arisen structural

breaks as soon as possible and the purpose to reduce the probability of type I errors to the

significance level. A value of γ chosen closely to 1
2 tends to cause a soon rejection of the null

hypothesis. This is desirable if a structural change is expected to take place shortly after the

beginning of the monitoring period, but also tends to produce type I errors, while the null is still

valid. In contrast, using a smaller value for γ rather results in a reduction of type I errors but also

leads to a testing routine that is less capable of indicating structural breaks arising early in the

monitoring period. Further simulations show that large values of γ lead to unacceptable high

percentages of falsely rejected null hypotheses, especially for higher dimensions of the random

vectors under supervision. Hence, in the following no γ values larger than 0.25 are considered.

Substituting w(·) from (5) and defining u = b
1+b as well as s =

u(1+B)
B allows expression (4) to be

written along the lines of Wied and Galeano (2013) as

sup
b∈[0,B]

‖G(b)‖2
w (b)

L
= sup

u∈[0, B
1+B ]

√∑p
i=1 [Wi (u)]2

max {uγ, ε}
L
= sup

s∈[0,1]

( B
1 + B

) 1
2−γ

√∑p
i=1 [Wi (s)]2

max
{
sγ, ε

(
1+B

B

)γ} .
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Since, under the assumptions of Theorem 1,

lim
m→∞

P(τm < ∞) = P

 sup
s∈[0,1]

( B
1 + B

) 1
2−γ

√∑p
i=1 [Wi (s)]2

max
{
sγ, ε

(
1+B

B

)γ} > c

 ,
Monte Carlo simulations can be used to obtain the constant c = c(α) such that

P

 sup
s∈[0,1]

( B
1 + B

) 1
2−γ

√∑p
i=1 [Wi (s)]2

max
{
sγ, ε

(
1+B

B

)γ} > c (α)

 = α,

for any α ∈ (0, 1). Thus, the probability of a false alarm is approximately α if m is large enough.

α = 0.01 α = 0.05 α = 0.1
γ B p = 2 p = 5 p = 10 p = 2 p = 5 p = 10 p = 2 p = 5 p = 10

0.5 1.9062 2.3268 2.8462 1.5514 2.0265 2.5802 1.3991 1.8817 2.4146
0 1 2.2924 2.8653 3.5217 1.9039 2.4659 3.1544 1.7003 2.3122 2.9439

2 2.6246 3.3371 4.0214 2.1915 2.8704 3.6375 1.9737 2.6447 3.4005
0.5 2.5231 3.1579 3.8898 2.1439 2.7760 3.4385 1.9431 2.5872 3.2596

0.25 1 2.8124 3.4880 4.2737 2.3881 3.0361 3.8051 2.1627 2.8457 3.6051
2 2.9854 3.7461 4.5824 2.5351 3.2927 4.1315 2.3001 3.0523 3.8723

Table 1: Simulated critical values c (α).

Simulated critical values for all combinations of p ∈ {2, 5, 10}, B ∈ {0.5, 1, 2}, γ ∈ {0, 0.25} and

for significance levels of α ∈ {0.01, 0.05, 0.1} can be taken from Table 1. To obtain the values

of c, 10.000 Brownian motions are simulated on a grid of 10.000 equidistant points.

Up to now, we have focused on the behavior of the detector under the null hypothesis. In the

considered case the alternative is rather broad including scenarios with a single or multiple

structural breaks in one or several vector components as well as variance changes of minor or

major magnitude. This suggests investigating the testing power against local alternatives.

Assumption 5. For the process (Xt, t ∈ Z) with Xt =
(
Xt1, . . . , Xtp

)′
the variances of the indi-

vidual vector components can be decomposed as

Var
(
X j,t

)
= σ̄2

j +
1
√

m
g j

( t
m

)
, j = 1, . . . , p,
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with σ̄2
j and g j(·), j = 1, . . . , p, as in (1).

Theorem 2. Under a sequence of local alternatives, Assumptions 1-5 and for any B > 0

lim
m→∞

P (τm < ∞) = lim
m→∞

P
(

sup
b∈[0,B]

‖Vbm·bc+2‖2

w (b)
> c

)
= P

(
sup

b∈[0,B]

||G(b) + h(b)||2
w (b)

> c
)
,

with
{
G(b) =

(
G1(b) . . .Gp(b)

)′
, b ∈ [0, B]

}
as in Theorem 1 and h(·) = H ·

(
h1(·), . . . , hp(·)

)′
.

Up to a constant, H is the limit of D̂p under H0, while the function h j(b) B
∫ b+1

1
gi(u)du = 0 for

all b ∈ [0, B] if and only if the j-th component is not affected by a variance change.

Theorem 2 yields that even a small variance change in just one single component can be de-

tected with high probability if the historical period is large enough. To obtain general statements

about the testing power, the magnitude of a variance change is assumed to tend to∞. This can

be modeled by defining one of the structural stability determining functions g j(·), j = 1, . . . , p,

as a scaled function g∗(·) and assume the scaling factor to tend to ∞ implying an increasing

magnitude of a shift in the respective component of the vector of variances.

Assumption 6. At least one of the structural stability determining functions g j(·) ∈ FB with∫ b+1

1

∣∣∣g j(z)
∣∣∣ dz > 0 can be decomposed as g j(·) = M · g∗(·) with g∗(·) ∈ FB.

Theorem 3. Under the alternative of at least one structural break in the vector of variances

in the monitoring period and Assumption 6, let PH1(M) be the probability that the detector

exceeds the threshold function during the monitoring period for given M. Let g∗(·) ∈ FB be

arbitrary but fixed. Under Assumptions 1-4 and 6, for every ε > 0 there exists an Mε such that

for all M > Mε

lim
m→∞

PH1(M) > 1 − ε.

Theorem 3 yields that a variance change of sufficiently high magnitude will be detected with

given probability if the length of the historical period tends to∞ even if just one single compo-

nent is affected by the change or if multiple components experience contrary variance changes.

If the detector actually exceeds the threshold function, the presence of a structural change is

indicated. This leads to the challenge to determine the location of the changepoint. This does
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not necessarily have to coincide with the first hitting time τm. In fact, an abrupt change of the

variances will often take time to affect the detector strongly enough to get identified by the

procedure. A possible estimator of the changepoint location is a multivariate equivalent to the

one used by Wied et al. (2012a) and Wied and Galeano (2013):

k̂ = arg max
1≤ j≤τm−1

D j,τm with D j,τm B
j
√
τm

D̂−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



[
X2

1

]m+ j

m+1
−

[
X2

1

]m+τm−1

m+1
...[

X2
p

]m+ j

m+1
−

[
X2

p

]m+τm−1

m+1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2

.

This type of estimator led to satisfying results in the univariate case, hence we use it to esti-

mate the location of an indicated changepoint. However, a detailed analysis of the estimator’s

properties lies beyond the scope of this paper. The performance of the proposed procedure as

well as the properties of the first hitting times τm, the estimated changepoint locations k̂ and the

estimated location fractions λ̂ = k̂
mB will be investigated in the following section.

3. Simulations

This section is devoted to a performance analysis of the proposed monitoring procedure in finite

samples. Each of the regarded scenarios is constructed using different tuning parameters. First,

the dimension of the random vectors is chosen as p ∈ {2, 5, 10}. Since all of the asymptotics

are based on the length of the historical period tending to ∞, large values of m are considered.

We choose m ∈ {500, 1.000, 2.000}. In the context of financial data like asset returns, these

values correspond to time periods of approximately 2, 4 and 8 years. It is important to note that

smaller values of m may lead to noninvertible estimates of Dp in practice, especially for higher

dimensions p. On the other hand, since the historical period must be assumed to be free from

variance changes, larger values for m can hardly be found in practice. Furthermore, we choose

B ∈ {0.5, 1, 2} implying that the monitoring period is shorter, of the same length or longer than

the historical period. Finally, the parameters in the threshold function w(·) have to be specified:

ε is chosen as 10−6 in all of the following simulation settings and γ ∈ {0, 0.25}. These values

12



represent the aim to detect changes that are expected to occur earlier or later in the monitoring

period. The theoretical size used for all of the simulations is α = 0.05. In each case 10.000

time series are simulated. To simulate c(α), 10.000 Brownian motions are simulated on a grid

of 10.000 equidistant points.

Monitoring scalar BEKK time series

In Appendix B, we present simulation results for the i.i.d. case. There, the random vectors un-

der consideration only show dependence between the individual vector components. In prac-

tice, time series that additionally exhibit serial dependence, which is permitted in moderate

magnitude by Assumption 4, are of higher interest. In financial contexts, it may be desirable to

detect changes in the vector of unconditional variances of random vectors whose conditional

covariance matrices are expected to be time-varying. A common way to model this behavior

and to explain volatility clusters that usually can be observed in financial time series is to use a

multivariate GARCH model. Assume

Xt = H
1
2
t εt, (6)

where (εt, t ∈ Z) is a sequence of i.i.d. Rp-valued random vectors, H
1
2
t is the square root of the

conditional covariance matrix Ht = Cov (Xt|It) and It = σ (Xt−1, Xt−2, . . .) is the information

set at time t. Since Bollerslev (1986) states that even GARCH models of low order are able

to explain the behavior of many financial time series well, we will focus on models that are

solely based on first order lagged conditional covariance matrices and observations. To specify

the conditional covariance matrix we use the two parameter model, see Ding and Engle (2001),

that arises from the scalar diagonal model when performing variance targeting as in Engle and

Mezrich (1996) and that is a special case of the BEKK(1, 1, 1) model proposed by Engle and

Kroner (1995). We will refer to the scalar BEKK model in the following. The conditional

13



covariance matrix is recursively defined by

Ht = (1 − α − β) H + αXt−1X′t−1 + βHt−1, (7)

where α and β are positive scalars with |α + β| < 1 to guarantee stationarity and H is the

unconditional covariance matrix of Xt, t ∈ Z. The following lemma provides a useful help

to check the validity of Assumption 3. Denote by vec(·) the operator that stacks the columns

of a matrix in a vector of dimension p2 and by vech(·) the operator that stacks only the lower

triangular part including the main diagonal of a symmetric matrix in a vector of dimension

d := 1
2 p(p + 1). Let Dp, Lp and Kpp with vec(A) = Dpvech(A), vech(A) = Lpvec(A) and

vec (A′) = Kppvec (A) for any (p×p) matrix A, be the duplication, elimination and commutation

matrix, respectively. Furthermore, consider the matrix Gp that was defined in Hafner (2003)

under the assumption that the innovations εt belong to the family of spherical distributions and

possess fourth moments:

Gp :=
1
3

E
(
ε4

1t

) [
2
(
Lp ⊗

[
D′pDp

]−1
D′p

) (
Ip ⊗ Kpp ⊗ Ip

) (
Dp ⊗ Dp

)
+ Id2

]

The matrix Gp is used to transform the second order moments of the vector of conditional

variances ht into the second order moments of the conditional variances in vector ARMA rep-

resentation, see Hafner (2003). Let Γ B E
(
X2

t X2
t
′
)

with X2
t = vech

(
XtX′t

)
be the matrix of

fourth moments and cross moments of Xt.

Lemma 1. If the innovations εt possess a spherical distribution with finite fourth moments, the

matrix Γ exists if and only if all the eigenvalues of

Z B α2Gp +
(
2αβ + β2

)
Id2 (8)

are smaller than one in modulus.

The existence of finite fourth moments of the innovations is implied by Assumption 3. To al-

low for a moderate impact of past observations and variances on the conditional variances, we

14



chose the parameters as (α, β) = (0.03, 0.45). The innovation vectors εt are i.i.d. multivariate

standard normal distributed and standardized t distributed with 8 degrees of freedom and thus

possess a spherical distribution. All variable parameters are chosen as in the i.i.d. case. Ac-

cording to the dimension p ∈ {2, 5, 10}, the unconditional covariance matrix H is chosen as Σp

from Appendix B. Results concerning the empirical size are presented in Tables 10 and 11 in

Appendix C. To simplify the comparison to the i.i.d. case, these results are also illustrated in

Figure 1 in Appendix B for γ = 0. The size is slightly higher in the case of serial dependence.

The influence of parameter variations is similar to the i.i.d. case disregarding the fact that large

values of B cause a size decrease when serial dependence is present.

Since each of the considered time series consists of a bundle of p univariate possibly correlated

processes one could think about monitoring the single component series with the univariate

equivalent of the procedure with detector

||Vk||2 =
k
√

m
D̂−

1
2

1

∣∣∣∣[σ̂2
j

]m+k

m+1
−

[
σ̂2

j

]m

1

∣∣∣∣ , j = 1, . . . , p, (9)

where D̂1 is a scalar. To fortify why the multivariate approach should be preferred to the

univariate one we compare size and power when monitoring scalar BEKK time series. To

guarantee that asymptotically the probability of type I error, i.e. that one of the p detectors (9)

exceeds the threshold function during the monitoring period, does not exceed α = 0.05, the

significance levels are adjusted by using the Bonferroni-Holm method. The simulated sizes

are presented in Tables 10 and 11 in Appendix C. Also, the results for γ = 0 and B = 1 are

illustrated in Figure 1 for the multivariate and the univariate procedure. The size is slightly

lower for the univariate procedures, but the differences decline with m. Moreover, the problem

of an increased error I probability when monitoring realizations of random vectors with heavy

tailed distribution cannot be avoided by using univariate procedures.

Next, the multivariate and univariate procedure are confronted with alternative scenarios corre-

sponding to those presented in Appendix B. The results for the multivariate procedure are given

in Tables 12-15 and those for univariate procedures in Tables 16-17 in Appendix C. Figures 2
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Figure 1: Size comparison: scalar BEKK time series under the use of a multivariate or several univariate
procedures.
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Figure 2: Power: scalar BEKK time series under the use of the multivariate procedure when all of the
variances are affected by the change.
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Figure 3: Power: scalar BEKK time series under the use of the multivariate procedure when only one of
the variances is affected by the change.

serial dependence, the results resemble those of the i.i.d. case very strongly. The power is

slightly lower, but the impact of changes in the variable parameters remains the same.

The power results for the univariate procedure are illustrated in Figure 4. Since the results

resemble strongly those of the multivariate procedure, the figure only shows the values for

sudden changes and normal distributed innovations. To simplify the comparison, the graphic

also contains the rejection frequencies for the multivariate procedure. As in the i.i.d. case,

early changes can be detected reliably by both procedures while later changes are detected by

the multivariate procedure more frequently. The latter one especially shows its strength when

all of the variances experience a minor change or if just one of the variances is affected by

a larger change but the historical period is rather short. Unfortunately, the higher power of

the multivariate procedure goes along with a slightly increased size compared to the univariate

procedure.

Since it is not only of interest to detect changes in the vector of variances but also to signalize

their presence as soon as possible after they have occurred, we look closer at the properties of
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Figure 4: Power: scalar BEKK time series with N
(
0,Σp

)
distributed innovations under the use of several

univariate procedures.

the first hitting times τm and the estimated changepoint locations k̂ or location fractions λ̂ = k̂
mB .

While only the results for γ = 0 are visualized, the remaining parameters take the same values

as before. To simplify the comparison for different sample lengths, Figures 5 and 6 illustrate

the standardized delay times dm := τm−k∗

mB and the bias of the location fraction estimator. Right

under the boxplots, the graphics also show the means ± the standard deviations of the respective

group. In general, the delay times decrease with growing length of the historical period and

dimension. For small dimensions the procedure stops earlier if only a part of the variances is

affected by a mayor change while for higher dimensions the delay time is shorter for smaller

changes that affect more or all of the variances. This is in line with the power results discussed

before.

Since the first hitting times determine which fraction of the data set is used to estimate the

changepoint location, it is expected that the properties of the location fraction estimator resem-

ble those of the first hitting times.

So far, we considered changes that affect the diagonal elements of the unconditional covariance

matrix H directly. Now, assume that the variances of the innovation vectors εt jump from 1
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Figure 5: Properties of the standardized delay times and the estimated location fractions λ̂when monitor-
ing scalar BEKK time series with N

(
0,Σp

)
distributed innovations and all of the variances are affected

by the change.
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Figure 6: Properties of the standardized delay times and the estimated location fractions λ̂ when moni-
toring scalar BEKK time series with N

(
0,Σp

)
distributed innovations and only one of the variances is

affected by the change.

to 1.5. The power results are presented in Table 18 in Appendix C and illustrated in Figure 7

along with the results for comparable changes that affect the elements of the unconditional

covariance matrix H directly. Changes in the innovations’ variances can be detected almost

as reliably as changes that affect the main diagonal entries of H. This is a plausible result
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Figure 7: Power: scalar BEKK time series with N
(
0,Σp

)
distributed innovations and the variances of

the innovations change.

considering the model structure in (6).

To complete the simulation study, we illustrate the behavior under increasing magnitudes of the

changes. Figure 8 shows the rejection frequencies of the procedure given different magnitudes

of an earlier or later shift that affects all of the variances. Assume that all of the variances

equal 1 before the change and experience a change of magnitude ∆ ∈ {−0.7,−0.6, . . . , 0.6, 0.7}.
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Figure 8: Power: scalar BEKK time series with N
(
0, σ2Ip

)
or tν

(
0, ν−2

ν σ
2Ip

)
distributed innovations

and variance shifts of varying magnitude ∆.

The investigation is limited to the case of a historical period consisting of 1.000 observations,

a monitoring period that is as long as the historical data set and scalar BEKK time series with

multivariate normal or standardized t distributed innovation vectors. To ensure invertibility of

20



the covariance matrix, H is chosen as the identity and standardized identity matrix, respectively.

In line with the previous results, the power approaches 1 with increasing absolute magnitude

of the variance change and dimension. Besides, it is noticeable that for smaller absolute values

of ∆ the change is detected more frequently in the case of increasing variances compared to a

decrease of the same amount.

4. Real data example

Finally, we use the proposed procedure to monitor a time series of log returns, namely those of

the DAX listed assets of Allianz, Bayer, DeutscheBank, RWE and S iemens from 1979 to 2014.

In a world without finite-sample size distortions, we would simply use the raw returns as input

of our detector. However, simulations showed that there might occur size distortions in some

cases, especially when α + β approaches 1, even though the assumptions are fulfilled. As a

result, the procedure tends to falsely indicate the presence of a changepoint shortly after the

beginning of the monitoring period with increasing probability as α + β → 1 which implies

that the largest absolute eigenvalue of (8) tends to one and thus signifies an approach to a

violation of Assumption 3. Fitting a scalar BEKK model to parts or the whole data set of log

returns suggests that α + β is rather close to one. Therefore, we fit a scalar BEKK model to

the data and consider the model residuals instead. The idea is that the residuals are close to

the unobservable error terms and that the asymptotic distribution of our detector is the same

for both choices. Indeed, additional simulations show that filtering multivariate GARCH time

series and monitoring the residual vectors leads to empirical sizes close to those in the i.i.d. case

indicating that the limit distributions based on the time series of GARCH residuals and based

on the underlying innovation vectors are the same. Moreover, there is theoretical evidence

from Kulperger and Yu (2005) who shows that a (univariate) CUSUM test based on GARCH

residuals has the same limit behavior than a CUSUM test based on the underlying innovation

vectors.

Note that there are a lot of different multivariate GARCH models that could have been fitted to

the data. Since for most of the common multivariate GARCH models like vector GARCH
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(Bollerslev et al. (1988)) or the models with constant (see Bollerslev (1990) or Jeantheau

(1998)) or dynamic conditional correlation (see Engle (2002) or Tse and Tsui (2002)), meth-

ods for consistent parameter estimation have been proposed (see Jeantheau (1998), Engle and

Sheppard (2001) and Bauwens et al. (2006)), we could have applied our procedure on the resid-

uals that are obtained by fitting one of these models. A detailed proof that the limit distribution

does not change in these cases is beyond the scope of the paper and left for future research.

In the following, the parameters α and β as well as the unconditional covariance matrix H are

estimated from a historical data set of length m ∈ {500, 1.000} via two stage quasi maximum

likelihood estimation as described in Pedersen and Rahbek (2014). Since longer historical

periods rather tend to be affected by variance changes, m is limited to a maximum of 1.000 ob-

servations. The significance level for all applications is α = 0.05.

Since the parameters are estimated from the historical period, it must be ensured that this data

is free from variance changes. To avoid missing a changepoint in the historical period, we

perform a retrospective version of the procedure to X1, . . . , Xm. This procedure is similar to

the method in Aue et al. (2009a) or a multivariate variant of Wied et al. (2012a) or Wied et al.

(2012b) with detector

Qk =
k
√

m
D̂−

1
2

p

([
σ̂2

]k

1
−

[
σ̂2

]m

1

)
,

where

lim
m→∞

P

 sup
b∈[0,1]

∣∣∣∣∣∣Qbm·bc+2

∣∣∣∣∣∣
2

w(b)
> c

 = P

 sup
b∈[0,1]

∣∣∣∣∣∣Bp(b)
∣∣∣∣∣∣

2

w(b)
> c


and Bp(·) is a p dimensional Brownian bridge whose component processes are p independent

Brownian bridges. According to Aue et al. (2009a) the location of a detected changepoint can

be estimated by k̂r := sup
2≤k≤m

Qk. Our approach is as follows:

(1) Apply the retrospective method to the subsample that consists of the first m data points.

(2a) If a changepoint is detected in the subsample, estimate the location of the changepoint

and cut off all of the pre change observations. Then, restock the subsample to m obser-

vations and return to step (1). If there are not enough observations left to restock the

subsample to m observations, terminate the procedure.
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(2b) If no changepoint is detected in the subsample, take this sample as historical period and

estimate the model parameters from it. Use the obtained estimates to calculate the model

residuals for the whole dataset and apply the monitoring procedure to the residuals.

(3a) If the procedure detects a change, estimate the location of the changepoint. Then, cut

off the pre change observations, use the first m observations of the resulting dataset as

historical period and return to step (1). If there are not enough observations left to restock

the subsample to m observations, terminate the procedure.

(3b) If no changepoint is detected in the monitoring period, terminate the procedure.

Unfortunately, performing several retrospective tests on only partially exchanged observations

leads to an increased probability to commit a type I error. However, we neglect this problem

as we need a changepoint-free historical period to perform the procedure properly. Choosing

γ = {0, 0.25} and B as the number of remaining data points after the historical period divided

by m, we obtain the changepoints presented in Table 2.

m = 500
γ = 0 γ = 0.25

τm k̂ τm k̂ τm k̂ τm k̂
1983-03-24 1981-05-12 2002-06-13 1982-06-24 1981-05-13 2002-06-13
1984-10-22 1984-08-13 2003-04-15 1984-10-22 1984-08-13 2003-04-15

1985-09-16 2003-11-24 1985-09-16 2003-11-24
1992-03-12 1988-07-22 2007-05-22 2006-06-14 1992-02-10 1988-07-22 2006-06-15 2006-03-03
1991-03-07 1990-10-24 2008-09-19 2008-09-10 1990-10-09 1990-09-12 2008-03-18 2008-03-14
1996-11-08 1996-02-12 2009-04-02 1997-09-23 1996-06-11 2013-01-08 2011-08-31
1999-12-24 1999-03-15 2012-07-23 2011-12-05 1998-09-30 1998-07-13 2014-05-30 2013-11-18
2001-10-15 2001-08-07 2014-11-20 2014-09-17 2003-02-26 2001-08-07

m = 1.000
1985-04-12 1984-08-13 2004-05-19 1984-10-30 1984-08-13 2003-12-22 2003-04-11
1992-03-26 1991-01-17 2008-11-25 2008-09-05 1991-12-24 1989-10-17 2004-05-19
1997-01-27 1996-06-11 2009-05-19 1991-03-20 2008-10-10 2008-09-05

1998-07-13 2011-08-08 1996-12-04 1996-06-11 2009-05-19
2004-06-30 2003-04-16 1998-07-13 2011-08-08

Table 2: First hitting times and estimated changepoint locations when applying the monitoring procedure
to asset returns of Allianz, Bayer, Deutsche Bank, RWE and Siemens. The gray dates indicate the location
of changepoints that were detected in the historical data set.

Along with the log returns of the Allianz and S iemens assets, Figure 9 illustrates the change-

points that are detected using γ = 0 and m = 1.000. The time series are divided effectively in

parts of higher or lower volatility by the procedure. The remaining time series show a similar

behavior and will not be illustrated here for the sake of clarity. The reported changepoints are
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used to split the time series in parts of constantly higher and lower variance. The sample stan-

dard deviations between two succeeding changepoints are presented in Table 3 and illustrated

in Figure 10 for the Allianz and the S iemens asset. The results illustrated in Figures 9 and 10
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Figure 9: Returns of the Allianz and S iemens assets with detected changepoints (γ = 0 and m = 1.000).
—– indicates that a changepoint was detected in the monitoring period; - - - indicates that a changepoint
was detected in the historical period.

can be associated with distinctive events in the last 25 years. The late eighties were influenced

strongly by the stock market crash and the Chernobyl catastrophe. The latter one is of interest

since the asset of RWE, an energy generating company that relies on nuclear power since the

seventies, is included in our sample. By the end of the nineties the volatilities increased in the

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1980 1990 2000 2010

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Time

E
st

im
at

ed
 s

ta
nd

ar
d 

de
vi

at
io

n Allianz
Siemens

Figure 10: Sample standard deviations of the returns of the Allianz and S iemens assets between suc-
ceeding detected changepoints.
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Estimation period Allianz Bayer Deutsche Bank RWE Siemens
1979-01-02 to 1984-08-12 0.0100 0.0103 0.0096 0.0084 0.0089
1984-08-13 to 1991-01-16 0.0214 0.0154 0.0167 0.0167 0.0156
1991-01-17 to 1996-06-10 0.0124 0.0116 0.0105 0.0102 0.0097
1996-06-11 to 2003-03-20 0.0193 0.0187 0.0173 0.0179 0.0173
1998-07-13 to 2003-04-15 0.0276 0.0255 0.0261 0.0218 0.0289
2003-04-16 to 2004-05-18 0.0218 0.0199 0.0171 0.0155 0.0170
2004-05-19 to 2008-09-04 0.0150 0.0148 0.0146 0.0130 0.0160
2008-09-04 to 2009-05-18 0.0498 0.0311 0.0627 0.0325 0.0431
2009-05-19 to 2011-08-07 0.0160 0.0157 0.0213 0.0133 0.0172
2011-08-08 to 2014-12-31 0.0174 0.0166 0.0236 0.0197 0.0137

Table 3: Sample standard deviations calculated from the time periods between detected changepoints

course of the financial crises in Southeast Asia and Russia, a trend that was reinforced around

the turn of the millennium by the bursting of the dotcom bubble and the beginning of the Iraq

war. The following years of sinking volatility were interrupted by the Lehman bankruptcy and

the following finance and debt crisis. Also, especially the asset of RWE was strongly influenced

by the consequences of the nuclear incident in Fukushima in 2011.

5. Conclusion

We propose a multivariate monitoring procedure to detect changes in the vector of variances of

a sequence of random vectors and analyzed its size and power properties. An application to a

group of asset returns reported plausible changepoints that could be associated to past events

that actually showed strong influence on the stock market.

In the paper, we refrain from monitoring the whole covariance matrix as proposed by Aue et al.

(2009b) in the retrospective case and only focus on the variances instead. From a practitioner’s

point of view an application of the proposed procedure extended to the covariances to time

series of higher dimension is problematic. Even for a moderate number of observation units,

Dp is of unpropitious high dimension. The matrix has to be estimated and the quality of the

estimate declines with p which shows strong influence on the performance of the procedure.

To circumvent this problem, one should pursue different approaches, e.g., one could monitor

the largest eigenvalue of covariance matrices. We leave this task for future research.

25



References
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Silvennoinen, A. and T. Teräsvirta (2016): “Testing Constancy of Unconditional Variance in

Volatility Models by Misspecification and Specification Tests,” Studies in Nonlinear Dynam-

ics and Econometrics, forthcoming.

Tse, Y. and A. Tsui (2002): “A Multivariate Generalized Autoregressive Conditional Het-

eroscedasticity Model with Time-Varying Correlations,” Journal of Business and Economic

Statistics, 20(3), 351–362.

Wied, D. (2015): “A Nonparametric Test for a Constant Correlation Matrix,” Econometric

Reviews, forthcoming.

Wied, D., M. Arnold, N. Bissantz, and D. Ziggel (2012a): “A New Fluctuation Test for Con-

stant Variances with Applications to Finance,” Metrika, 75(8), 1111–1127.

Wied, D. and P. Galeano (2013): “Monitoring Correlation Change in a Sequence of Random

Variables,” Journal of Statistical Planning and Inference, 143(1), 186–196.

28
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